楊 柳 綜述 王金泉 審校
?
·腎臟病臨床·
補(bǔ)體活化異常與IgA腎病
楊 柳 綜述 王金泉 審校
IgA腎病(IgAN)是由半乳糖缺陷的IgA1結(jié)合抗體后形成病原免疫復(fù)合物所介導(dǎo)的自身免疫性疾病,以IgA在腎小球系膜區(qū)沉積為特點(diǎn)。系膜區(qū)沉積的IgA主要為多聚體IgA1,通過(guò)活化系膜細(xì)胞產(chǎn)生大量炎癥因子,進(jìn)一步激活補(bǔ)體系統(tǒng)。補(bǔ)體通過(guò)替代途徑和凝集素途徑活化,在IgAN發(fā)病機(jī)制中發(fā)揮重要作用。替代途徑產(chǎn)物備解素、H因子(FH)及凝集素途徑產(chǎn)物甘露糖結(jié)合凝集素(MBL)、MBL相關(guān)絲氨酸蛋白酶(MASP)1和2及C4d等參與形成系膜區(qū)免疫沉積物。補(bǔ)體H因子相關(guān)基因(CFHR)蛋白產(chǎn)物通過(guò)與FH競(jìng)爭(zhēng)性調(diào)節(jié)替代途徑,減弱FH對(duì)補(bǔ)體活化的抑制作用。全基因組關(guān)聯(lián)分析顯示CFHR 1和CFHR 3缺失對(duì)IgAN有保護(hù)作用。IgA參與形成的免疫復(fù)合物導(dǎo)致補(bǔ)體活化后補(bǔ)體因子及其片段可作為IgAN的血清、尿液及腎組織生物標(biāo)志物。新近文獻(xiàn)報(bào)道進(jìn)展型IgAN患者受益于抗補(bǔ)體治療,但其長(zhǎng)期療效有待于臨床研究進(jìn)一步驗(yàn)證。本文將補(bǔ)體活化異常對(duì)IgAN產(chǎn)生的影響加以綜述。
IgA腎病 補(bǔ)體 發(fā)病機(jī)制 生物標(biāo)志物
1968年,Berger和Hinglais[1]首次報(bào)道了IgA腎病(IgAN), 其診斷依賴于以IgA為主的免疫球蛋白沉積于腎小球系膜區(qū)。IgAN患者系膜區(qū)沉積的IgA主要為多聚體形式(pIgA1)。Suzuki等[2]研究表明,IgA1聚糖鏈區(qū)半乳糖化障礙導(dǎo)致O-聚糖鏈縮短頻率增加、IgA1糖基化異常,有助于pIgA1聚集及IgA免疫復(fù)合物(IgA-IC)形成,促進(jìn)IgA在系膜區(qū)沉積,IgA-IC活化系膜細(xì)胞,誘導(dǎo)細(xì)胞外基質(zhì)增生、細(xì)胞因子分泌,導(dǎo)致腎臟損傷。由于補(bǔ)體C3、C4、C4d、甘露糖結(jié)合凝集素(MBL)、備解素、終末產(chǎn)物膜攻擊復(fù)合物(MAC)C5b-9等成分常伴隨IgA沉積于腎組織,補(bǔ)體活化在IgAN中發(fā)揮的作用成為研究熱點(diǎn)[3]。
補(bǔ)體系統(tǒng)經(jīng)三條途徑被激活:抗原抗體復(fù)合物結(jié)合C1q啟動(dòng)激活經(jīng)典途徑; MBL直接結(jié)合細(xì)菌啟動(dòng)激活凝集素途徑;由病原微生物等提供接觸表面、從C3開(kāi)始激活替代途徑。固有成分中參與經(jīng)典途徑的有C1、C4、C2;參與凝集素途徑的有MBL、絲氨酸蛋白酶;參與替代途經(jīng)的有備解素、D因子、B因子等;三條途徑均在裂解C3后形成共同終末產(chǎn)物——MAC[4]。調(diào)節(jié)成分包括C1抑制物、I因子(FI)、H因子(FH)、C4結(jié)合蛋白等。補(bǔ)體受體主要有CR1~5、C2aR、C3aR和C4aR。補(bǔ)體C3被激活后其片段C3b與細(xì)胞受體相結(jié)合,通過(guò)信號(hào)傳導(dǎo)激活細(xì)胞,過(guò)程中產(chǎn)生的大量炎癥介質(zhì)加重細(xì)胞與組織損傷[5]。
