項正兵+曾紅+屈新輝+吳曉牧
[摘要] 間充質(zhì)干細(xì)胞(MSCs)是一類具有分化為脂肪細(xì)胞、骨及軟骨細(xì)胞等間充質(zhì)細(xì)胞系的成體干細(xì)胞。在一定條件下MSCs可以跨譜系障礙分化為神經(jīng)及神經(jīng)膠質(zhì)細(xì)胞。MSCs具有免疫調(diào)節(jié)、抗增殖、抗炎、抗凋亡及抗氧化的特性,此外,MSCs有神經(jīng)保護和分泌神經(jīng)營養(yǎng)因子的功能。大量研究證明MSCs移植治療實驗性自身免疫性腦脊髓炎(EAE)是有效的,具有可觀的前景。本文對有關(guān)MSCs治療EAE的具體機制的研究進展進行綜述。
[關(guān)鍵詞 間充質(zhì)干細(xì)胞;多發(fā)性硬化;免疫調(diào)節(jié);神經(jīng)保護;神經(jīng)營養(yǎng)
[中圖分類號] R744.51 [文獻標(biāo)識碼] A [文章編號] 1673-7210(2017)02(c)-0049-04
多發(fā)性硬化(multiple sclerosis,MS)是一種中樞神經(jīng)系統(tǒng)的炎性脫髓鞘病,病因不明,實驗性自身免疫性腦脊髓炎(experimental autoimmune encephalomy?鄄elitis,EAE)是研究MS的經(jīng)典動物模型。目前普遍認(rèn)為MS/EAE是一種由致病性T淋巴細(xì)胞(尤其是Th1細(xì)胞)所介導(dǎo)的自身免疫性疾病,其遺傳易感性、環(huán)境因素,以及機體自身的免疫狀態(tài)與MS/EAE的發(fā)生有一定相關(guān)性[1]。
間充質(zhì)干細(xì)胞(Mesenchymal Stem Cells,MSCs)具有調(diào)節(jié)免疫、抗炎、抗凋亡及神經(jīng)保護和神經(jīng)營養(yǎng)作用,在某些實驗中還發(fā)現(xiàn)其具有分化為神經(jīng)元和膠質(zhì)細(xì)胞的潛能[2].本文對有關(guān)MSCs治療MS/EAE的免疫調(diào)節(jié),神經(jīng)保護,神經(jīng)營養(yǎng)等機制的最新研究進展進行綜述。
1 MSCs的免疫調(diào)節(jié)機制及抗炎機制
目前已知MS發(fā)病機制的重要因素是自身免疫及炎癥浸潤。MSCs是一類中胚層細(xì)胞譜系,具有多向分化能力和低免疫原性,且其有調(diào)節(jié)固有和適應(yīng)性免疫的作用,表達主要組織相容性復(fù)合體(major histocompatibility complex,MHC)Ⅰ類分子,不表達MHCⅡ類分子,低表達B7-1(CD80)、B7-2(CD86)、CD40、CD40L等共刺激分子。
1.1 T淋巴細(xì)胞
1.1.1 抑制活動性T細(xì)胞 MS是CD4+Th1細(xì)胞和Th17細(xì)胞調(diào)節(jié)為主的自身免疫病,MSCs在多水平對T細(xì)胞起免疫調(diào)節(jié)作用。MSCs可減少細(xì)胞表面的CD3、CD4和CD28的表達,限制抗原提呈細(xì)胞(antigen-presenting cells,APCs)的活化[3],通過抑制腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)和γ干擾素(interferon-γ,IFN-γ)等促炎因子的產(chǎn)生從而抑制CD4+Th1細(xì)胞,抑制CD8+細(xì)胞,誘導(dǎo)其凋亡,以及上調(diào)表達白介素-10(Interleukin-10,IL-10)、白介素-4(Interleukin-4,IL-4)等有Th2釋放的細(xì)胞因子,發(fā)揮抗炎效應(yīng)[4]。Zepp等[5]發(fā)現(xiàn),EAE動物模型的外周血細(xì)胞中,Th1/Th17炎癥細(xì)胞因子IFN-γ、IL-17、IL-2、IL-12p70和TNF-α水平均明顯升高,而抗炎Th2細(xì)胞因子IL-4和IL-5的水平顯著下降。另有研究發(fā)現(xiàn),Th17在EAE的致病過程中作用顯著,而MSCs能通過分泌IL-27抑制IL-17和Th17的產(chǎn)生[6]??傊?,MSCs可有效地抑制活化T細(xì)胞,減輕炎性反應(yīng)。
