孫耀 張斌 陳虎
·綜述·
靶向CD123抗原嵌合受體T細胞治療急性髓系白血病的研究
孫耀 張斌 陳虎
急性髓系白血?。ˋML)是一種預后較差的血液系統(tǒng)惡性腫瘤,迫切需要新的治療手段。隨著嵌合抗原受體(CAR)T細胞(CAR-T)技術(shù)的發(fā)展并在B細胞腫瘤中取得顯著療效,人們把目光投入更多的實體瘤與血液腫瘤靶點中。CD123分子是CAR-T治療AML的潛在靶點,抗CD123 CAR-T具有靶向清除白血病干細胞(LSCs)及原始細胞的能力。本研究總結(jié)了目前在靶向CD123 CAR-T治療急性髓系白血病目前的研究進展。
白血病,急性; 抗原; 受體; 干細胞; 白細胞介素3受體α亞單位; T細胞
急性髓系白血?。╝cute myeloid leukemia,AML)是血液系統(tǒng)的一種惡性腫瘤,以克隆性增殖異常分化的惡性細胞浸潤骨髓、血液及其他組織為特點[1-2]。大量研究表明AML起源于一群數(shù)量相對較小的干祖細胞,即白血病干細胞(leukemia stem cells,LSCs)。CD123是一種包含360氨基酸的糖蛋白,廣泛地表達在白血病原始細胞和白血病干細胞表面,尤其是AML。目前已研發(fā)出幾種靶向CD123的單克隆抗體類藥物并正在進行臨床前及臨床試驗,靶向CD123的抗原受體(chimeric antigen receptor-modifyin,CAR)T細胞(CAR-T)治療也已完成臨床前研究并顯示出顯著的抗瘤效應,目前處于Ⅰ期臨床試驗階段。
自40多年前阿糖胞苷3 d,環(huán)磷酰胺7 d化療方案取得成功后,AML不再是不治之癥,但此后在AML治療上沒有突破性進展[3]。至今AML仍是一種威脅生命的惡性腫瘤,總生存率為70﹪,在60歲以下成人中治愈率為35~40﹪,而在60以上成人中治愈率僅為5﹪~15﹪[4-5]。對于誘導緩解失敗的患者,5年生存率僅7﹪~12﹪[6]。對于復發(fā)難治AML最好的治療辦法仍然是異基因造血干細胞移植(hematopoietic stem cell transplantation,allo-HSCT),而其造成的移植物抗宿主?。╣raft-versus-host disease,GVHD)、感染等嚴重并發(fā)癥也影響了患者的生存。
(一)CD123是白血病干細胞主要標志
隨著對白血病發(fā)病機制的深入研究,發(fā)現(xiàn)在髓系白血病中存在一群保持自我更新分化能力的白血病細胞,即LSCs,其在白血病細胞中數(shù)量較少,主要呈靜止狀態(tài)[7]。LSCs在表面分子上以CD34+,CD38-,CD71-,HLA-DR-,CD90-,CD123-,CLL-1+,TIM3+等為特點[7-11]。
目前許多化療藥物治療腫瘤的機制是殺滅分裂期細胞,AML化療也是如此并極易復發(fā),LSCs的存在也許解釋了AML化療后易復發(fā)的原因。并且,相關(guān)報道已證實LSCs在一定程度上對柔紅霉素加阿糖胞苷方案不敏感[7]。所以有效針對LSCs的治療,可能會成為治療復發(fā)難治AML的新策略。
表1 基于CD123單抗藥物現(xiàn)狀
(二)CD123表達情況
CD123是一種糖蛋白,同時也是白細胞介素3受體跨膜α亞單位(IL-3Ra),與CD131一起組成高親和力的IL-3受體,一旦與IL-3結(jié)合,則促進細胞增殖及存活。
1. CD123正常表達
CD123主要在造血系統(tǒng)中表達,CD123在正常CD34+CD38-細胞中低表達或者不表達[12],Taussig等[13]發(fā)現(xiàn),在臍帶血中大多數(shù)CD34+/CD38-細胞表達CD123,而骨髓CD34+/CD38-細胞中CD123+細胞比例較低。此外,正常情況下在髓系祖細胞、B淋巴祖細胞中CD123有較高表達,而紅系祖細胞和多向分化潛能祖細胞中低表達或不表達[14-15];漿細胞樣樹突狀細胞與嗜堿性粒細胞中高表達,而在嗜酸性粒細胞、單核細胞和髓系樹突狀細胞中低表達[16]。
