朱文潤(rùn),鄧曉怡,魏江存,闕祖亮
?
3-二氫吡咯烷基螺環(huán)氧化吲哚及其衍生物的合成與表征
朱文潤(rùn)1,鄧曉怡2,魏江存1,*闕祖亮1
(1. 廣西中醫(yī)藥大學(xué)藥學(xué)院,廣西,南寧 530200;2. 廣東藥科大學(xué)藥學(xué)院,廣東,廣州 510006)
對(duì)3-二氫吡咯烷基螺環(huán)氧化吲哚及其衍生物進(jìn)行了探索合成。在有機(jī)小分子堿三乙胺催化作用下,由N-2,2,2-三氟乙基靛紅酮亞胺與丁炔二酸二甲酯在二氯甲烷(DCM)溶劑中于室溫下發(fā)生3+2環(huán)合加成反應(yīng),高產(chǎn)率(83%~98%)獲得3-二氫吡咯烷基螺環(huán)氧化吲哚。這一合成方法具有簡(jiǎn)單,高效,環(huán)保的特點(diǎn)。通過(guò)核磁共振氫譜和碳譜、高分辨質(zhì)譜等手段對(duì)已合成的產(chǎn)物進(jìn)行表征。
3-二氫吡咯烷基螺環(huán)氧化吲哚;3+2環(huán)合加成;生物活性;氟化學(xué)
3-螺環(huán)氧化吲哚廣泛存在于天然產(chǎn)物和藥物中,其一系列衍生物已被公認(rèn)為臨床候選藥物中的關(guān)鍵結(jié)構(gòu)[1-6]。如MI-219可抑制腫瘤抑制基因p53與E3泛素連接酶MDM2之間的相互作用[7],Spirotryprostatins A能完全抑制哺乳動(dòng)物Ts FT210細(xì)胞的G2/ M細(xì)胞分裂[8](Scheme1)。
Scheme 1 一些有活性的3-螺環(huán)氧化吲哚骨架
螺環(huán)骨架的復(fù)雜性給此類化合物的合成造成了一些困難,因此探討簡(jiǎn)單、高效、快捷地合成此類化合物將具有深遠(yuǎn)的化學(xué)合成意義以及藥學(xué)意義[9-12]。
將氟或含氟基團(tuán)引入生物活性分子中可以帶來(lái)一系列積極效果[13-16]。氟掃描作為常規(guī)方法已經(jīng)廣泛應(yīng)用于先導(dǎo)藥物的開(kāi)發(fā)[17-19]。因此,開(kāi)發(fā)將氟摻入有機(jī)化合物的可用方法是藥物化學(xué)的高度期望[20-21]。但是通常與單氟化方法相比,選擇性引入三氟甲基進(jìn)入所需位置的方法仍然受到限制[18]。由于強(qiáng)的吸電子能力、高的電負(fù)性和小的氟原子,引入三氟甲基常常導(dǎo)致分子的性質(zhì)發(fā)生顯著變化[22-23]。特別是位于CF3的α位的N原子已被認(rèn)為是低堿性酰胺,并且該點(diǎn)被認(rèn)為是影響藥物受體親和力的關(guān)鍵因素之一[24]。目前,將三氟甲基引入螺環(huán)氧化吲哚衍生物中的合成報(bào)道較少。2015年王銳課題組首次報(bào)道利用N-2, 2,2-三氟乙基靛紅酮亞胺和硝基烯烴進(jìn)行3+2環(huán)合加成生成3-四氫吡咯烷基螺環(huán)氧化吲哚[25]。同年王銳課題組又報(bào)道利用N-2, 2,2-三氟乙基靛紅酮亞胺和肉桂醛進(jìn)行3+2環(huán)合加成生成3-四氫吡咯烷基螺環(huán)氧化吲哚[26]。2016年林寧課題組利用N-2, 2,2-三氟乙基靛紅酮亞胺和亞甲基吲哚酮進(jìn)行[3+2]環(huán)加成反應(yīng),有效地將CF3基團(tuán)引入到高度官能化的3,3’-吡咯烷基雙螺環(huán)氧化吲哚化合物中[27]。這些文獻(xiàn)均是利用N-2, 2,2-三氟乙基靛紅酮亞胺和碳碳雙鍵發(fā)生3+2環(huán)合加成反應(yīng),將CF3基團(tuán)引入到3-螺環(huán)氧化吲哚衍生物中。
