王博榮 魯曦 張敏龍 李聰聰 李鵬程 王雅寧 金發(fā)光
·論著·
一種改良大鼠骨髓間充質(zhì)干細(xì)胞培養(yǎng)方法
王博榮1魯曦1張敏龍1李聰聰1李鵬程1王雅寧2金發(fā)光1
目的建立大鼠骨髓間充質(zhì)干細(xì)胞(BMSCs)的分離、改良培養(yǎng)、純化方法,并進(jìn)行細(xì)胞形態(tài)學(xué)觀察、表面標(biāo)志物鑒定及多向分化能力檢測。方法通過改良全骨髓貼壁法對4周齡SD雄性大鼠脫頸處死,無菌條件下分離出骨髓進(jìn)行原代培養(yǎng)、消化傳代培養(yǎng)及純化。對BMSCs進(jìn)行形態(tài)學(xué)觀察,收獲第四代BMSCs進(jìn)行流式細(xì)胞儀檢測其細(xì)胞表面標(biāo)記物CD90、CD29、CD34、CD45的表達(dá)率及向成脂方向誘導(dǎo)分化。結(jié)果BMSCs的原代培養(yǎng)形態(tài)學(xué)觀察可見骨髓細(xì)胞接種于培養(yǎng)皿后,細(xì)胞呈圓型,大小不一,懸浮于培養(yǎng)液中。24 h后部分細(xì)胞開始貼壁,呈圓形、梭形或多角形。通過換液去除未貼壁的雜質(zhì)細(xì)胞,可見短梭形、星形細(xì)胞分散貼壁生長,四五天可見放射狀排列的細(xì)胞集落,伸出長短不一、粗細(xì)不均的突起,梭形細(xì)胞為主,胞漿豐富,胞核大、核仁清晰。7~8 d細(xì)胞呈集落生長,融合80%~90%,呈漩渦狀,同向排列,9~10 d細(xì)胞排列緊密,逐漸融合成片。傳代培養(yǎng)可見消化傳代后,傳代細(xì)胞24 h完全貼壁生長。細(xì)胞形態(tài)均一,呈梭形生長,細(xì)胞生長旺盛。四至五天可傳代1次。可穩(wěn)定連續(xù)傳代7代以上,細(xì)胞形態(tài)及生長速度未見明顯變化。BMSCs表面標(biāo)記物的表達(dá)通過流式細(xì)胞儀檢測結(jié)果顯示,培養(yǎng)的第4代大鼠BMSCs均一表達(dá)CD90,CD29,陽性率分別為96.9%,96.6%;而CD34,CD45,呈陰性,陽性率分別為0.395%,7.56%。BMSCs加入成脂誘導(dǎo)劑后18 d,誘導(dǎo)而成的脂肪細(xì)胞累積脂質(zhì),脂滴變大,合并呈串珠狀,經(jīng)油紅O染色呈鮮紅色。結(jié)論與傳統(tǒng)全骨髓貼壁法相比,改良后的全骨髓貼壁法操作步驟簡單,降低離心對細(xì)胞的損害,減少了污染機(jī)會,節(jié)省經(jīng)費(fèi),且分離的BMSCs細(xì)胞活性高,可大量分離、純化、擴(kuò)增,所獲細(xì)胞具有間充質(zhì)干細(xì)胞的一般生物學(xué)特性,經(jīng)誘導(dǎo)培養(yǎng)后具有多向分化潛能??蔀榻M織器官缺損性疾病、惡性腫瘤等的治療和組織工程提供充足的種子細(xì)胞來源,具有重要的現(xiàn)實(shí)意義。
骨髓間充質(zhì)干細(xì)胞; 原代培養(yǎng); 形態(tài)學(xué); 分化; 鑒定
骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells, BMSCS)是具有自我復(fù)制和多向分化潛能的非造血干細(xì)胞[1]。目前用于分離BMSCS的方法主要有4種:全骨髓貼壁法、密度梯度離心法、細(xì)胞表面分子標(biāo)記分選法、細(xì)胞篩選法,其中以全骨髓貼壁法和密度梯度離心法最為常用。后兩種方法雖然分離出的細(xì)胞純度高,但由于分離細(xì)胞數(shù)量少,活性低,加之技術(shù)難、成本高,因此較少采用。