2.CD123異常表達
CD123在AML-LSC及AML原始細胞均高表達[12,17-18]。在NSG小鼠模型中,CD34+/CD38-/CD123+細胞群較 CD34+/ CD38-/CD123+細胞群有更強的重建AML能力;AML原始細胞中CD123的高表達與信號轉(zhuǎn)導與轉(zhuǎn)錄激活因子5(signal transducer and activator of transcription 5, STAT5)信號通路的活化相關(guān)。在臨床上,初診時原始細胞數(shù)量越高的患者,CD123的表達水平越高;CD123高表達的患者與CD123正常患者相比預后更差[19]。這些研究都說明CD123可能與白血病的發(fā)生密切相關(guān)。
除了在AML中表達,CD123在慢性粒細胞白血病,骨髓增生異常綜合癥及肥大細胞增多癥,B-細胞急性淋巴細胞白血?。˙-cell acute lymphocytic leukemia,B-ALL)[20]中也有所表達。最近,Du等[21]首次報道T-細胞急性淋巴細胞白血?。═-cell acute lymphocytic leukemia,T-ALL)也表達CD123。
Jingmei等[22]發(fā)現(xiàn)CD123在造血干細胞移植后急性GVHD患者中升高,可作為一個重要輔助指標用于鑒別急性GVHD及巨細胞病毒感染,特別是對于胃腸道病變。
CD123是LSCs的主要標志,同時在AML原始細胞中表達比例明顯高于正常細胞,尤其是CD34+CD38-細胞,使CD123成為AML靶向治療可行靶點,并且有望為AML治療帶來新的突破。
(三)靶向CD123抗體藥物
目前關(guān)于CD123單抗藥物的研究總結(jié)見表1。靶向CD123的抗體藥物雖然均處于早期臨床試驗階段,也并未展現(xiàn)出突出療效,但仍是目前研究的熱點。Ⅰ期臨床研究中患者表現(xiàn)展現(xiàn)出良好的耐受性,沒有出現(xiàn)嚴重的血液系統(tǒng)不良反應。針對漿細胞樣樹突狀細胞腫瘤的治療(SL-401)取得了較高緩解率,其中一名患者緩解時間長達20個月以上,但初始有反應的3名患者復發(fā)后再次治療均無效[23]。而在另一項針對AML臨床研究(CSL360)中完全反應率較低,僅1/27達CR[20],說明靶向CD123的抗體藥物尚需要通過優(yōu)化抗體親和力、多靶點抗體結(jié)合等方法,增強抗腫瘤活性。
表2 CART123臨床前研究匯總
(四)CD123 CART臨床前研究
目前關(guān)于CD123的臨床前研究匯總于表2,部分研究中發(fā)生造血系統(tǒng)毒性,安全性有待商榷。Pizzitola等[25]將CD28、OX40共刺激分子作為胞內(nèi)段,較二代CAR增加了IFN-γ,TNF-α,TNF-β和IL-2等細胞因子分泌水平,提高了抗腫瘤效應,且沒有增加其對造血系統(tǒng)的毒性。Moretti等[16]研究發(fā)現(xiàn),來自臍血的CD34+正常造血祖細胞與CART123共培養(yǎng)后仍保留正常增殖分化能力。Gill等[26]首次提出CART123安全性問題,他們在體外及胎肝CD34+細胞重建的NSG小鼠模型中均觀察到CART123引起嚴重的造血系統(tǒng),主要是CD34+CD38-細胞,及B淋巴細胞、血小板及髓系細胞數(shù)量的減少,并建議將CART123作為一種HSCT前的清髓方案更加安全。當然,不同來源造血組織CD123表達水平不一,Huang等[15]指出在CD34+胎肝細胞中CD123表達水平高于臍血或骨髓來源CD34+細胞。由于個體、組織來源不同均可導致CD123表達水平的差異,故靶向表達CD123正常細胞引起的毒性反應不可避免。選擇合理閾值采取干預措施,或通過scFv,CAR結(jié)構(gòu)的改善提高特異性,可能成為未來提高CART123安全性的策略??紤]到AML移植后患者易感染EB病毒,巨細胞病毒等病毒且常規(guī)藥物治療療效差或副作用大,最近Zhou等[28]設(shè)計了一種CD123-CAR-VST,既能殺傷CD123+AML細胞又對EMV等病毒感染有一定的控制作用。