本研究嘗試?yán)肗-2, 2,2-三氟乙基靛紅酮亞胺和碳碳三鍵進(jìn)行3+2環(huán)合加成合成具有高生物活性的3-二氫吡咯烷基螺環(huán)氧化吲哚及其衍生物,同時(shí)將CF3基團(tuán)引入其中。本研究采用環(huán)保的有機(jī)小分子堿三乙胺作為催化劑,溫和的反應(yīng)條件,快速的反應(yīng)時(shí)間(20 min),收獲了高達(dá)83%~98%的產(chǎn)率(Scheme 2)。同時(shí)合成了未見(jiàn)報(bào)道的化合物5個(gè)。
Scheme 2 反應(yīng)路線
二氯甲烷(無(wú)水處理)、甲苯、四氫呋喃(無(wú)水處理)、三乙胺、靛紅、碘甲烷、2,2,2-三氟乙胺鹽酸鹽、對(duì)甲苯磺酸一水合物、氰化鈉、丁炔二酸二甲酯、丁炔二酸二乙酯為商業(yè)購(gòu)買(mǎi),均為分析純。
EYELA N-1001DW 旋轉(zhuǎn)蒸發(fā)儀、2X2S-4 真空泵、Bruker AVANCE III 400 MHz 型核磁共振儀、ThermoMAT 95XP 高分辨質(zhì)譜儀、EYELA PSL-1400 磁力攪拌低溫恒溫槽。核磁共振測(cè)試溶劑CDCl3,內(nèi)標(biāo)TMS。
1.2.1化合物5a-5d的合成
分別稱取N-2, 2,2-三氟乙基靛紅酮亞胺(3a)(1 mmol,0.242 g)和丁炔二酸二甲酯(1.2 mmol,0.142 g)于25 mL圓底燒瓶中,加入二氯甲烷(無(wú)水處理)5 mL溶解后滴加10 mol%(0.1 mmol,0.010 g)的三乙胺。室溫下反應(yīng)20 min結(jié)束,薄層色譜監(jiān)測(cè)反應(yīng)進(jìn)程,展開(kāi)劑為石油醚(沸點(diǎn)60~90℃):乙酸乙酯 = 3:1。反應(yīng)結(jié)束后直接在反應(yīng)液中加入適量柱色譜硅膠,旋干,干法上柱,梯度洗脫,以石油醚:乙酸乙酯 = 5:1和3:1為洗脫劑,得產(chǎn)物5a。
同上述反應(yīng)步驟,得產(chǎn)物5b-5d。
5a:產(chǎn)率90%,無(wú)色油狀。1H NMR (400 MHz, CDCl3) δ: 7.40 –7.30 (m, 2H), 7.10 (t,= 7.5 Hz, 1H), 6.84 (d,= 7.8 Hz, 1H), 5.29–5.20 (m, 1H), 3.87 (s, 3H), 3.55 (s, 3H), 3.22 (s, 3H);19F NMR (400 MHz, CDCl3) δ: -75.41 (s);13C NMR (400 MHz, CDCl3) δ: 175.40 (s), 162.90(s), 160.59(s), 143.47 (s), 138.58 (s), 130.83(s), 130.19(s), 129.80 (s), 124.65 (s), 123.67 (s), 108.40 (s), 75.21 (s), 67.47 (q,= 32.2 Hz), 52.94(s), 52.64(s), 29.71(s), 26.77(s); HRMS (ESI): m/z [M+H]+calcd. for [C17H16F3N2O5]+: 385.0933, found: 385.0938.
