嚴(yán)青松,蘆 剛,李 成,沈加利
(南昌航空大學(xué) 航空制造工程學(xué)院,南昌 330063)
超聲功率-凝固壓力協(xié)同作用對真空差壓鑄造鋁合金二次枝晶間距的影響
嚴(yán)青松,蘆 剛,李 成,沈加利
(南昌航空大學(xué) 航空制造工程學(xué)院,南昌 330063)
通過測試與分析不同超聲功率與凝固壓力下真空差壓鑄造ZL114A鋁合金的二次枝晶間距,研究超聲功率與凝固壓力協(xié)同作用對真空差壓鑄造鋁合金二次枝晶間距的影響,建立真空差壓鑄造ZL114A鋁合金二次枝晶間距與超聲功率及凝固壓力的關(guān)系。結(jié)果表明:在超聲功率和凝固壓力協(xié)同作用下,超聲效應(yīng)與凝固壓力擠滲效應(yīng)共同影響真空差壓鑄造鋁合金二次枝晶間距;在超聲功率600 W與凝固壓力350 kPa協(xié)同作用下,真空差壓鑄造鋁合金二次枝晶間距最??;當(dāng)凝固壓力小于300 kPa時,超聲功率對鋁合金二次枝晶間距影響較大;當(dāng)凝固壓力大于300 kPa時,凝固壓力對真空差壓鑄造ZL114A鋁合金二次枝晶間距影響較大。
鋁合金;二次枝晶間距;超聲功率;凝固壓力;真空差壓鑄造
鋁合金鑄件由于具有良好的力學(xué)性能、比強度和耐蝕性,且生產(chǎn)工藝簡便,成本較低,因此,應(yīng)用非常廣泛[1-3]。但是采用傳統(tǒng)的鑄造工藝生產(chǎn)的鋁合金鑄造組織的一次枝晶和二次枝晶間距都比較大,特別是二次枝晶臂間距大小直接影響著成分偏析、第二相及顯微孔洞的分布,從而對鋁合金鑄件組織和性能產(chǎn)生影響。因此,要獲得晶粒細(xì)小、組織致密的鋁合金鑄件必須控制和改善凝固過程。
在金屬凝固過程中施加超聲振動有利于細(xì)化晶粒。早在20世紀(jì)30年代,各國學(xué)者就開始從事超聲振動在金屬凝固領(lǐng)域的研究工作。RAMIREZ等[4]研究了超聲處理對鎂合金熔體晶粒細(xì)化的影響,認(rèn)為超聲波會產(chǎn)生空化效應(yīng),形成很多空化泡及顯微空穴,在空化泡的崩潰過程中,產(chǎn)生的強烈沖擊波將會擊碎初生晶核和正在長大的晶體,使之成為破碎的晶體質(zhì)點彌散地分布于熔體中,提高形核率,同時抑制了晶體的生長,凝固后基體晶粒細(xì)小均勻。ESKIN[5-6]采用超聲波對鋁合金的凝固過程進行了較為深入的研究,試驗結(jié)果表明超聲產(chǎn)生的空化效應(yīng)有利于形核增殖,導(dǎo)致晶粒細(xì)化,鋁合金經(jīng)過超聲處理后,拉伸強度可以提高6%~10%。ATAMANENKO等[7-8]采用超聲熔體處理技術(shù)對鋁合金的晶粒細(xì)化進行了研究,認(rèn)為超聲波晶粒細(xì)化效果與空化效應(yīng)引起的過冷有關(guān)。李英龍等[9]研究了功率超聲對Al-Si合金組織和性能的影響,認(rèn)為功率超聲通過熱機制和機械機制能提高液相形核率,抑制Si相長大,同時,空化效應(yīng)能使生長中的硅晶體破碎成顆粒,改變硅的形態(tài)和分布,減小其對基體的削弱作用,且能細(xì)化組織、提高合金的強度和塑性。李成等[10]研究超聲功率對金屬型鑄造鋁合金二次枝晶間距的影響,結(jié)果發(fā)現(xiàn)施加超聲波后,鋁合金二次枝晶間距減小,合金組織得到細(xì)化。蔣日鵬等[11]研究超聲振動下鋁合金凝固的晶粒細(xì)化機理,認(rèn)為施加超聲場可以改善溫度場分布的均勻性,并且能夠明顯加快熔體的整體凝固進程,超聲振動下鋁合金的晶粒細(xì)化主要歸功于超聲空化促成的形核增殖與諧振效應(yīng)抑制了晶體生長。同時,真空差壓鑄造作為一種先進的反重力鑄造工藝,在整個凝固過程中金屬熔體都受到壓力場的作用,可以獲得晶粒細(xì)小、組織致密的鑄件。研究結(jié)果表明[12-13],在壓力下凝固時,壓力可以使鋁合金熔體通過凝固枝晶間的狹窄通道向孔隙間流動,存在一種擠壓驅(qū)動力。由于凝固區(qū)間的鋁合金二次枝晶間距一般為10~100 μm,在壓力作用下鋁合金熔體在枝晶間流動的通道其實很狹窄,相當(dāng)于滲流,可以認(rèn)為是一種擠滲作用。從理論上講,在凝固期間已形成一定骨架的枝晶都具有一定的強度,當(dāng)產(chǎn)生的擠滲力大于枝晶的強度時,枝晶會發(fā)生顯微塑性變形直至斷裂,有利于細(xì)化晶粒。
目前,國內(nèi)外專家對超聲振動及壓力凝固條件下晶粒細(xì)化進行了大量的研究,得到了很多有價值的結(jié)論。在真空差壓鑄造凝固過程中施加超聲振動,將會使超聲振動與凝固壓力協(xié)同作用于鋁合金熔體,必將會對鋁合金熔體凝固過程的枝晶生長及補縮行為產(chǎn)生較大的影響。因此,本文作者系統(tǒng)研究超聲功率與凝固壓力協(xié)同作用對真空差壓鑄造鋁合金二次枝晶間距的影響,建立鋁合金二次枝晶間距與超聲功率及凝固壓力關(guān)系,為獲得晶粒細(xì)小、組織致密復(fù)雜鋁合金鑄件提供理論指導(dǎo)。