目前還沒有單一某種特異性的方法用來鑒定BMSCS,因此本實(shí)驗(yàn)采用形態(tài)學(xué)觀察初步判斷BMSCS,然后通過表面標(biāo)志物的表達(dá)以及在誘導(dǎo)條件下對其多向分化能力的判定,逆向證明體外分離培養(yǎng)的細(xì)胞是否為BMSCs,以確立高效穩(wěn)定骨髓的大鼠BMSCS分離培養(yǎng)體系和鑒定方案。體外分離出培養(yǎng)純度高、活力強(qiáng)、生物特性均一的BMSCs對組織工程及細(xì)胞的體內(nèi)、體外實(shí)驗(yàn)顯得至關(guān)重要。本實(shí)驗(yàn)通過BMSCs的黏附特性,應(yīng)用全骨髓貼壁培養(yǎng)法,并改良優(yōu)化,提取過程中無需離心細(xì)胞,并將其胎牛血清濃度提高到15%,建立了一個簡便、有效的原代培養(yǎng)、增殖和純化BMSCs的方法,旨在觀察大鼠BMSCs的生物學(xué)特性及其成脂分化等多種分化潛能,為組織工程尋找良好的種子細(xì)胞提供實(shí)踐。
一、主要材料
SD雄性大鼠購自第四軍醫(yī)大學(xué),SPF級,實(shí)驗(yàn)過程中對動物的處置符合中華人民共和國科學(xué)技術(shù)部2006年頒布的《關(guān)于善待實(shí)驗(yàn)動物的指導(dǎo)性意見》標(biāo)準(zhǔn)[2]。L-DMEM培養(yǎng)液、胎牛血清購自Gibco公司, 油紅O染色試劑、胰蛋白酶、青鏈霉素混合液購自Sigma公司,成脂細(xì)胞誘導(dǎo)液購自賽業(yè)公司,CD34、CD29、CD45、CD90表面分子抗體購自B公司,CD34、CD29、CD45、CD90表面分子抗體同型對照購自abcom公司。主要儀器設(shè)備: CO2恒溫培養(yǎng)箱購自力康公司,超凈工作臺購自蘇凈安泰,F(xiàn)ACS Calibur 流式細(xì)胞儀購自BD公司。
二、研究方法
1. BMSCs的原代分離培養(yǎng):采用全骨髓貼壁改良法:4周齡SD雄性大鼠脫頸處死,70%乙醇全身浸泡消毒10 min。無菌條件取股骨及脛骨,去除骨上附著軟組織,放置在 PBS緩沖液皿中。剪掉股骨和脛骨的骨骺端,露出骨髓腔,用5 ml注射器抽取添加青、鏈霉素、15%胎牛血清L-DMEM培養(yǎng)基,沖出骨髓在DMEM培養(yǎng)皿中,直至骨髓腔呈白色。無需離心,將盛有骨髓條的培養(yǎng)皿置于37 ℃、含有5% CO2飽和濕度培養(yǎng)箱中培養(yǎng)。
2. BMSCs的培養(yǎng)、純化及傳代:原代培養(yǎng)過程中,接種后72 h全量更換培養(yǎng)基,可將其中未貼壁細(xì)胞去除,以后每3 d全量更換新鮮培養(yǎng)基。待細(xì)胞鋪滿培養(yǎng)瓶底至細(xì)胞融合成單層,密度長至70%~80%融合時,用0.02%EDTA+0.25%胰酶消化,1︰2的比例進(jìn)行傳代培養(yǎng)。
3. BMSCs的形態(tài)學(xué)觀察:培養(yǎng)后每日用倒置相差顯微鏡觀察細(xì)胞形態(tài)變化及生長狀況并拍照。
4. BMSCs鑒定:流式細(xì)胞儀檢測細(xì)胞表面標(biāo)記[3]:收獲P4代生長狀態(tài)良好細(xì)胞,0.02%EDTA+0.25%胰酶消化,吹打混勻,分別分成三管,A空白對照組,B抗體組,C同型對照組,計(jì)數(shù)細(xì)胞,各管細(xì)胞密度為1×106,4 ℃,300×g 離心,5 min,用PBS 500 μl漂洗細(xì)胞1次,去上清,加50 μl PBS,B管依次加入單克隆抗體CD34、CD45、CD90、CD29各2 μl。C管依次加入同型陰性對照。避光冰上孵育30 min,用PBS 2 ml洗滌細(xì)胞1次,以除去未結(jié)合抗體,以離心半徑15 000 r/min離心5 min去上清,再重懸細(xì)胞,過濾,流式細(xì)胞儀進(jìn)行檢測分析。