IgAN以大分子IgA1在腎小球系膜區(qū)沉積為病理特點(diǎn),C3的伴隨性沉積是其腎組織免疫熒光染色的常見(jiàn)表現(xiàn)。大多數(shù)IgAN腎組織中均可檢出備解素,提示替代途徑活化,腎組織沉積物內(nèi)存在C5、C6、C9及MAC則表明補(bǔ)體活化途徑的終末階段在腎內(nèi)進(jìn)行。體內(nèi)及體外實(shí)驗(yàn)均證實(shí)IgA能夠活化補(bǔ)體替代途徑[6]。Roos等[7]最先證明IgA能夠結(jié)合MBL活化凝集素途徑。病理性IgA1結(jié)合于MBL碳?xì)浣Y(jié)合區(qū),激活凝集素途徑,MBL亦可識(shí)別受損腎小球固有細(xì)胞及凋亡細(xì)胞暴露的內(nèi)源性寡糖結(jié)構(gòu)域,繼而啟動(dòng)凝集素途徑[8]。可見(jiàn)IgAN中補(bǔ)體活化以替代途徑和凝集素途徑為主[9]。一項(xiàng)隨訪20年的隊(duì)列研究表明確診時(shí)腎組織內(nèi)C4d染色陽(yáng)性的IgAN患者20年腎存活率明顯低于C4d陰性者,C4d陽(yáng)性IgAN患者進(jìn)入終末期腎病(ESRD)的危險(xiǎn)因素包括尿蛋白定量、腎小球?yàn)V過(guò)率(GFR)及腎小管萎縮或間質(zhì)纖維化,C4d染色陽(yáng)性是IgAN進(jìn)入ESRD的獨(dú)立危險(xiǎn)因素[10]。Oortwijn等[11-12]進(jìn)一步證實(shí)15%IgAN患者系膜區(qū)存在分泌型IgA(sIgA)沉積,且sIgA沉積與MBL和C4d沉積明顯相關(guān),提示補(bǔ)體凝集素途徑活化與sIgA有關(guān),局部補(bǔ)體活化導(dǎo)致腎臟病變加重。由此可見(jiàn),補(bǔ)體凝集素途徑在IgA介導(dǎo)IgAN損傷的過(guò)程中發(fā)揮重要作用。
隨著全基因組關(guān)聯(lián)分析的進(jìn)展,研究焦點(diǎn)逐漸從補(bǔ)體成分轉(zhuǎn)移到補(bǔ)體調(diào)節(jié)因子,尤其影響 C3轉(zhuǎn)化酶的多種膜性或可溶性補(bǔ)體調(diào)節(jié)蛋白,如FH和H因子相關(guān)蛋白(CFHR)。FH由CFH基因編碼,以20個(gè)高頻短義重復(fù)序列(SCRs)編碼的區(qū)域組成,C端結(jié)合細(xì)胞表面,N端結(jié)合C3b加快C3轉(zhuǎn)化酶裂解,是補(bǔ)體替代途徑的重要抑制性因子。與CFH基因相似,CFHR基因亦由SCR組成,并存在多種結(jié)合性能[13]。
研究表明CFHR蛋白通過(guò)與FH競(jìng)爭(zhēng)結(jié)合細(xì)胞表面C3b,直接影響FH對(duì)補(bǔ)體替代途徑的抑制功能,CFHR1-CFHR3蛋白缺失導(dǎo)致FH水平升高、補(bǔ)體調(diào)節(jié)能力增強(qiáng),對(duì)IgAN起保護(hù)性作用(圖1)[14-15]。此外,CFHR1蛋白亦可抑制C5轉(zhuǎn)化酶活性,CHFR3蛋白對(duì)補(bǔ)體活化的調(diào)節(jié)功能與FI類似[16],與CFHR1蛋白共同下調(diào)C5a、最終阻斷補(bǔ)體介導(dǎo)的中性粒細(xì)胞趨化。CFHR1或CFHR3單獨(dú)缺失,IgAN發(fā)病風(fēng)險(xiǎn)降低30%,CFHR1-CFHR3聯(lián)合缺失,IgAN發(fā)病風(fēng)險(xiǎn)進(jìn)一步下降[3]。Zhu等[17]針對(duì)CFH、CFHR3、CFHR1對(duì)IgAN易感性和病情進(jìn)展的影響進(jìn)行研究,結(jié)果表明CFH突變位點(diǎn)rs6677604與系膜區(qū)C3沉積有關(guān),該位點(diǎn)上A等位基因與血清CFH蛋白水平高、補(bǔ)體活化裂解產(chǎn)物C3a降低有關(guān),且血清CFH蛋白與循環(huán)C3水平呈正相關(guān)、與系膜區(qū)C3沉積呈負(fù)相關(guān),而血清致病性半乳糖缺陷的IgA1與系膜區(qū)C3沉積正相關(guān),表明CFH、CFHR3和CFHR1基因突變影響補(bǔ)體活化,能夠預(yù)示IgAN的發(fā)生。