通過在自制的VCPC型真空差壓鑄造設(shè)備上引入超聲振動裝置進行實驗,系統(tǒng)工作原理示意圖如圖1所示。當(dāng)真空差壓鑄造抽真空階段結(jié)束時,開始在充型、升壓、凝固保壓階段施加超聲振動直至泄壓,實施超聲功率-凝固壓力協(xié)同作用,工藝曲線如圖2所示。試樣采用外形尺寸為d 12 mm×100 mm圓棒。鑄型采用金屬型,預(yù)熱溫度為270 ℃,合金為ZL114A(ZAlSi7Mg1A),澆注溫度700 ℃左右,分別采用真空度20 kPa、充型壓差35 kPa、保壓時間80 s、不同超聲功率(0、300、600和900 W)、不同的凝固壓力(200、250、300、350 kPa)等工藝參數(shù)進行真空差壓鑄造鋁合金試樣。
為了測量二次枝晶間距的大小,在真空差壓鑄造的試樣上的相同部位分別取樣,利用XQ-1型金相鑲嵌機對各試樣進行鑲嵌,經(jīng)過粗磨、精磨、拋光,腐蝕。腐蝕液為0.5%HF(質(zhì)量分?jǐn)?shù)),腐蝕的時間為15~20 s。利用XJP-6A型金相顯微鏡對腐蝕后試樣進行顯微組織觀察并拍取金相圖片,并采用截線法和Image-Pro Plus金相分析軟件對二次枝晶間距進行測量。
圖1 超聲振動下真空差壓鑄造工作原理圖Fig. 1 Working theory of vacuum counter-pressure casting under ultrasonic vibration: 1—Ultrasonic device; 2—Upper kettle; 3—Mould; 4—Clapboard; 5—Down kettle; 6—Crucible; 7—Rising tube; 8, 9, 21—Gas tube; 10, 19—Regulating valve; 11, 12, 15, 17, 18, 20—Switch valve; 13, 14—Gas jar; 16—Vacuum pump
圖2 超聲功率-凝固壓力協(xié)同作用工藝曲線Fig. 2 Process graphs of synergistic action between ultrasonic power and solidification pressure
在超聲功率-凝固壓力協(xié)同作用下,真空差壓鑄造ZL114A合金試樣的二次枝晶間距(Secondary dendrite arm spacing, SADS)的測試結(jié)果如表1所列。表1中,D1,D2和D3分別為測試1,2和3枝晶部位二次柱晶間距的大小。從表1可以得出,在超聲功率-凝固壓力協(xié)同作用下真空差壓鑄造ZL114A鋁合金試樣二次枝晶間距變化曲線,結(jié)果如圖3所示。從圖3可以看出,真空差壓鑄造ZL114A鋁合金二次枝晶間距與超聲功率及凝固壓力都有一定的關(guān)系,超聲功率及凝固壓力共同影響二次枝晶間距大小。當(dāng)超聲功率600 W,凝固壓力350 kPa時,真空差壓鑄造ZL114A鋁合金二次枝晶間距λ2最小。當(dāng)凝固壓力小于300 kPa時,超聲功率對真空差壓鑄造ZL114A鋁合金二次枝晶間距影響較大;當(dāng)凝固壓力大于300 kPa時,凝固壓力對真空差壓鑄造ZL114A鋁合金二次枝晶間距影響較大。圖4所示為不同條件下ZL114A鋁合金顯微組織;圖4(a)所示為凝固壓力350 kPa的鋁合金顯微組織;圖4(b)所示為超聲功率600 W的鋁合金顯微組織;圖4(c)所示為超聲功率600 W與凝固壓力350 kPa協(xié)同作用的鋁合金顯微組織。從圖4可以明顯看出,超聲功率600 W與凝固壓力350 kPa協(xié)同作用下鋁合金顯微組織更加細(xì)小。
圖3 超聲功率-凝固壓力協(xié)同作用下二次枝晶間距變化趨勢圖Fig. 3 Variation trend of SADS with ultrasonic power and solidification pressure
表1 二次枝晶間距測試結(jié)果Table 1 Testing results of secondary dendrite arm spacing
圖4 不同條件下ZL114A鋁合金的顯微組織Fig. 4 Microstructures of ZL114A aluminum alloy under different conditions: (a) At solidification pressure of 350 kPa; (b) At ultrasonic power of 600 W; (c) By synergistic action between ultrasonic power of 600 W and solidification pressure of 350 kPa