5. BMSCs體外定向誘導(dǎo)分化[4-5]:選擇第4代BMSCs,按4×103個/cm2濃度接種于6孔細(xì)胞培養(yǎng)板,待細(xì)胞貼壁生長至細(xì)胞密度達(dá)80%時,在各誘導(dǎo)孔的完全培養(yǎng)液中加入成脂細(xì)胞誘導(dǎo)劑(10 mmol/L地塞米松、10 mg/L胰島素)。各誘導(dǎo)孔隔天換液1次,以未加誘導(dǎo)培養(yǎng)液的細(xì)胞培養(yǎng)孔作為對照。成脂細(xì)胞誘導(dǎo)劑誘導(dǎo)18 d后,經(jīng)40 g/L多聚甲醛固定,對誘導(dǎo)分化的脂肪細(xì)胞進(jìn)行油紅O染色。
一、BMSCs的形態(tài)學(xué)觀察
原代培養(yǎng):骨髓細(xì)胞接種于培養(yǎng)皿后,細(xì)胞呈圓型,大小不一,懸浮于培養(yǎng)液中。24 h后部分細(xì)胞開始貼壁,呈圓形、梭形或多角形。通過換液去除未貼壁的雜質(zhì)細(xì)胞,可見短梭形、星形細(xì)胞分散貼壁生長,4~5 d可見放射狀排列的細(xì)胞集落,伸出長短不一、粗細(xì)不均的突起,梭形細(xì)胞為主,胞漿豐富,胞核大、核仁清晰。7~8 d細(xì)胞呈集落生長,融合80%~90%,呈漩渦狀,同向排列,9~10 d細(xì)胞排列緊密,逐漸融合成片。傳代培養(yǎng):消化傳代后,傳代細(xì)胞24 h完全貼壁生長。細(xì)胞形態(tài)均一,呈梭形生長,細(xì)胞生長旺盛。四五天可傳代1次??煞€(wěn)定連續(xù)傳代7代以上,細(xì)胞形態(tài)及生長速度未見明顯變化,見圖1、2。
圖1 骨髓間充質(zhì)干細(xì)胞形態(tài)學(xué)觀察(×20)
圖2 骨髓間充質(zhì)干細(xì)胞形態(tài)學(xué)觀察(×200)
二、BMSCs表面記物的表達(dá)
流式細(xì)胞儀檢測結(jié)果顯示,培養(yǎng)的第4代大鼠BMSCs均一表達(dá)CD90, CD29,陽性率分別為96.9%, 96.6%;而CD34, CD45,呈陰性,陽性率分別為0.395%, 7.56%,見圖3。
三、BMSCs成脂誘導(dǎo)分化鑒定
BMSCs加入成脂誘導(dǎo)劑后18 d,誘導(dǎo)而成的脂肪細(xì)胞累積脂質(zhì),脂滴變大,合并呈串珠狀。經(jīng)油紅O染色呈鮮紅色,見圖4。
圖3 大鼠骨髓間充質(zhì)干細(xì)胞表面標(biāo)志物的表達(dá)
圖4 大鼠骨髓間充質(zhì)干細(xì)胞成脂誘導(dǎo)18 d油紅O染色(×200)
BMSCs是存在于骨髓中具有高度自我更新能力和多向分化潛能的成體干細(xì)胞。1966年,F(xiàn)riedenstein等[6]首次對BMSCs進(jìn)行了描述,并從大鼠骨髓細(xì)胞中分離培養(yǎng)了骨/軟骨形成祖細(xì)胞。目前,雖然已能在一些組織,包括肝臟、胚胎血、臍帶血和羊水中分離培養(yǎng),但是細(xì)胞的獲得和研究主要集中在骨髓組織[7-9]。