CFHR5基因突變導(dǎo)致補(bǔ)體活化異常所引發(fā)的CFHR5腎病與IgAN有許多共同點(diǎn),最新研究通過(guò)篩查所有CFHR5外顯子及非編碼區(qū)并對(duì)異常位點(diǎn)進(jìn)行比較,發(fā)現(xiàn)IgAN患者CFHR5稀有突變的分布與健康對(duì)照組存在明顯差異,其中CFHR5-M、CFHR5-S、CFHR5-D三種重組CFHR5蛋白與C3b結(jié)合功能顯著增強(qiáng),提示CFHR5是IgAN的易感基因,其稀有突變?cè)黾覫gAN的遺傳易感性[19]。
圖1 CFHR1、3基因缺失對(duì)IgA腎病進(jìn)展產(chǎn)生保護(hù)性作用的機(jī)制[14-15]CFHR1和CFHR3蛋白與H因子競(jìng)爭(zhēng)性結(jié)合C3b,但前者補(bǔ)體調(diào)節(jié)能力較弱;當(dāng)CFHR1、3基因缺失,H因子能有效結(jié)合C3b并強(qiáng)烈抑制補(bǔ)體替代途徑活化及放大
由于存在于循環(huán)中或沉積在組織內(nèi)的IgA-IC均可直接導(dǎo)致補(bǔ)體活化,能否將血清、尿液及組織中各種補(bǔ)體成分作為IgAN的生物標(biāo)志物,以判斷IgAN的活動(dòng)性及預(yù)后,引發(fā)了學(xué)界的關(guān)注。
盡管補(bǔ)體C3沉積于系膜區(qū)是IgAN常見(jiàn)免疫病理改變,血C3水平通常正常,僅部分患者血C3下降,但iC3b、C3d等C3降解產(chǎn)物水平升高,表明體內(nèi)存在替代途徑活化。研究表明近20%IgAN患者存在低C3血癥,其ESRD或肌酐倍增發(fā)生率明顯高于C3正常者,而腎小球系膜區(qū)C3沉積者發(fā)生腎臟終點(diǎn)事件幾率明顯高于無(wú)C3沉積者,提示補(bǔ)體活化對(duì)IgAN病理改變及腎臟結(jié)局產(chǎn)生影響[19]。Komatsu等[20]發(fā)現(xiàn)IgAN患者循環(huán)中補(bǔ)體C3水平明顯低于正常對(duì)照,盡管未能發(fā)現(xiàn)C3水平與病情嚴(yán)重程度有關(guān),但病情較重者血清IgA/C3比值顯著升高,進(jìn)一步研究結(jié)果顯示平均IgA/C3比值高于4.5者5年腎存活率明顯下降。在中國(guó)人群中,除尿蛋白定量>1 g/24h、高血壓、病理?yè)p傷嚴(yán)重等因素外,血清IgA/C3≥3.2是IgAN患者進(jìn)入ESRD的有效預(yù)測(cè)因子[21]。血清C3活化裂解產(chǎn)物形成新抗原——活化C3,其水平在30%IgAN患者較健康對(duì)照組升高,且活化C3水平升高者蛋白尿、血尿較活化C3正常者明顯增多,血漿活化C3濃度與隨訪期間腎功能惡化程度相關(guān),表明IgAN患者補(bǔ)體活化與腎臟病進(jìn)展有關(guān),活化C3可作為預(yù)測(cè)IgAN結(jié)局的生物標(biāo)志物[22]。
尿液中補(bǔ)體成分亦可作為IgAN活化的生物標(biāo)志物。IgAN患者尿液中MAC、FH及備解素水平明顯升高,而補(bǔ)體受體1則明顯減少,且尿MAC和FH水平與血清肌酐、尿N-乙酰-β-葡萄糖苷(NAG)酶、尿β2微球蛋白、尿蛋白、腎間質(zhì)纖維化及腎小球硬化比例均呈正相關(guān),尿備解素與尿NAG酶、尿β2微球蛋白及尿蛋白呈正相關(guān)[23]。Zhang等[24]以共聚焦顯微鏡觀察到IgAN患者腎組織內(nèi)有FH和C3b共沉積,而尿FH/尿肌酐比值隨IgAN Hass分級(jí)升高而升高,且與腎組織內(nèi)FH沉積正相關(guān)。IgAN患者尿液中MBL水平較正常人群明顯升高,與腎功能、蛋白尿、高血壓、系膜細(xì)胞增生、節(jié)段腎小球硬化、內(nèi)皮細(xì)胞增殖等指標(biāo)相關(guān),且隨訪終點(diǎn)病情無(wú)緩解的患者尿MBL水平明顯高于病情緩解者,提示尿MBL是可靠地評(píng)價(jià)IgAN嚴(yán)重程度及預(yù)后的無(wú)創(chuàng)性生物標(biāo)志物[25]。