5b:產(chǎn)率98%,無(wú)色油狀。1H NMR (400 MHz, CDCl3) δ: 7.18–7.08 (m, 2H), 6.72 (d, J = 7.8 Hz, 1H), 5.30–5.18 (m, 1H), 3.87 (s, 3H), 3.56 (s, 3H), 3.20 (s, 3H), 2.32 (s, 3H);19F NMR (400 MHz, CDCl3) δ: -75.37 (s);13C NMR (400 MHz, CDCl3) δ: 175.32 (s), 162.95 (s), 160.60(s), 141.09(s), 138.64 (s), 133.34 (s), 131.03 (s), 130.43 (s), 129.72 (s), 125.40 (s), 108.14 (s), 75.29 (s), 67.45 (q, J = 32.4 Hz), 52.94 (s), 52.64 (s), 29.71 (s), 26.78 (s), 21.11 (s); HRMS (ESI): m/z [M+H]+calcd. for [C18H18F3N2O5]+: 399.1090, found: 399.1096.
5c:產(chǎn)率96%,無(wú)色油狀。1H NMR (400 MHz, CDCl3) δ: 7.32 (dd,= 8.3, 2.1 Hz, 1H), 7.17 (d,= 2.1 Hz, 1H), 6.76 (d,= 8.3 Hz, 1H), 5.30–5.20 (m, 1H), 3.89 (s, 3H), 3.59(s, 3H), 3.22(s, 3H);19F NMR(400 MHz, CDCl3) δ: -74.95 (s);13C NMR (400 MHz, CDCl3) δ: 175.27 (s), 170.69(s), 162.79(s), 160.58 (s), 142.23 (s), 131.98 (s), 131.35 (s), 128.95 (s), 124.83(s), 116.30(s), 109.80 (s), 74.94 (s),67.45 (q,= 32.2 Hz) 52.96 (s), 52.73 (s), 29.25 (s), 26.92 (s); HRMS (ESI): m/z [M+H]+calcd. for [C17H15ClF3N2O5]+: 419.0543, found: 419.0551.
5d:產(chǎn)率83%,無(wú)色油狀。1H NMR (400 MHz, CDCl3) δ: 7.46 (dd,= 8.2, 2.0 Hz, 1H), 7.43 (d,= 1.9 Hz, 1H), 6.72 (d,= 8.2 Hz, 1H), 5.29 – 5.20 (m, 1H), 3.89 (s, 3H), 3.59 (s, 3H), 3.21 (s, 3H);19F NMR (400 MHz, CDCl3) δ: -75.52 (s);13C NMR (400 MHz, CDCl3) δ: 174.87(s), 171.09(s), 162.73 (s), 160.28 (s), 142.63 (s), 132.98(s), 131.85(s), 127.90 (s), 124.83 (s), 116.30 (s), 109.80 (s), 74.94 (s), 67.45 (q,= 32.2 Hz) 52.96 (s), 52.70 (s), 29.05 (s), 26.82 (s). HRMS (ESI): m/z [M+H]+calcd. for [C17H15BrF3N2O5]+: 463.0072, found: 463.0086.
1.2.2化合物5e的合成
分別稱取N-2, 2,2-三氟乙基靛紅酮亞胺(3a)(1 mmol,0.242 g)和丁炔二酸二乙酯(1.2 mmol,0.170 g)于25 mL圓底燒瓶中,加入二氯甲烷(無(wú)水處理)5 mL溶解之后滴加10%(0.1 mmol,0.010 g)的三乙胺。反應(yīng)在室溫下反應(yīng)20 min結(jié)束,薄層色譜監(jiān)測(cè)反應(yīng)進(jìn)程,展開(kāi)劑為石油醚(沸點(diǎn)60~90℃):乙酸乙酯= 3:1。反應(yīng)結(jié)束后直接在反應(yīng)液中加入適量柱色譜硅膠,旋干,干法上柱,梯度洗脫,以石油醚:乙酸乙酯 = 5:1和3:1為洗脫劑,得產(chǎn)物5e。
5e:產(chǎn)率95%,無(wú)色油狀。1H NMR (400 MHz, CDCl3) δ: 7.39 –7.30 (m, 2H), 7.10 (t,= 7.5 Hz, 1H), 6.83 (d,= 7.8 Hz, 1H), 5.30 –5.19 (m, 1H), 4.41–4.26 (m, 2H), 3.98 (q,= 7.1 Hz, 2H), 3.22 (s, 3H), 1.34 (t,= 7.1 Hz, 3H), 1.00 (t,= 7.1 Hz, 3H);19F NMR (400MHz, CDCl3) δ: -75.28 (s);13C NMR (400 MHz, CDCl3) δ: 175.53 (s), 162.41(s), 160.09(s), 143.54 (s), 138.50 (s), 130.69 (s), 130.05(s), 130.00(s), 124.73 (s), 123.59 (s), 108.24 (s), 75.13 (s), 67.45 (q, J = 32.4 Hz), 62.18 (s), 61.52 (s), 29.68(s), 26.6 (s), 13.88(s), 13.53(s); HRMS(ESI): m/z [M+H]+calcd. for [C19H20F3N2O5]+: 413.1280, found: 413.1269.