在骨髓中含有較高的BMSCs,但改變了BMSCs生長的微環(huán)境,會影響細(xì)胞活力。本實(shí)驗(yàn)將全骨髓貼壁法進(jìn)行改良,發(fā)現(xiàn)原代培養(yǎng)時采用全骨髓貼壁法所分離的BMSCs無需離心,72 h首次換液細(xì)胞貼壁數(shù)量多,之后同期觀察其貼壁細(xì)胞數(shù)量明顯優(yōu)于離心后干細(xì)胞組貼壁。此外,全骨髓貼壁改良優(yōu)化后所分離的細(xì)胞活性高,增殖能力強(qiáng),原代細(xì)胞首次融合僅需5~7 d;其經(jīng)流式細(xì)胞術(shù)純化鑒定,其純度達(dá)標(biāo),不亞于傳統(tǒng)骨髓貼壁法經(jīng)離心后所獲得的細(xì)胞純度,并避免了貼壁細(xì)胞數(shù)量相對少,細(xì)胞生長相對緩慢,活性相對低,及經(jīng)離心后其原代細(xì)胞首次融合需10 d以上等缺點(diǎn)。這可能是因?yàn)榉蛛x出的細(xì)胞不經(jīng)過離心環(huán)節(jié),可以減少其污染概率,及離心造成的損傷,并且利用BMSCs的較強(qiáng)貼壁性對其進(jìn)行分離,而細(xì)胞的生存、生長需要的某些因子來自于與其伴生的其他細(xì)胞的緣故。該法在很大程度上模擬了體內(nèi)BMSCs的生長環(huán)境,含有的若干生長因子及促黏附物質(zhì)促進(jìn)了BMSCs的貼壁生長。原始的骨髓貼壁法經(jīng)離心后BMSCs中可能失去了促進(jìn)BMSCs貼壁的一些生長因子及促黏附物質(zhì),喪失了骨髓中原有的微環(huán)境,因此傳統(tǒng)方法所分離的BMSCs生長速度較改良優(yōu)化法要慢。BMSCs改良優(yōu)化法在傳代后純度并沒有太大區(qū)別,特別是在三四代以后。光鏡下觀察大鼠BMSCs,呈成纖維狀或紡錘狀,貼壁生長,增殖快,細(xì)胞相互緊密貼附生長,逐漸融合成片,沿胞體長軸有序排列,呈旋渦狀。BMSCs經(jīng)傳代純化,第4代骨BMSCs形態(tài)單一均勻,融合后呈典型的極性,漩渦狀生長。目前,國際細(xì)胞治療學(xué)會間充質(zhì)及組織干細(xì)胞委員會提出的鑒定人來源BMSCs的3條最低標(biāo)準(zhǔn)[10]是:①對塑料底物的貼附特性;②CD105、CD29及CD90等陽性表達(dá)率≥95%,而CD45、CD34、CD14或CD11b、CD79a或CD19、HLA-DR等的陽性表達(dá)率≤5%;③具有多向分化潛能。因此,實(shí)驗(yàn)選取BMSCs表達(dá)陽性的指標(biāo)CD29、CD90,以及表達(dá)陰性的指標(biāo)CD34和CD45作為鑒定參考指標(biāo)[11-20]。流式細(xì)胞儀檢測結(jié)果顯示,第4代BMSCs不表達(dá)造血前體細(xì)胞標(biāo)志抗原CD34和白細(xì)胞標(biāo)志抗原CD45,表達(dá)整合素家族成員的CD29、CD90。實(shí)驗(yàn)結(jié)果顯示在成脂誘導(dǎo)條件下,第4代BMSCs分別表現(xiàn)出成脂肪細(xì)胞表型特征,說明體外分離培養(yǎng)的細(xì)胞為BMSCs。
以上結(jié)果表明,與傳統(tǒng)全骨髓貼壁法相比,改良后的全骨髓貼壁法操作步驟簡單,既降低了離心對細(xì)胞的損害,又減少了污染機(jī)會,節(jié)省經(jīng)費(fèi),且分離的BMSCs貼壁時間短,增殖快,細(xì)胞數(shù)量多,經(jīng)傳代后能夠純化,提示全骨髓貼壁改良優(yōu)化方法是一種更加簡單有效的BMSCs分離方法。BMSCs分離方法可獲得高純度、增殖能力強(qiáng)、數(shù)量足的BMSCs,可為組織器官缺損性疾病、惡性腫瘤等的治療和組織工程提供充足的種子細(xì)胞來源,具有重要的現(xiàn)實(shí)意義。
1 Gao Y, Zhu Z, Zhao Y, et al. Multiline age potential research of bovine amniotic fluid mesenchymal stem cells[J]. Int J Mol Sci, 2014,15(3): 3698-3710.