1.1.2 激活調(diào)節(jié)性T細(xì)胞(Tregs) MSCs可能激活Tregs細(xì)胞,在Th1和Th17分化的早期階段誘導(dǎo)CD4+CD25+ Foxp3+Tregs生成,從而減少Th1和Th17細(xì)胞表達,而在Th1和Th17成熟階段不會誘導(dǎo)Tregs生成[7]。MSCs可刺激兩類更加重要的誘導(dǎo)性調(diào)節(jié)性T細(xì)胞(iTregs):Tr1和Th3增殖,同時通過分泌IL-10因子和轉(zhuǎn)化生長因子-β(transforming growth factor,TGF-β)和上調(diào)程序性死亡1(programme death 1,PD-1)受體和其配體B7-H1,從而增加Treg細(xì)胞的免疫抑制作用。若阻斷PD-1/B7-H1通路可以加速EAE發(fā)病過程,故MSCs與Treg細(xì)胞共同培養(yǎng)比起單獨使用MSCs更具免疫抑制效果[8]。
一些可溶性免疫抑制因子參與MSCs介導(dǎo)的免疫調(diào)節(jié),包括誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOs)[9]、吲哚胺2,3 - 雙加氧酶(Indole-2,3 - Dioxygenase,IDO)[10、11]、TGF-β、肝細(xì)胞生長因子(hepatocyte growth factor,HGF)、PGE2[11]、IL-10、IL-6、血紅素加氧酶-1(heme oxygenase-1,HO-1)、可溶性HLA-G5[12]和TNF-α刺激基因-6(tumor necrosis factor alpha stimulated gene-6,TSG-6)[13],其中iNOs可以單一的調(diào)解MSCs介導(dǎo)的免疫抑制。IDO為免疫調(diào)節(jié)提供重要的微環(huán)境,通過降解局部組織中的色氨酸、抑制宿主同種異體T細(xì)胞增殖而發(fā)揮免疫調(diào)節(jié)作用,誘導(dǎo)骨髓間充質(zhì)干細(xì)胞(BMSCs)向神經(jīng)元骨髓間充質(zhì)干細(xì)胞(nBMSC)分化。MSCs可分泌高濃度的PGE2從而高表達相關(guān)性的IDO,有學(xué)者認(rèn)為BMSC對EAE的免疫調(diào)節(jié)作用取決于PGE2的分泌[14]。此外,膜結(jié)合HLA-G蛋白可抑制NK細(xì)胞,溶解T細(xì)胞,并抑制異體物增殖CD4 T淋巴細(xì)胞以及誘導(dǎo)增加Th2細(xì)胞因子[12]。
1.2 B淋巴細(xì)胞
長期以來,B細(xì)胞及其抗體對MS的影響一直被忽略,而在MOG誘導(dǎo)的EAE模型中B細(xì)胞是啟動T細(xì)胞應(yīng)答關(guān)鍵的APCs,B細(xì)胞依靠B細(xì)胞抗原受體(B cell antigen receptor,BCR)發(fā)揮抗原呈遞作用,T-B細(xì)胞通過識別同一自身抗原而發(fā)揮協(xié)調(diào)作用,BMSCs抑制B細(xì)胞增殖、分化和趨化因子活化。學(xué)者發(fā)現(xiàn)[15]hMSCs與B細(xì)胞共同培養(yǎng)時,HLA-DR、CD80、CD86、或CD40的表達無顯著下調(diào),提示此時B細(xì)胞的APCs功能仍在發(fā)揮作用,hMSCs沒有顯著抑制B細(xì)胞的TNFα、IFN-γ,MSCs調(diào)節(jié)B細(xì)胞不是簡單的抑制其增殖。MSCs調(diào)節(jié)B細(xì)胞增殖是使細(xì)胞滯留于G0/G1期,而不是經(jīng)過誘導(dǎo)細(xì)胞凋亡使其增殖受限。有研究在Transwell實驗在外周淋巴器中發(fā)現(xiàn)B細(xì)胞抑制的主要機制是MSCs產(chǎn)生可溶性因子,免疫球蛋白IgM、IgG和IgA的生成明顯減少[16],同時B細(xì)胞表面趨化因子受體(如趨化因子CXCLl2/CXCLl3的受體CXCR4、CXCR5及CCR7)的表達顯著下調(diào)[12]。