利用最近報(bào)道的新型1,3-偶極子N-2, 2,2-三氟乙基靛紅酮亞胺和丁炔二酸酯類化合物在溫和的條件下高效、快速地合成了化合物5a-5e,并收獲了高達(dá)83%~98%的產(chǎn)率。這一反應(yīng)中,催化劑三乙胺的當(dāng)量可以低至10%的當(dāng)量,反應(yīng)溶劑二氯甲烷必須進(jìn)行重蒸除水。
產(chǎn)物的后處理只需要簡(jiǎn)單的旋干即可,其反應(yīng)體系比較干凈,兩個(gè)反應(yīng)底物基本反應(yīng)完全;在UV等下,通過(guò)薄層色譜監(jiān)測(cè),反應(yīng)體系中只剩下產(chǎn)物一個(gè)顯色點(diǎn),其Rf值在0.3左右。
化合物5a-5e通過(guò)核磁共振氫譜、氟譜、碳譜以及高分辨質(zhì)譜證實(shí)了其結(jié)構(gòu)的正確性。其中核磁共振氟譜均出現(xiàn)了單峰,說(shuō)明三氟甲基基團(tuán)已經(jīng)成功引入了目標(biāo)化合物中。
(1) 提出了一種合成3-二氫吡咯烷基螺環(huán)氧化吲哚的新方法,即利用新報(bào)道的1,3-偶極子N-2, 2,2-三氟乙基靛紅酮亞胺和丁炔二酸酯類化合物,在有機(jī)小分子堿三乙胺催化下,于室溫下發(fā)生3+2環(huán)合加成反應(yīng)制得。該反應(yīng)過(guò)程操作簡(jiǎn)單安全,反應(yīng)條件溫和,反應(yīng)產(chǎn)率高,反應(yīng)時(shí)間極短,反應(yīng)所用催化劑當(dāng)量少,反應(yīng)的原子經(jīng)濟(jì)性高。
(2) 本研究拓展合成了五個(gè)新型的螺環(huán)吲哚衍生物化合物,證明該反應(yīng)具有較好的適應(yīng)性,為進(jìn)一步完善3-二氫吡咯烷基螺環(huán)氧化吲哚骨架的衍生物合成奠定方法學(xué)基礎(chǔ),同時(shí)為不對(duì)稱研究該類骨架衍生物提供了消旋體合成的方法學(xué)基礎(chǔ)。
(3) 成功將在藥物分子中具有特殊用處的三氟甲基基團(tuán)方便、快捷、高效地引入到3-二氫吡咯烷基螺環(huán)氧化吲哚骨架中,為更好地發(fā)現(xiàn)新藥提供更多的先導(dǎo)化合物,同時(shí)為醫(yī)藥、農(nóng)藥領(lǐng)域增添新的元素。
然而,盡管本研究中收獲了預(yù)期目標(biāo)產(chǎn)物,但依然有許多值得進(jìn)一步研究的方面。例如對(duì)于3-二氫吡咯烷基螺環(huán)氧化吲哚的方法學(xué)研究以及不對(duì)稱方法學(xué)研究,進(jìn)一步拓展該類骨架衍生物的合成以及不對(duì)稱合成,這些都將更加完善對(duì)于螺環(huán)氧化吲哚骨架衍生物的研究。
[1] Marti C, Carreira E M. cover Picture: Construction of spiro[pyrrolidine-3,3′-oxindo- les]-recnt applications to the synthesis of oxindole alkaloids[J]. European Journal of Organic Chemistry, 2003, 2003 (12): 2183.