表3 其他治療AML的CART研究進展
Tasian等[29]假設(shè)CART123清除體內(nèi)AML細胞后及時清除CART細胞,能夠在一定程度上保持對AML的控制同時減少靶向CD123毒性發(fā)生,并且比較了3種不同方法清除CART的效果。
Ruella等[30]發(fā)現(xiàn)80﹪的B-ALL原始細胞中表達CD123,并在CD19陰性復發(fā)的B-ALL腫瘤細胞中檢測到。在體外實驗和動物模型中,CART123不僅能有效清除B-ALL腫瘤細胞,并且CART19聯(lián)合CART123相比CART19能更有效清除CD19陰性復發(fā)腫瘤細胞,可能解決目前CART19治療后復發(fā)率的問題。
Celletis公司繼UCART19后,研發(fā)了異體UCART123,通過TALEN技術(shù)敲除TCRα消除GvHD作用,從而可實現(xiàn)“off-the-shelf”,即通過正常供者T細胞大規(guī)模制備CART,較自體CART明顯縮短制備時間[31]。
(五)CD123 CAR-T臨床試驗方案
截至目前,有兩個CD123 CAR-T治療AML患者的Ⅰ期臨床試驗在開展中。第一個是由美國希望之城醫(yī)學中心注冊(NCT02159495),采用CAR123-28z結(jié)構(gòu),以減少CAR-T體內(nèi)存留時間,因為文獻表明以CD28作為胞內(nèi)段的第二代CAR結(jié)構(gòu)在體內(nèi)存活時間僅1個月[32];并且攜帶有自殺基因EGFRt,能夠在EGFR單抗作用下清除CAR-T。此外,他們將CART123作為allo-HSCT前的清髓方案,以最大限度減少腫瘤負荷[6]。第二個是由Pennsylvania大學注冊的CD123-BBz二代CAR(NCT02623582),由于前期研究中發(fā)現(xiàn)了對造血系統(tǒng)的損傷,在臨床試驗中采用電轉(zhuǎn)RNA-CART多次輸注策略確保安全。
在57th ASH會議上,Luo等[27]口頭報告了首例CART123治療AML患者案例。他們設(shè)計的CD123-scFv/ CD28/CD137/CD27/CD3ζ-iCasp9(4SCAR123)4代CAR在患者接受預處理(CTX 250mg/kg/day3天方案)后輸注。輸注后患者出現(xiàn)了嚴重細胞因子風暴綜合癥,通過單次給與妥珠單抗Tocilizumab(IL-6R拮抗劑)后得到控制。患者的骨髓原始細胞治療前59﹪,CART輸注后20 d降低至40﹪,并尚未觀察到嚴重毒副作用。
(六)其他治療AML的CAR-T細胞靶點
目前治療AML的CAR-T研究臨床試驗注冊情況如表3所示,除CD123以外,僅靶向CD33和Lewis Y的研究公布了臨床試驗階段的數(shù)據(jù)。目前主要的AML治療靶點有CD33,Lewis Y,F(xiàn)Rβ。此外,TIM-3,CLL-1等由于其表達特異性,也有望成為AML治療靶點[11,33]。
1. CD33:CD33(Siglec-3)在90﹪的AML原始細胞中持續(xù)表達,同時在多能髓系祖細胞,成熟粒、單細胞及單能干細胞等細胞中表達[34-39]。CD33是AML中第一個用于單抗藥物及免疫治療治療的表面分子。但由于白血病細胞及正常造血細胞中表達水平相近,缺乏特異性,在臨床試驗中觀察到明確的毒性而致使安全性未得到一直公認[40]。一些關(guān)于CART-33的臨床前研究顯示了其抗腫瘤效應[41],其中Marin等[42]觀察到其對nHPCs的毒性,解放軍總醫(yī)院Wang等[39]開展了全球首例CART-33臨床試驗(NCT01864902)并且治療了1例AML患者。盡管觀察到了短暫的療效,其安全性及有效性仍待進一步探討。不幸的是介于CD33單抗藥物GO的嚴重副作用,關(guān)于CD33的臨床試驗目前被暫停。而Pizzitola等[25]研究發(fā)現(xiàn)相比于CART33,CART123有同等的抗AML效應且安全性更好。