2 中華人民共和國科學(xué)技術(shù)部. 關(guān)于善待實(shí)驗(yàn)動物的指導(dǎo)性意見. 2006-09-30.
3 Bühring HJ, Treml S, Cerabona F, et al. Phenotypic characterization of distinct human bone marrow-derived MSC subsets[J]. Ann NY Acad Sci, 2009, 1176: 124-134.
4 常穎, 齊欣,卜麗莎. 成人骨髓間充質(zhì)干細(xì)胞體外多向分化潛能特性的研究[J]. 中國危重病急救醫(yī)學(xué), 2005, 17(2): 95-97.
5 賈秀娟, 孫曉娟, 徐麗麗. 特定微環(huán)境條件下人骨髓間充質(zhì)干細(xì)胞定向誘導(dǎo)分化為脂肪細(xì)胞[J]. 中國組織工程研究與臨床康復(fù), 2008, 12(34): 6635-6638.
6 Fridenshteǐn AIa, Piatetski -Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells[J]. Arkh Anat Gistol Embriol, 1969, 56(3): 3-11.
7 Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow[J]. Blood, 2001, 98(8): 2396-2402.
8 Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood[J]. Blood, 2004, 103(5): 1669-1675.
9 Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow[J]. Nature, 2002, 418(6893): 41-49.
10 De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow[J]. Immunol Lett, 2003, 89(2-3): 267-270.
11 Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
12 Fernández Vallone VB, Romaniuk MA, Choi H, et al. Mesenchymal stem cells and their use in therapy: what has been achieved?[J]. Differentiation, 2013, 85(1-2): 1-10.
13 De Schauwer C, Meyer E, Van de Walle GR, et al. Markers of stemness in equine mesenchymal stem cells: a plea for uniformity[J]. Theriogenology, 2011, 75(8): 1431-1443.
14 Zemel′ko VI, Grinchuk TM, Domnina AP, et al. [Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization and use as feeder layer for maintenance of human embryonic stem cell lines][J]. Tsitologiia, 2011, 53(12): 919-929.
15 Zhang N, Dietrich MA, Lopez MJ. Canine intra-articular multipotent stromal cells (MSC) from adipose tissue have the highest in vitro expansion rates, multipotentiality, and MSC immunophenotypes[J]. Vet Surg, 2013, 42(2): 137-146.
16 Sousa BR, Parreira RC, Fonseca EA, et al. Human adult stem cells from diverse origins: an overview from multiparametric immunophenotyping to clinical applications[J]. Cytometry A, 2014, 85(1): 43-77.
17 Hwang SH, Park SH, Choi J, et al. Age-related characteristics of multipotent human nasal inferior turbinate-derived mesenchymal stem cells[J]. PLoS One, 2013, 8(9): e74330.
18 Branch MJ, Hashmani K, Dhillon P, et al. Mesenchymal stem cells in the human corneal limbal stroma[J]. Invest Ophthalmol Vis Sci, 2012 Aug 3; 53(9): 5109-5116.