[2] Zhou F, Liu Y L, Zhou J. Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstitu- ted stereocenter at the C-3 position[J]. Advanced Synthesis & Catalysis, 2010, 352(9): 1381-1407.
[3] Rios R. Enantioselective methodologies for the synthesis of spiro compounds[J]. Chemical Society Reviews, 2012, 41(3): 1060-1074.
[4] Singh G S, Desta Z Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks[J]. Chemical Reviews, 2012, 112(11): 6104-6155.
[5] Liu Y, Wang H, Wan J. Recent advances in diversity oriented synthesis through isatin- based multicomponent reactions[J]. Asian Journal of Organic Chemistry, 2013, 2(5): 374-386.
[6] Cheng D, Ishihara Y, Tan B, et al. Organocatalytic asym metric assembly reactions: synthesis of spirooxindoles via organocascade Strategies[J]. ACS Catalysis, 2014, 4(3): 743-762.
[7] Shangary S, Qin D G, Mceachern D, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 3933-3938.
[8] Ding K, Lu Y P, et al. Structure-based design of potent non-peptide MDM2 inhibitors[J]. Journal of the American Chemical Society, 2005,127(29): 10130-10131.
[9] 吳燕,程金旭,胡紹軍,等. 一個(gè)新的 2,2'-聯(lián)吡啶鋅配合物合成與表征[J].井岡山大學(xué)學(xué)報(bào):自然科學(xué)版,2015, 36(2): 15-19.
[10] 李術(shù)艷,沈淑君. 2-烯-1,4-二酮及其衍物的合成及晶體結(jié)構(gòu)[J]. 井岡山大學(xué)學(xué)報(bào):自然科學(xué)版, 2017, 38(2): 35-39.
[11] 龍先文,黃偉杰,朱文潤(rùn),等. 有機(jī)小分子催化構(gòu)建氧化吲哚C(3)位螺環(huán)化合物的研究進(jìn)展[J]. 化學(xué)試劑, 2017(2): 148-156,174.
[12] Huang W J, Chen Q, Zhu W R, et al. Highly efficient construction of CF3-Containing 3,3’-Pyrrolidonyldis- pirooxindoles via base- catalyzed diastereoselective [3+2] annulation [J]. Heterocycles, 2017, 94(5): 879-893.
[13] Surya Prakash G K. Modern fluoroorganic chemistry.synthesis,reactivity,applications. von peer kirsch[J]. Angewandte Chemie, 2005, 117(10):1464.
[14] Nico S, Ryan G. Organofluorine chemistry: A Janus cyclohexane ring[J].Nature Chemistry,2015,7(6): 67-468.
[15] Steven S. Chapter two- fluorine in medicinal chemistry[J]. Progress in Medicinal Chemistry, 2015, (2015)54: 65-133.
[16] Hagan D O. Understanding organofluorine chemistry. An introduction to the C–F bond [J]. Chemical Society Reviews, 2008, 37(2): 308-319.
[17] Kirk K L. Fluorination in medicinal chemistry: methods, strategies, and recent developments [J]. Orgnic Process Research & Development, 2008, 12(2): 305-321.
[18] Zhu W, Wang J, Wang S, et al. Recent advances in the trifluoromethylation methodology and new CF3-containing drugs[J]. Journal of Fluorine Chemistry, 2014, (2014)167: 37-54.
[19] Wang J, nchez Rosell M S, Ace ?a J, et al. Fluorine in pharmaceutical industry: fluorine- containing drugs introduced to the market in the last decade (2001–2011)[J]. Chemical Reviews, 2014, 114(4): 2432-2506.