2. Lewis Y:Lewis Y是一種功能尚未知的巖藻糖抗原,它在大量蛋白中均可檢測到,包括腫瘤相關(guān)抗原[43]。并且在包括AML在內(nèi)的廣泛惡性腫瘤中表達拷貝數(shù)很高,而在正常組織中表達較低,其表達越多預后越差[44]。
3.FRβ:葉酸受體(FR)家族由α,β,γ和δ 4個已知成員組成的一組葉酸結(jié)合蛋白受體,并且這些受體的分布具有組織特異性:FRα主要分布于上皮組織,而FRβ主要分布于髓系造血細胞中[45]。這些受體在惡性腫瘤中普遍出現(xiàn)上調(diào),其中FRβ在70﹪左右的AML患者腫瘤中檢測到,使其成為一個AML治療具有潛力的靶點[46-47]。
將目前基于7G3序列的CD123單抗藥物在Ⅰ期臨床試驗中的結(jié)果并不理想,而相應的CART123在臨床前的試驗中顯示出明顯的抗腫瘤效應[25,48],說明了CAR-T在髓系腫瘤上應用的潛能。研究已表明,從CAR結(jié)構(gòu)上,4-1BB胞內(nèi)段能避免T細胞無反應性,并促進T細胞增殖及產(chǎn)生記憶細胞,對T細胞在體內(nèi)的持續(xù)明顯優(yōu)于CD28,且4-1BBL優(yōu)于4-1BB胞內(nèi)段設(shè)計,而CD28胞內(nèi)段設(shè)計則優(yōu)于CD80胞外段[49],意味著未來CAR-T設(shè)計將不斷優(yōu)化,獲得更好療效。而同時介于CART123可能帶來的造血毒性,增加CART123可控性成為開展臨床試驗的必要前提。除了瞬時轉(zhuǎn)染、序貫以allo-HSCT以外,還可采用iCAR-T[50]、synNotch CAR[51-52]等設(shè)計可能會減少其脫靶效應的發(fā)生率;另一方面,采用HSV-TK kinases自殺基因策略,可殺滅增殖中的CAR-T細胞,控制GVHD作用,而保有少量CAR-T在體內(nèi),起到免疫監(jiān)視作用[53],最新的相關(guān)“分子開關(guān)”機制,通過抗體藥物或小分子藥物調(diào)控CAR-T在體內(nèi)發(fā)揮作用[54-57],也給CAR-T治療可控性帶來了新的思路??偠灾行У目鼓[瘤效果結(jié)合適當?shù)目煽匦?,將是未來CART123治療AML 的發(fā)展方向。
1 Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia[J]. N Engl J Med, 2015, 373(12):1136-1152.
2 陸曉茜, 馬志貴, 高舉, 等. 維A酸X受體信號通路與白血病[J]. 器官移植, 2014, 5(6):383-388.
3 Grosso DA, Hess RC, Weiss MA. Immunotherapy in acute myeloid leukemia[J]. Cancer, 2015, 121(16):2689-2704.
4 Creutzig U, Van Den Heuvel-Eibrink MM, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel[J]. Blood, 2012, 120(16):3187-3205.
5 D?hner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet[J]. Blood, 2010, 115(3):453-474.
6 Mardiros A, Forman SJ, Budde LE. T cells expressing CD123 chimeric antigen receptors for treatment of acute myeloid leukemia[J]. Curr Opin Hematol, 2015, 22(6):484-488.