腎組織補(bǔ)體成分免疫染色也可預(yù)測(cè)IgAN預(yù)后。Nasri等[26]研究表明,系膜區(qū)C3沉積與血清肌酐水平高、新月體比例高、毛細(xì)血管袢內(nèi)皮細(xì)胞增生、系膜細(xì)胞增殖以及節(jié)段硬化有關(guān)。Nakagawa等[27]對(duì)IgAN腎組織進(jìn)行C3c和C3d免疫熒光染色,結(jié)果顯示以C3c沉積為主者嚴(yán)重血尿發(fā)生率更高、腎小球毛細(xì)血管袢內(nèi)增生更明顯,且GFR進(jìn)一步下降,提示C3c與IgAN腎小球內(nèi)炎癥反應(yīng)有關(guān),該作者推測(cè)C3c沉積表明腎臟局部處于補(bǔ)體活化急性期,而C3d沉積可在補(bǔ)體活化后持續(xù)存在,與IgAN活動(dòng)性無(wú)關(guān)。Roos等[8]研究顯示腎小球系膜區(qū)MBL染色陽(yáng)性的IgAN均伴有MBL相關(guān)絲氨酸蛋白酶和C4d共沉積,且腎小球MBL沉積與系膜增生、腎小球硬化及間質(zhì)纖維化有關(guān)。系膜區(qū)C4d染色陽(yáng)性的IgAN患者20年腎存活率明顯低于系膜區(qū)C4d陰性者(28%vs85%),C4d在系膜區(qū)沉積是獨(dú)立于基線GFR和蛋白尿外,影響腎功能下降和遠(yuǎn)期預(yù)后的風(fēng)險(xiǎn)因素[28]。
盡管補(bǔ)體活化并非IgAN患者腎功能惡化的始動(dòng)因素,腎小球補(bǔ)體成分沉積仍可加重腎臟炎癥及細(xì)胞損傷。由于補(bǔ)體活化在IgAN發(fā)病機(jī)制中起到重要作用,Kiryluk等[13]提出IgAN患者可能受益于重組FH或抗C5單克隆抗體治療,目前以抗C5單克隆抗體——依庫(kù)珠單抗進(jìn)行補(bǔ)體靶向治療已開(kāi)始用于治療IgAN。Rosenblad等[29]報(bào)道1例接受嗎替麥考酚酯聯(lián)合激素治療的白人男性IgAN患者,因腎功能惡化采用單劑量依庫(kù)珠單抗治療后血清肌酐和蛋白尿均明顯下降,補(bǔ)體功能檢測(cè)提示補(bǔ)體活化被完全阻斷,但由于腎組織慢性化病變嚴(yán)重而停依庫(kù)珠單抗。Ring等[30]報(bào)道1例大劑量激素聯(lián)合環(huán)磷酰胺、血漿置換治療均無(wú)效的血管炎型IgAN患者,接受依庫(kù)珠單抗治療后腎功能迅速改善。由此可見(jiàn),腎功能惡化的IgAN患者可能受益于補(bǔ)體靶向性治療,但血清MAC水平能否有助于監(jiān)測(cè)疾病活動(dòng)性、依庫(kù)珠單抗對(duì)進(jìn)展型IgAN是否具有長(zhǎng)期療效仍需臨床研究進(jìn)一步驗(yàn)證。
小結(jié):補(bǔ)體通過(guò)替代途徑和凝集素途徑活化在IgAN的發(fā)病機(jī)制和臨床進(jìn)展中發(fā)揮關(guān)鍵作用。補(bǔ)體替代途徑調(diào)節(jié)基因CFHR對(duì)IgAN疾病表型的影響提示替代途徑在IgAN的發(fā)展過(guò)程中起作用。血清C3水平下降及其裂解產(chǎn)物增多并沉積于腎小球可作為IgAN活動(dòng)的生物標(biāo)志物。針對(duì)補(bǔ)體活化的靶向藥物有可能成為進(jìn)展型IgAN患者的可行治療方案。