MSCs在抑制B細(xì)胞增殖的同時T細(xì)胞也被抑制。最近研究發(fā)現(xiàn)MSCs可以分化為兩個不同的群體,MSC1和MSC2,以活化不同的Toll樣受體(Toll-Like Receptors,TLR)。TLR4-促進MSC1表達促炎因子,使B細(xì)胞活化生長因子(B cell growth factor activation,BAFF)表達上調(diào),而TLR3 -促進MSC2表達抗炎因子[15]??傊琈SCs調(diào)節(jié)B細(xì)胞也是在多個水平進行,包括抗增殖和分化,抗體生成細(xì)胞和趨化因子的調(diào)節(jié)。
1.3 固有免疫細(xì)胞
固有免疫細(xì)胞主要有NK細(xì)胞、單核巨噬細(xì)胞和樹突狀細(xì)胞(dendritic cells ,DCs)。NK細(xì)胞是執(zhí)行固有免疫及免疫監(jiān)視作用的效應(yīng)細(xì)胞。巨噬細(xì)胞是機體重要的免疫效應(yīng)細(xì)胞,巨噬細(xì)胞活化既可發(fā)揮促炎作用,也可發(fā)揮抗炎作用。固有免疫應(yīng)答啟動適應(yīng)性免疫應(yīng)答,其中DCs是一組專業(yè)的APCs,調(diào)節(jié)適應(yīng)性免疫反應(yīng)。干細(xì)胞可以通過轉(zhuǎn)換細(xì)胞因子類型從而生成幼稚的DCs,使促炎TH1向抗炎Th2轉(zhuǎn)換[17]。MSCs具有抗炎作用,可抑制髓系樹突狀細(xì)胞產(chǎn)生TNF-α,促進漿細(xì)胞樣樹突狀細(xì)胞產(chǎn)生IL-10[18]。脂肪起源的MSCs抑制DCs表型(CD11+DCs)成熟和細(xì)胞因子產(chǎn)生,促使髓鞘DCs免疫耐受從而誘導(dǎo)T細(xì)胞無能。Tregs還可以通過引流的淋巴結(jié)以細(xì)胞-細(xì)胞接觸和分泌可溶性因子的方式,抑制固有免疫(DC和NK細(xì)胞)。MSCs還可以表達基質(zhì)金屬蛋白酶9(matrix metalloproteinase-9,MMP9)來降低單核細(xì)胞和T細(xì)胞向CNS浸潤[19]。
2 MSCs的神經(jīng)保護機制
MS急性活動期脫髓鞘及髓鞘再生并存,再生的髓鞘呈現(xiàn)短而細(xì)且形狀不規(guī)則,此時病灶內(nèi)炎性反應(yīng)顯著,這種再生是一種短暫的現(xiàn)象,而且再生的髓鞘可能是下次脫髓鞘的攻擊部位,髓鞘再生與病灶中的少突膠質(zhì)前體細(xì)胞(oligodendrocyte precursor cells,OPS)密切相關(guān)。研究表明干細(xì)胞移植可以啟動內(nèi)源性神經(jīng)干細(xì)胞和前體細(xì)胞的激活,尤其是入植于海馬齒狀回,腦室下區(qū),室管膜下區(qū)(SVZ)等大腦區(qū)域[20], 但如何通過促進內(nèi)源性神經(jīng)修復(fù)機制和移植外源性髓鞘細(xì)胞達到髓鞘再生和神經(jīng)修復(fù)功能的具體機制知之甚少。
BMSCs可通過抑制谷氨酸受體的表達和功能,以及降低谷氨酸誘導(dǎo)的鈣內(nèi)流來保護CNS神經(jīng)元免除谷氨酸的興奮毒性,更有利于增加細(xì)胞的可塑性[21]。近年的研究指出,MSCs在體內(nèi)或體外均可通過抗氧化作用實現(xiàn)神經(jīng)保護。例如hMSCs通過分泌超氧化物歧化酶-3起抗氧化神經(jīng)保護的作用[22],MSCs可減少星形膠質(zhì)疤痕形成,更有利于促進髓鞘再生,修復(fù)少突膠質(zhì)細(xì)胞和神經(jīng)元[23],同時MSCs具有抗凋亡作用機制減少神經(jīng)凋亡。
3 MSCs的神經(jīng)營養(yǎng)機制