7 Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting[J]. J Clin Oncol,2011, 29(5):591-599.
8 Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature,1994, 367(6464):645-648.
9 Forman SJ, Rowe JM. The myth of the second remission of acute leukemia in the adult[J]. Blood, 2013, 121(7):1077-1082.
10 Jordan CT. Unique molecular and cellular features of acute myelogenous leukemia stem cells[J]. Leukemia, 2002, 16(4):559-562.
11 Kikushige Y, Shima T, Takayanagi S, et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells[J]. Cell Stem Cell,2010, 7(6):708-717.
12 Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells[J]. Leukemia, 2000, 14(10):1777-1784.
13 Pelosi E, Castelli G, Testa U. Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells[J]. Blood Cells Molecules and Diseases, 2015, 55(4):336-346.
14 Wognum AW, De Jong MO, Wagemaker G. Differential expression of receptors for hemopoietic growth factors on subsets of CD34+hemopoietic cells[J]. Leuk Lymphoma, 1996, 24(1/2):11-25.
15 Huang S, Chen Z, Yu JF, et al. Correlation between IL-3 receptor expression and growth potential of human CD34+hematopoietic cells from different tissues[J]. Stem Cells, 1999, 17(5):265-272.
16 Moretti S, Lanza F, Dabusti M, et al. CD123 (interleukin 3 receptor alpha chain)[J]. J Biol Regul Homeost Agents, 2001, 15(1):98-100.
17 Du W, Li XE, Sipple J, et al. Overexpression of IL-3Rα on CD34+CD38-stem cells defines leukemia-initiating cells in Fanconi anemia AML[J]. Blood, 2011, 117(16):4243-4252.
18 Mu?oz L, Nomdedéu JF, López O, et al. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies[J]. Haematologica, 2001, 86(12):1261-1269.
19 Testa U, Riccioni R, Militi S, et al. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis[J]. Blood, 2002,100(8):2980-2988.
20 Jin L, Lee EM, Ramshaw HS, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells[J]. Cell Stem Cell, 2009, 5(1):31-42.
21 Du W, Li J, Liu W, et al. Interleukin-3 receptor α chain (CD123) is preferentially expressed in immature T-ALL and May not associate with outcomes of chemotherapy[J]. Tumour Biol, 2016, 37(3):3817-3821.
22 Lin J, Chen S, Zhao Z, et al. CD123 is a useful immunohistochemical marker to facilitate diagnosis of acute graft-versus-host disease in colon[J]. Hum Pathol, 2013, 44(10):2075-2080.
23 Frankel AE, Woo JH, Ahn C, et al. Activity of SL-401, a targeted therapy directed to interleukin-3 receptor, in blastic plasmacytoid dendritic cell neoplasm patients[J]. Blood, 2014, 124(3):385-392.
24 Lynn RC, Poussin M, Kalota A, et al. Targeting of folate receptor β on acute myeloid leukemia blasts with chimeric antigen receptorexpressing T cells[J]. Blood, 2015, 125(22):3466-3476.
25 Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo[J]. Leukemia, 2014, 28(8):1596-1605.
26 Gill S, Tasian SK, Ruella M, et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptormodified T cells[J]. Blood, 2014, 123(15):2343-2354.
27 Luo Y, Chang LJ, Hu YX, et al. First-in-Man CD123-Specific chimeric antigen Receptor-Modified T cells for the treatment of refractory acute myeloid leukemia[C/OL]// 57th ASH Annual Meeting & Exposition,Orlando, 2015[2016-02-21]. https://ash.confex.com/ash/2015/ webprogram/Paper85290.html.
28 Zhou L, Liu X, Wang X, et al. CD123 redirected multiple virus-specific T cells for acute myeloid leukemia[J]. Leuk Res, 2016, 41:76-84.
29 Tasian SK, Kenderian SS, Shen F, et al. Efficient termination of CD123-Redirected chimeric antigen receptor T cells for acute myeloid leukemia to mitigate toxicity[J]. Blood, 2015, 126(23):565-565.