通過非線性最小二乘法擬合得到真空差壓鑄造ZL114A鋁合金試樣二次枝晶間距與超聲功率及凝固壓力的關(guān)系曲面,其結(jié)果如圖5所示。從圖5可以得出,真空差壓鑄造ZL114A鋁合金二次枝晶間距λ2與超聲功率U及凝固壓力pc的關(guān)系如式(1)所示:
圖5 二次枝晶間距與超聲功率和凝固壓力關(guān)系擬合圖Fig. 5 Fitting relationship of SADS with ultrasonic power and solidification pressure
超聲作用會使鋁合金熔體中產(chǎn)生強烈的空化、聲流、熱效應(yīng)等超聲效應(yīng),空化與聲流效應(yīng)使鋁合金的組織得到細(xì)化,達(dá)到了減小二次枝晶間距的效果[14-16]。但是超聲功率越大,熱效應(yīng)效果越顯著。當(dāng)超聲功率大于600 W時,其超聲能量被熔體吸收更多,更容易造成熔體局部溫度升高,延長了熔體中枝晶的長大時間,反而使組織變粗大,二次枝晶間距也增大[17-18]。真空差壓鑄造在凝固壓力的作用下會產(chǎn)生擠滲作用。擠滲作用的大小主要取決于凝固壓力,凝固壓力越大,擠滲作用就越強,金屬液就能夠更順利的通過凝固枝晶間的狹窄通道向補縮區(qū)流動。而且,在擠滲過程中,即使枝晶連成骨架,只要其強度低于擠滲的壓力,枝晶會發(fā)生塑性變形甚至?xí)灰合嗔鳑_斷,使游離晶粒增多,枝晶細(xì)小[19-20]。在超聲功率-凝固壓力協(xié)同作用下,鋁合金熔體會同時受到超聲作用及凝固壓力的作用,超聲功率-凝固壓力協(xié)同作用示意圖如圖6所示。當(dāng)超聲振動空化效應(yīng)產(chǎn)生的空化泡形成長大過程中,來自凝固壓力擠滲效應(yīng)產(chǎn)生的擠壓會使空化泡更容易崩潰破滅,在周而復(fù)始的空化泡崩潰破滅過程中,產(chǎn)生的大量強烈的沖擊波會擊碎初生晶核和正在長大的枝晶,形成大量破碎的晶核質(zhì)點,晶粒數(shù)量急劇增加,使鋁合金的組織得到細(xì)化。同時,超聲作用產(chǎn)生的聲流等效力會與真空差壓鑄造凝固壓力作用下產(chǎn)生擠滲力產(chǎn)生疊加,不僅加速了鋁合金熔體中溶質(zhì)的擴散,導(dǎo)致初生枝晶的二次枝晶壁根部容易產(chǎn)生溶質(zhì)的富集,導(dǎo)致頸縮、熔斷等現(xiàn)象,而且即使枝晶連成骨架,只要其強度低于超聲功率-凝固壓力協(xié)同產(chǎn)生的疊加力,枝晶會更容易被液相流沖斷,使游離晶粒增多,進一步細(xì)化晶粒,減小二次枝晶間距。
圖6 超聲功率-凝固壓力協(xié)同作用示意圖Fig. 6 Sketch map of synergistic action between ultrasonic power and solidification pressure
1) 超聲功率和凝固壓力協(xié)同作用對真空差壓鑄造鋁合金二次枝晶間距影響明顯。當(dāng)超聲功率600W、凝固壓力350 kPa時,真空差壓鑄造鋁合金二次枝晶間距最小。當(dāng)凝固壓力小于300 kPa時,超聲功率對鋁合金二次枝晶間距影響較大;當(dāng)凝固壓力大于300 kPa時,凝固壓力對真空差壓鑄造ZL114A鋁合金二次枝晶間距影響較大。
2) 建立了真空差壓鑄造ZL114A鋁合金二次枝晶間距λ2與超聲功率U及凝固壓力pc的關(guān)系:
REFERENCES
[1] 蔣文明, 樊自田, 劉德均. 真空低壓消失模殼型鑄造和消失模鑄造鋁合金組織和性能對比[J]. 中國有色金屬學(xué)報, 2013, 23(1): 22-28. JIANG Wen-ming, FAN Zi-tian, LIU De-jun. Comparison of microstructures and properties of aluminum alloy between expendable pattern shell casting with vacuum and low-pressure and lost foam casting[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(1): 22-28.
[2] BAREKAR N S, DAS S, YANG X, HUANG Y, EL FAKIR O, BHAGURKAR A G, ZHOU L, FAN Z. The impact of melt conditioning on microstructure, texture and ductility of twin roll cast aluminium alloy strips [J]. Materials Science and Engineering A, 2016, 650(5): 365-373.