1 Berger J,Hinglais N.Intercapillary deposits of IgA-IgG.J Urol Nephrol (Paris),1968,74(9):694-695.
2 Suzuki H,Kiryluk K,Novak J,et al.The pathophysiology of IgA nephropathy.J Am Soc Nephrol,2011,22(10):1795-1803.
3 Wyatt RJ,Julian BA.IgA nephropathy.N Engl J Med,2013,368(25):2402-2414.
4 Janssen BJ,Christodoulidou A,McCarthy A,et al.Structure of C3b reveals conformational changes that underlie complement activity.Nature,2006,444(7116):213-216.
5 Daha MR,van Kooten C.Role of complement in IgA nephropathy.J Nephrol,2016;29(1):1-4.
6 Hiemstra PS,Gorter A,Stuurman ME,et al.Activation of the alternative pathway of complement by human serum IgA.Eur J Immunol,1987,17(3):321-326.
7 Roos A,Bouwman LH,van Gijlswijk-Janssen DJ,et al.Human IgA activates the complement system via the mannan-binding lectin pathway.J Immunol,2001,167(5):2861-2868.
8 Roos A,Rastaldi MP,Calvaresi N,et al.Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease.J Am Soc Nephrol,2006,17(6):1724-1734.
9 Floege J,Moura IC,Daha MR.New insights into the pathogenesis of IgA nephropathy.Semin Immunopathol,2014,36(4):431-442.
10 Espinosa M,Ortega R,Sánchez M,et al.Association of C4d deposition with clinical outcomes in IgA nephropathy.Clin J Am Soc Nephrol,2014,9(5):897-904.
11 Oortwijn BD,Rastaldi MP,Roos A,et al.Demonstration of secretory IgA in kidneys of patients with IgA nephropathy.Nephrol Dial Transplant,2007,22(11):3191-3195.
12 Oortwijn BD,Eijgenraam JW,Rastaldi MP,et al.The role of secretory IgA and complement in IgA nephropathy.Semin Nephrol,2008,28(1):58-65.
13 Kiryluk K,Novak J,Gharavi AG.Pathogenesis of immunoglobulin A nephropathy:recent insight from genetic studies.Annu Rev Med,2013,64;339-356.
14 Gharavi AG,Kiryluk K,Choi M,et al.Genome-wide association study identifies susceptibility loci for IgA nephropathy.Nat Genet,2011,43(4):321-327.
15 Maillard N,Wyatt RJ,Julian BA,et al.Current understanding of the role of Complement in IgA Nephropathy.J Am Soc Nephrol,2015,26(7):1503-1512.
16 Skerka C,Chen Q,Fremeaux-Bacchi V,et al.Complement factor H related proteins (CFHRs).Mol Immunol,2013,56(3):170-180.
17 Zhu L,Zhai YL,Wang FM,et al.Variants in complement factor H and complement factor H-related protein genes,CFHR3 and CFHR1,affect complement activation in IgA nephropathy.J Am Soc Nephrol,2015,26(5):1195-1204.
18 Zhai YL,Meng SJ,Zhu L,et al.Rare variants in the complement factor H-related protein 5 Gene contribute to genetic susceptibility to IgA nephrology.J Am soc Nephrol,2016,27(9):2894-2905.