30 Ruella M, Barrett DM, Kenderian SS, et al. Treatment of leukemia antigen-loss relapses occurring after CD19-targeted immunotherapies by combination of anti-CD123 and anti-CD19 chimeric antigen receptor T cells[J]. J Immunother Cancer, 2015, 3(S2):O5.
31 Galetto R, Lebuhotel C, Fran?on P, et al. Allogenic T-Cells targeting CD123 for adoptive immunotherapy of acute myeloid leukemia(AML)[J]. Blood, 2014, 124 (21):1116.
32 Norelli M, Casucci M, Bonini C, et al. Clinical pharmacology of CAR-T cells: Linking cellular pharmacodynamics to pharmacokinetics and antitumor effects[J]. Biochim Biophys Acta, 2016, 1865(1):90-100. 33 Van Rhenen A, Van Dongen GA, Kelder A, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells[J]. Blood, 2007, 110(7):2659-2666.
34 Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody,lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia[J]. J Clin Oncol, 2005, 23(18):4110-4116.
35 Pearce DJ, Taussig D, Zibara K, et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML[J]. Blood, 2006,107(3):1166-1173.
36 Nakahata T, Okumura N. Cell surface antigen expression in human erythroid progenitors: erythroid and megakaryocytic markers[J]. Leuk Lymphoma, 1994, 13(5/6):401-409.
37 Taussig DC, Pearce DJ, Simpson C, et al. Hematopoietic stem cells Express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia[J]. Blood, 2005,106(13):4086-4092.
38 Hernández-Caselles T, Martínez-Esparza M, Pérez-Oliva AB, et al. A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing[J]. J Leukoc Biol, 2006, 79(1):46-58.
39 Wang QS, Wang Y, Lv HY, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia[J]. Mol Ther, 2015, 23(1):184-191.
40 Larson RA, Sievers EL, Stadtmauer EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence[J]. Cancer, 2005, 104(7):1442-1452.
41 Dutour A, Marin V, Pizzitola I, et al. In vitro and in vivo antitumor effect of Anti-CD33 chimeric Receptor-Expressing EBV-CTL against CD33 acute myeloid leukemia[J]. Adv Hematol, 2012:683065.
42 Marin V, Pizzitola I, Agostoni V, et al. Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: improvement of their immune activity by expression of CD33-specific chimeric receptors[J]. Haematologica, 2010, 95(12):2144-2152.
43 Yin BW, Finstad CL, Kitamura K, et al. Serological and immunochemical analysis of Lewis y (Ley) blood group antigen expression in epithelial ovarian cancer[J]. Int J Cancer, 1996,65(4):406-412.
44 Ritchie DS, Neeson PJ, Khot A, et al. Persistence and efficacy of second Generation CAR T cell against the LeY antigen in acute myeloid leukemia[J]. Mol Ther, 2013, 21(11):2122-2129.
45 Shen F, Ross JF, Wang X, et al. Identification of a novel folate receptor,a truncated receptor, and receptor type beta in hematopoietic cells:cDNA cloning, expression, immunoreactivity, and tissue specificity[J]. Biochemistry, 1994, 33(5):1209-1215.
46 Ross JF, Wang H, Behm FG, et al. Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia[J]. Cancer, 1999, 85(2):348-357.
47 Pan XQ, Zheng X, Shi G, et al. Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid[J]. Blood, 2002, 100(2):594-602.
48 Tettamanti S, Marin V, Pizzitola I, et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor[J]. Br J Haematol, 2013,161(3):389-401.
49 Zhao Z, Condomines M, Van Der Stegen SJ, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells[J]. Cancer Cell, 2015, 28(4):415-428.
50 Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses[J]. Sci Transl Med, 2013, 5(215):215ra172.
51 Morsut L, Roybal KT, Xiong X, et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors[J]. Cell,2016, 164(4):780-791.
52 Roybal KT, Rupp LJ, Morsut L, et al. Precision tumor recognition by T cells with combinatorial Antigen-Sensing circuits[J]. Cell, 2016,164(4):770-779.