MSCs除了可以增加受損神經(jīng)元的可塑性,還可以通過旁分泌機制刺激神經(jīng)膠質(zhì)細(xì)胞分泌神經(jīng)營養(yǎng)因子,包括腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)、神經(jīng)生長因子(nerve growth factor,NGF)、血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)、睫狀神經(jīng)營養(yǎng)因子(Ciliary neurotrophic factor,CNTF)、堿性成纖維細(xì)胞生長因子-2(basic fibroblast growth factor-2,F(xiàn)GF-2)。Makar等[24]研究發(fā)現(xiàn)通過轉(zhuǎn)染BDNF基因的MSCs移植治療EAE動物模型比單純移植MSCs更具有抗炎效果、免疫調(diào)節(jié)和神經(jīng)保護作用,BDNF可通過減少炎癥和細(xì)胞凋亡來改善EAE。Zhang等[25]利用BMSC轉(zhuǎn)染神經(jīng)營養(yǎng)因子3(neurotrophin 3,NT-3)移植入EAE中發(fā)現(xiàn),MBP大量表達及髓鞘廣泛再生,提示NT-3對少突膠質(zhì)細(xì)胞的增殖,分化和成熟至關(guān)重要。
4 現(xiàn)狀與展望
綜上所述,MSCs可通過多重機制來治療MS,但MSCs治療MS的機制仍不明確,還有諸多問題有待解決,例如:干細(xì)化分化神經(jīng)元和膠質(zhì)細(xì)胞如何遷移至病灶中?如何起神經(jīng)修復(fù)的作用?針對不同類型的干細(xì)胞種類、劑量、移植的時間途徑、移植是否需要聯(lián)合用藥?下一步應(yīng)針對MSCs移植的細(xì)胞數(shù)量、移植時間和移植途徑的選擇,MSCs治療結(jié)合基因修飾、藥物修飾和MSCs的定向分化狀態(tài)選擇等方面進行研究,利于更好的了解其治療的機制,也有利于進一步了解疾病的發(fā)病機制和病因,以及新藥物的研究和開發(fā)。
[參考文獻]
[1] Compston A,Coles A. Multiple sclerosis [J]. Lancet,2008, 372(9648):1502-1517.
[2] Ben-Ami E,Miller A,Berrih-Aknin S. T cells from autoimmune patients display reduced sensitivity to immunoregulation by mesenchymal stem cells:role of IL-2 [J]. Autoimmun Rev,2014,13(2):187-196.
[3] Mohammadpour H,Pourfathollah AA,Zarif MN,et al. TNF-alpha modulates the immunosuppressive effects of MSCs on dendritic cells and T cells [J]. Int Immunopharmacol,2015,28(2,SI):1009-1017.
[4] 張俊華,鄭配國,馬雪涵,等.骨髓間充質(zhì)干細(xì)胞對實驗性變態(tài)反應(yīng)性腦脊髓炎小鼠的治療作用研究[J].第二軍醫(yī)大學(xué)學(xué)報,2015,36(1):34-38.
[5] Zepp J,Wu L,Li XX. IL-17 receptor signaling and T helper 17-mediated autoimmune demyelinating disease [J]. Trends Immunol,2011,32(5):232-239.
[6] Obermajer N,Popp FC,Soeder Y,et al. Conversion of Th17 into IL-17A(neg) regulatory T cells:a novel mechanism in prolonged allograft survival promoted by mesenchymal stem cell-supported minimized immunosuppressive therapy [J]. J Immunol,2014,193(10):4988-4999.