19 Kim SJ,Koo HM,Lim BJ,et al.Decreased circulating C3 levels and mesangial C3 deposition predict renal outcomein patients with IgA nephropathy.PloS One,2012,7(7):e40495.
20 Komatsu H,Fujimoto S,Hara S,et al.Relationship between serum IgA/C3 ratio and progression of IgA nephropathy.Intern Med,2004,43(11):1023-1028.
21 Zhang J,Wang C,Tang Y,et al.Serum immunoglobulin A/C3 ratio predicts progression of immunoglobulin A nephropathy.Nephrology(Carlton),2013,18(2):125-131.
22 Zwirner J,Burg M,Schulze M,et al.Activated complement C3:a potentially novel predictor of progressive IgA Nephropathy.Kidney Int,1997,51(4):1257-1264.
23 Onda K,Ohsawa I,Ohi H,et al.Excretion of complement proteins and its activation marker C5b-9 in IgA nephropathy in relation to renal function.BMC Nephrol,2011,12:64.
24 Zhang JJ,Jiang L,Liu G,et al.Levels of urinary complement factor H in patients with IgA nephropathy are closely associated with disease activity.Scand J Immunol,2009,69(5):457-464.
25 Liu LL,Jiang Y,Wang LN,et al.Urinary mannose-binding lectin is a biomarker for predicting the progression of immunoglobulin(Ig) A nephropathy.Clin Exp Immunol,2012,169(2):148-155.
26 Nasri H,Sajjadieh S,Mardani S,et al.Correlation of immunostaining findings with demographic data and variables ofOxford classification in IgA nephropathy.J Nephropathol,2013,2(3):190-195.
27 Nakagawa H,Suzuki S,Haneda M,et al.Significance of glomerular deposition of C3c and C3d in IgA nephropathy.Am J Nephrol,2000,20(2):122-128.
28 Maeng YI,Kim MK,Park JB,et al.Glomerular and tubular C4d depositions in IgA nephropathy:relations with histopathology and with albuminuria.Int J Clin Exp Pathol,2013,6(5):904-910.
29 Rosenblad T,Rebetz J,Johansson M,et al.Eculizumab treatment for rescue of renal function in IgA nephropathy.Pediatr Nephrol,2014,29(11):2225-2228.
30 Ring T,Pedersen BB,Salkus G,et al.Use of eculizumab in crescentic IgA nephropathy:proof of principle and conundrum? Clin Kidney J,2015,8(5):489-491.
(本文編輯 律 舟)
Abnormal complement activation and IgA nephropathy
YANGLiu,WANGJinquan
NationalClinicalResearchCenterofKidneyDiseases,JinlingHospital,NanjingUniversitySchoolofMedicine,Nanjing210016,China
Immunoglobulin A nephropathy (IgAN), an autoimmune disease mediated by pathogenic immune complexes consisting of galactose-deficient IgA1 bound by antibodies, is characterized by the deposition of IgA in the mesangium of glomeruli. The mesangial IgA has been found to consist mainly of polymeric IgA1 which drives the activation of the mesangial cells and results in excessive production of several inflammatory mediators. The activation of mesangial cells is amplified by the ability of IgA to activate the complement system, mainly via the alternative pathway and lectin pathway. Properdin and factor H (FH) in the alternative pathway and mannan-binding lectin, mannan-binding lectin-associated serine proteases 1 and 2, and C4d in the lectin pathway are present in the mesangial immunodeposition. Protein products of complement factor H-related genes (CFHR) 1 and 3 impact inhibition of complement by FH, in the way of competing with FH in the regulation of the alternative pathway. Genome-wide association studies identified deletion of CFHR1 and CFHR3 play a protective role in IgAN. Complement factors and fragments could serve as biomarkers of IgAN in serum, urine, and renal tissue, for IgA-immune complexes contribute to active complement system. Recently, several literatures reported patients with IgAN benefited from anti-complement therapy. However, the long-time effect still needs to be confirmed by clinical studies. In this review, we summarize the contribution of abnormal complement activation to IgAN.
IgA nephropathy complement pathogenesis biomarker
10.3969/cndt.j.issn.1006-298X.2017.03.016
南京軍區(qū)南京總醫(yī)院腎臟科 國(guó)家腎臟疾病臨床醫(yī)學(xué)研究中心 全軍腎臟病研究所(南京,210016)
2016-06-20