53 Greco R, Oliveira G, Stanghellini MT, et al. Improving the safety of cell therapy with the TK-suicide gene[J]. Front Pharmacol, 2015, 6:95. 54 Ma JS, Kim JY, Kazane SA, et al. Versatile strategy for controlling the specificity and activity of engineered T cells[J]. Proc Natl Acad Sci U S A, 2016, 113(4):E450-E458.
55 Rodgers DT, Mazagova M, Hampton EN, et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies[J]. Proc Natl Acad Sci U S A, 2016, 113(4):E459-E468.
56 Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor[J]. Science,2015, 350(6258):aab4077.
57 Juillerat A, Marechal A, Filhol JM, et al. Design of chimeric antigen receptors with integrated controllable transient functions[J]. Sci Rep,2016, 6:18950.
58 He SZ, Busfield S, Ritchie DS, et al. A phase 1 study of the safety,pharmacokinetics and anti-leukemic activity of the anti-CD123 monoclonal antibody CSL360 in relapsed, refractory or high-risk acute myeloid leukemia[J]. Leuk Lymphoma, 2015, 56(5):1406-1415.
59 Nievergall E, Ramshaw HS, Yong AS, et al. Monoclonal antibody targeting of IL-3 receptor α with CSL362 effectively depletes CML progenitor and stem cells[J]. Blood, 2014, 123(8):1218-1228.
60 Busfield SJ, Biondo M, Wong M, et al. Targeting of acute myeloidleukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC[J]. Leukemia, 2014, 28(11):2213-2221.
61 Chichili GR, Huang L, Li H, et al. A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates[J]. Sci Transl Med, 2015,7(289):289ra82.
62 Kügler M, Stein C, Kellner C, et al. A recombinant trispecific singlechain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting[J]. Br J Haematol, 2010, 150(5):574-586.
63 Yc S, Erik P, Hsing C, et al. Immunotherapy with Long-Lived Anti-CD123×Anti-CD3 Bispecific Antibodies Stimulates Potent T Cell-Mediated Killing of Human AML Cell Lines and of CD123+Cells in Monkeys:A Potential Therapy for Acute Myelogenous Leukemia[J]. Blood, 2014, 124(21):2316-2316.
64 Mardiros A, Dos Santos C, Mcdonald T, et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia[J]. Blood, 2013, 122(18):3138-3148.
65 Peinert S, Prince HM, Guru PM, et al. Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen[J]. Gene Ther, 2010, 17(5):678-686.
66 Lynn RC, Feng Y, Schutsky K, et al. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity[J]. Leukemia, 2016, 30(6):1355-1364.
Chimeric Antigen Receptor-modifying Tagainst CD123 for the treatment of AML
Sun Yao,Zhang Bin, Chen Hu. Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital & Cell and Gene Therapy Center, Academy of Military Medical Sciences, Beijing 100071, China
s: Chen Hu, Email:chenhu217@aliyun.com; Zhang Bin, Email:zb307ctc@163. com
Acute myeloid leukemia(AML)is a refractory hematologic malignancies which still lacks a good prognosis and craves a new treatment. With the progress of the chimeric antigen receptor-modifying(CAR)T cell(CAR-T)technology and the achievement got on the B-cell malignancies,an increasing targets are been investigated, ranging from kinds of hematology to solid tumors. CD123 molecule is a potential target of leukemia stem cells(LSCs)and leukemia blasts,while anti-CD123 CAR-T has the ability to clear the AML leukemia stem cells(LSCs)and blasts. We summarize the current progress and the direction about the treatment of anti-CD123 CAR-T.
Leukemia; Acute; Antigen; Receptor; Stem cells; Interleukin-3 Receptor alpha Subunit; T cells
2016-02-21)
(本文編輯:蔡曉珍)
10.3877/cma.j.issn.2095-1221.2016.03.009
100071 北京,軍事醫(yī)學科學院附屬醫(yī)院造血干細胞移植科 軍事醫(yī)學科學院細胞與基因治療中心
陳虎,Email:chenhu217@aliyun.com;張斌,Email:zb307ctc@163.com
孫耀, 張斌, 陳虎. 靶向CD123抗原嵌合受體T細胞治療急性髓系白血病的研究[J/CD].中華細胞與干細胞雜志:電子版,2016, 6(3):184-190.