[3] SHIN J S, KO S H, KIM K T. Development and characterization of low-silicon cast aluminum alloys for thermal dissipation[J]. Journal of Alloys and Compounds, 2015, 644(25): 673-686.
[4] RAMIREZ A, QIAN M, DAVIS B. Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys[J]. Scripta Materialia, 2008, 59: 19-22.
[5] ESKIN C I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys[J]. Ultrasonics Sonochemistry, 2001, 8(3): 319-325.
[6] ESKIN C I. Improvement of the structure and properties of ingots and worked aluminum alloy semifinished products by melt ultrasonic treatment in a cavitation regime[J]. Metallurgist, 2010, 54(7): 505-513.
[7] ATAMANENKO T V, ESKIN D G, ZHANG L, KATGERMAN L. Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti[J]. Metallurgical and Materials Transactions A, 2010, 41(8): 2056-2066.
[8] ZHANG L, ESKIN D G, KATGERMAN L. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys[J]. Journal of Materials Science, 2011, 46(15): 5252-5259.
[9] 李英龍, 李寶綿, 劉永濤, 高彩茹, 戴恩泰. 功率超聲對Al-Si合金組織和性能的影響[J]. 中國有色金屬學(xué)報, 1999, 9(4): 719-722. LI Ying-long, LI Bao-mian, LIU Yong-tao, GAO Cai-ru, DAI En-tai. Effect of high-intensity ultrasounic on structures and properties of Al-Si alloys [J]. The Chinese Journal of Nonferrous Metals, 1999, 9(4): 719-722.
[10] 李成, 嚴(yán)青松, 蘆剛, 沈加利. 超聲功率對金屬型鑄造鋁合金二次枝晶間距的影響[J]. 特種鑄造及有色合金, 2015, 35(1): 103-105. LI Cheng, YAN Qing-song, LU Gang, SHEN Jia-li. Effect of power ultrasonic on secondary dendrite arm spacing in metal permanent mould casting aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2015, 35(1): 103-105.
[11] JIANG R P, LI X Q, ZHANG M. Investigation on the mechanism of grain refinement in aluminum alloy solidified under ultrasonic vibration[J]. Metals and Materials International, 2015, 21(1): 104-108.
[12] 嚴(yán)青松, 余 歡, 魏伯康, 徐志峰, 蔡長春. 真空差壓鑄造工藝的凝固補縮特性與模型[J]. 中國有色金屬學(xué)報, 2008, 18(6): 1051-1057.YAN Qing-song, YU Huan, WEI Bo-kang, XU Zhi-feng, CAI Chang-chun. Solidification feeding behavior and model of vacuum counter-pressure casting technology[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(6): 1051-1057.