[20] Dolbier W R. Fluorine chemistry at the millennium[J]. Journal of Fluorine Chemistry, 2005, 126(2): 157-163.
[21] Hagmann W K. The many roles for fluorine in medicinal chemistry[J]. Journal of Medicinal Chemistry, 2008, 51(15): 4359-4369.
[22] Zheng Y, Ma J A. Combination catalysis in enantios- elective trifluoromethylation[J]. Adv-anced Synthesis & Catalysis, 2010, 352 (16): 2745-2750.
[23] Furuya T, Kamlet A S, Ritter T. Catalysis for fluorination and trifluoromethylation[J]. Nature, 2011, 473(7348): 470-477.
[24] Müller K,Faeh C,Diederich F. Fluorine in pharmaceu- ticals: Looking beyond intuition[J]. Science, 2007, 317(5846): 1881-1886.
[25] Sun Q T, Li X Y, Su J H, et al. The squaramide-catalyzed 1,3-dipolar cycloaddi- tion of nitroalkenes with n- 2,2,2-trifluoro- ethylisatin ketimines: an approach for the synthesis of 5′-Trifluoromethyl- spiro[pyrrol- idin-3,2′- oxindo-les][J]. Advanced Synthesis & Catalysis, 2015, 357(14-15): 3187 -3196.
[26] Ma M X, Zhu Y Y, Sun Q T, et al. The asymmetric synthesis of CF3-containing spiro [pyrrolidin-3,2'- oxindole] through the organo- catalytic 1,3-dipolar cycloaddition reaction[J]. Chemical Communication, 2015, 51 (42): 8789-8792.
[27] Huang W J, Chen Q, Lin N, et al. Asymmetric synthesis of trifluoromethyl-substituted 3,3′-pyrrolidinyldis- pirooxindoles through organo-catalytic 1,3-dipolar cycloaddition reactions[J]. Organic Chemistry Fronts, 2017,4(3): 472-482.
Synthesis and Characterization of 3-Dihydropyrrolidinyl Spiro-epoxidized Indole and Its Derivatives
ZHU Wen-run1, DENG Xiao-yi2, WEI Jiang-cun1,*QUE Zu-liang1
(1. College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China; 2. College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China)
The synthesis of 3-dihydropyrrolidinyl spirocyclic indole and its derivatives was explored. Under the catalysis of organic triethylamine, N-2,2,2-trifluoroethylindanone imine was reacted with dimethyl butynedione in dichloromethane (DCM) at room temperature, A 3 + 2 cyclization addition reaction was carried out to obtain a high yield (83%~98%) of 3-dihydropyrrolidinyl spiro-epoxidized indole. This synthetic method is simple, efficient and environmentally friendly. The synthesized products were characterized by1H-NMR,19F-NMR,13C-NMR and high-resolution mass spectrometry.
3-dihydropyrrolidinyl spiro-epoxidized indole; 3+2 cyclization addition; biological activity; fluorochemistry
1674-8085(2018)01-0032-05
R623.7
A
10.3969/j.issn.1674-8085.2018.01.008
2017-11-12;
2017-12-23
國(guó)家自然科學(xué)基金項(xiàng)目(81260673);廣西中醫(yī)藥大學(xué)科研創(chuàng)新項(xiàng)目(YJS201625)
朱文潤(rùn)(1993-),男,江西瑞金人,碩士生,主要從事藥物分子設(shè)計(jì)與手性藥物的合成研究(E-mail:2278662336@qq.com);鄧曉怡(1995-),女,廣東廣州人,廣東藥科大學(xué)藥學(xué)院本科生(E-mail:1500718043@qq.com); 魏江存(1989-), 男,廣西賀州人,碩士生,主要從事分析化學(xué)方面研究(E-mail:960837714@qq.com); *闕祖亮(1991-),男,廣西博白人,碩士生,主要從事分析化學(xué)方面研究(E-mail:841316277@qq.com).