19 De Cesaris V, Grolli S, Bresciani C, et al. Isolation, proliferation and characterization of endometrial canine stem cells[J]. Reprod Domest Anim, 2016, doi: 10.1111/rda.12885.
20 Phinney DG, Sensebé L. Mesenchymal stromal cells: misconceptions and evolving concepts[J]. Cytotherapy, 2013, 15(2): 140-5. doi: 10.1016/j.jcyt.2012.11.005.
(本文編輯:張大春)
王博榮,魯曦,張敏龍,等. 一種改良大鼠骨髓間充質(zhì)干細(xì)胞培養(yǎng)方法[J/CD]. 中華肺部疾病雜志(電子版), 2017, 10(1): 25-28.
Modified culture and identification of rat bone marrow mesenchymal stem cells
WangBorong1,LuXi1,ZhangMinlong1,LiCongcong1,LiPengcheng1,WangYaning2,JinFaguang1.
1DepartmentofRespiratoryMedicine,TangduHospital,FourthMilitaryMedicalUniversity,Xi′an710038,China;2DepartmentofRespiratoryMedicine,theSecondPeople′sHospitalofBaojiCity,Baoji721000,China
JinFaguang,Email:jinfag@fmmu.edu.cn
Objective To establish the rat bone marrow mesenchymal stem cells(BMSCs) were isolated and cultured, purified and modified optimization method in vitro, to observe cell morphology, and to assess surface markers and differentiation capacity detection. Mthods The bone marrows of 4-week-old, male Sprague Dawley rats were used to obtain mMSCs. Rats were euthanized via cervical dislocation. After 72 hours, the medium was replaced and fresh medium was provided every 3 days. BMSCs were identified via flow cytometry, multi-directional differentiation capacity, and morphology. Results Primary culture: Bone marrow cells were seeded in round culture dishes of different sizes and suspended in culture medium. After 24 hours, the part of the cells adhered to the culture dish were visible as round, fusiform, or polygonal. After removal of the non-adherent cells by media replacement, the adherent cells were found to be short, spindle or star shaped, and scattered on the plastic surface. After 4 or 5 days, radially arranged cell colonies were visible, which differed in length and thickness. Spindle cells comprised the main colonies, possessing abundant cytoplasm and a large nucleus. After a week, the cells showed colony growth, were fused at approximately 80%-90%, and were reminiscent of a whirlpool, all with the same directionality. After 10 days, the cells were arranged in close proximity to one another, gradually integrating into sheet form. Culture passage: After digestion and passage, the cells adhered to the plastic surface within 24 hours. The cells were homogeneous, spindle-shaped, and displayed strong cell growth. Each passaging was performed after 4 or 5 days of growth. Cell morphology and growth rate did not significantly differ after 10 generations of stable and continuous passage. The results of flow cytometry revealed a positivity rate of CD90 expression of 96.9%, and of 96.6% for CD29. Thus, the negativity rate of CD45 was 7.56%, and that of CD34 was 0.395% in fourth generation rat mMSCs. The mMSCs were added into an adipocytes-inducing agent, where they were cultured for 18 days, during which time, lipid and lipid droplet accumulation was induced with a string of beads. The oil red O staining was bright red. Conclusions Without centrifugation of whole bone marrow adherent culture method has the advantages of simple operation, is not easy to pollute, highly active cell, bulk separation, purification and amplification of BMSCs, cells with a mesenchymal stem cell biological characteristics. After cultured with multilineage differentiation potential.
Bone marrow mesenchymal stem cells; Primary culture; Morphology; Differentiation; Identification
10.3877/cma.j.issn.1674-6902.2017.01.006
基金編號: 國家自然科學(xué)基金資助項(xiàng)目(81570067)
710038 西安,第四軍醫(yī)大學(xué)唐都醫(yī)院呼吸內(nèi)科1721000 寶雞,寶雞市第二人民醫(yī)院呼吸內(nèi)科2
金發(fā)光,Email: jinfag@fmmu.edu.cn
R563
A
2016-03-29)