[13] YAN Qing-song, YU Huan, XU Zhi-feng, XIONG Bo-wen, CAI Chang-chun. Effect of holding pressure on the microstructure of vacuum counter-pressure casting aluminum alloy[J]. Journal of Alloys and Compounds, 2010, 501: 352-357.
[14] 丁瑩瑩. 鋁合金凝固組織的超聲細(xì)化機制研究[D]. 大連: 大連理工大學(xué), 2010. DING Ying-ying. Study on refinement mechanisms of aluminum alloy solidification treated by high intensity ultrasonic[D]. Dalian: Dalian University of Technology, 2010.
[15] ESKIN G I, MAKAROV G S. Effect of cavitation melt treatment on the structure refinement and property improvement in cast and deformed hypereutectic Al-Si alloys[J]. Materials Science Forum. 1997, 242: 65-70.
[16] 李開曄. 直入式超聲波施振鑄造試驗及其凝固動力學(xué)機理研究[D]. 長沙: 中南大學(xué), 2010. LI Kai-ye. Study on Straight type ultrasonic vibration test and its solidification kinetics mechanism[D]. Changsha: Central South University, 2010.
[17] HUANG Hai-jun, XU Yi-fan, SHU Da, HAN Yan-feng, WANG Jun, SUN Bao-de. Effect of ultrasonic melt treatment on structure refinement of solidified high purity aluminum[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2414-2419.
[18] 何 遷. 功率超聲對鋁及鋁合金凝固過程的影響[D]. 北京:清華大學(xué), 2008. HE Qian. Effect of power ultrasonic treatment on solidification process of pure aluminum and aluminum alloy[D]. Beijing: Tsinghua University, 2008.
[19] 嚴(yán)青松, 余 歡, 蘆 剛, 熊博文, 盧百平. 結(jié)晶壓力對真空差壓鑄造鋁合金二次枝晶間距的影響[J]. 中國有色金屬學(xué)報, 2014, 24(5): 1194-1199. YAN Qing-song, YU Huan, LU Gang, XIONG Bo-wen, LU Bai-ping, ZOU Xun. Effect of crystallization pressure on secondary dendrite arm spacing of vacuum counter-pressure casting aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1194-1199.
[20] KOVACHEVA R, BACHVAROV G, DAFINOVA R. Influence of the counter pressure casting conditions on the microstructural characteristics of AlSi7Mg castings[J]. Journal of Materials Science and Technology, 1996, 12(1): 42-56.
Effect of synergistic action between ultrasonic power and solidification pressure on secondary dendrite arm spacing of vacuum counter-pressure casting aluminum alloy
YAN Qing-song, LU Gang, LI Cheng, SHEN Jia-li
(School of Aeronautic Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China)
The effect of synergistic action between ultrasonic power and solidification pressure on the secondary dendrite arm spacing of vacuum counter-pressure casting ZL114A aluminum alloy was studied through testing and analyzing the secondary dendrite arm spacing subjected to different ultrasonic power and solidification pressure. Meanwhile, the relationship of the secondary dendrite arm spacing of vacuum counter-pressure casting ZL114A aluminum alloy with ultrasonic power and solidification pressure was established. The results indicate that ultrasonic effect and extrusion and infiltration effect of solidification pressure affect the secondary dendrite arm spacing of vacuum counter-pressure casting aluminum alloy under synergistic action between ultrasonic power and solidification pressure, and the secondary dendrite arm spacing of aluminum alloy is the smallest under synergistic action of 600 W ultrasonic power and 350 kPa solidification pressure. When the solidification pressure is less than 300 kPa, the effect of ultrasonic power on secondary dendrite arm spacing is obvious, but when the solidification pressure is more than 300 kPa, the effect of solidification pressure on secondary dendrite arm spacing is greater.
aluminum alloy; secondary dendrite arm spacing; ultrasonic power; solidification pressure; vacuum counter-pressure casting
YAN Qing-song; Tel: +86-791-83953326; E-mail: yanqs1973@126.com
TG249.2
A
1004-0609(2017)-01-0051-06
Foundation item: Project(51261025) supported by the National Natural Science Foundation of China
(編輯 龍懷中)
國家自然科學(xué)基金資助項目(51261025)
2015-09-08;
2016-05-20
嚴(yán)青松,教授,博士;電話:0791-83953326;E-mail: yanqs1973@126.com
Received date: 2015-09-08; Accepted date: 2016-05-20