[7] 方寧,李丹,余麗梅,等.人羊膜間充質(zhì)干細(xì)胞對大鼠實驗性自身免疫性腦脊髓炎的療效及免疫調(diào)節(jié)作用[J].免疫學(xué)雜志,2014,30(1):6-12.
[8] Sioud M. New insights into mesenchymal stromal cell-mediated T-cell suppression through galectins [J]. Scand J Immunol,2011,72(2):79-84.
[9] Li M,Sun X,Kuang X,et al. Mesenchymal stem cells suppress CD8+T cell-mediated activation by suppressing natural killer group 2,member D protein receptor expression and secretion of prostaglandin E2,indoleamine 2,3-dioxygenase and transforming growth factor-β [J]. Clin Exp Immunol,2014,178(3):516-524.
[10] Ding DC,Chou HL,Chang YH,et al. Characterization of HLA-G and related immunosuppressive effects in human umbilical cord Stroma-Derived stem cells [J]. Cell Transplant,2016,25(2):217-228.
[11] Lee RH,Pulin AA,Seo MJ,et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6 [J]. Cell Stem Cell,2009,5(1):54-63.
[12] Matysiak M,Orlowski W,F(xiàn)ortak-Michalska M,et al. Immunoregulatory function of bone marrow mesenchymal stem cells in EAE depends on their differentiation state and secretion of PGE2 [J]. J Neuroimmunol,2011,233(1/2):106-111.
[13] Mclaughlin PJ,Mchugh DP,Magister MJ,et al. Endogenous opioid inhibition of proliferation of T and B cell subpopulations in response to immunization for experimental autoimmune encephalomyelitis [J]. BMC Immunol,2015,16(1):24.
[14] Yan H,Wu MY,Yuan Y,et al. Priming of toll-like receptor 4 pathway in mesenchymal stem cells increases expression of B cell activating factor [J]. Biochem Biophys Res Commun,2014,448(2):212-217.
[15] Payne NL,Sun GZ,Mcdonald C,et al. Human adipose-derived mesenchymal stem cells engineered to secrete IL-10 inhibit APC function and limit CNS autoimmunity [J]. Brain Behav Immun,2013,30(1):103-114.
[16] Ghannam S,Pène J,Moquet-Torcy G,et al. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype [J]. J Immunol,2010,185(1):302-312.
[17] Schiffmann S,Weigert A,Maennich J,et al. PGE(2)/EP4 signaling in peripheral immune cells promotes development of experimental autoimmune encephalomyelitis [J]. Biochem Pharmacol,2014,87(4):625-635.
[18] Boyd A,Zhang H,Williams A. Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models [J]. Acta Neuropathol,2013, 125(6):841-859.
[19] Jeong CH,Kim SM,Lim JY,et al. Mesenchymal stem cells expressing Brain-Derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model [J]. Biomed Res Int,2014(2014):129-145.
[20] Benameur L,Charif N,Li YE,et al. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells [J]. Biomed Mater Eng,2015,25(1):S41-S46.
[21] Kemp K,Hares K,Mallam E,et al. Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronalsurviva [J]. Neurochem,2010,114(6):1569-1580.
[22] Abi Chahine N,Wehbe T,Rashed J,et al. autologous bone marrow derived stem cells for the treatment of multiple sclerosis [J]. Int J Stem Cells,2016,9(2):207-212.
[23] Wang D,Li SP,F(xiàn)u JS,et al. Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis [J]. Int J Dev Neurosci,2016 ,49:60-66. [24] Makar TK,Bever CT,Singh IS,et al. Brain-derived neurotrophic factor gene delivery in an animal model of multiple sclerosis using bone marrow stem cells as a vehicle [J]. J Neuroimmunol,2009,210(1/2):40-51.
[25] Zhang YJ,Zhang W,Lin CG,et al. Neurotrophin-3 gene modified mesenchymal stem cells promote remyelination and functional recovery in the demyelinated spinal cord of rats [J]. J Neurol Sci,2012,313(1/2):64-74.
(收稿日期:2016-11-03 本文編輯:蘇 暢)