劉祾,武曄虹
(山西醫(yī)科大學(xué) 基礎(chǔ)醫(yī)學(xué)院物理教研室,山西 太原 030001)
基于眾多的實(shí)踐經(jīng)驗(yàn),人們歸納出量子力學(xué)的五個基本公設(shè),包括:波函數(shù)公設(shè),算符公設(shè),測量公設(shè),薛定諤方程公設(shè)和全同性原理公設(shè)[1],它們構(gòu)成整個量子力學(xué)體系的邏輯框架,是微觀體系研究的基本出發(fā)點(diǎn)。其中算符公設(shè)和測量公設(shè)要求任一力學(xué)量算符為厄米算符,而這些厄米算符的測量結(jié)果必為實(shí)數(shù)。然而最近的一些研究討論了非厄米量子力學(xué)及其自洽理論[2-9]。特別是一類滿足宇稱和時(shí)間反演組合(PT)對稱性的非厄米系統(tǒng),由于在某些參數(shù)區(qū)域內(nèi)具有完全實(shí)數(shù)的本征能量[3],使得這類系統(tǒng)在諸多領(lǐng)域已經(jīng)成為研究熱點(diǎn)。在實(shí)驗(yàn)上,模擬具有PT對稱性的非厄米格點(diǎn)系統(tǒng)已經(jīng)在光學(xué)系統(tǒng)[10-18]、聲學(xué)系統(tǒng)[19-20]和電子線路系統(tǒng)[21]中實(shí)現(xiàn)。
拓?fù)浣^緣體系統(tǒng)在體能隙中存在導(dǎo)電性的邊界模,并且微擾的無序無法破壞其邊界模,使其具有極為廣闊的應(yīng)用前景。最簡單的拓?fù)浣^緣體系統(tǒng)是Su-Schrieffer-Heeger(SSH) 模型,即一維聚乙炔模型[22],它具有兩周期調(diào)制的躍遷強(qiáng)度。盡管這一模型哈密頓量具有極為簡單的形式,但是它展示了豐富的物理現(xiàn)象,比如拓?fù)涔伦蛹ぐl(fā),分?jǐn)?shù)電荷和非平庸的邊界模等[23-32]。SSH模型最主要的特征是存在兩個拓?fù)洳坏葍r(jià)的相,可以通過在開邊界條件下觀察是否具有二重簡并的邊界模以及貝里相位來區(qū)分。在本文中我們研究當(dāng)SSH模型中引入增益和損耗平衡的化學(xué)勢后系統(tǒng)的拓?fù)湫再|(zhì)。
我們考慮SSH模型,其化學(xué)勢虛部具有PT對稱性的形式,即在每個原胞邊界兩端分別引入平衡的耗散和增益的化學(xué)勢。這個模型哈密頓量可以寫作為:
(1)
(a)λ=0.95;(b)λ=1.0;(c)λ=1.05.Here, Δ=0.5,φ=0 and λPT=1.Fig.1 Real parts (left panel) and imaginary parts(right panel) of energy in momentum space(a)λ=0.95; (b)λ=1.0; (c)λ=1.05。這里Δ=0.5,φ=0和λPT=1圖1 能量在動量空間中的實(shí)部(左列)和虛部(右列)
(2)
首先,我們研究在周期邊界條件下,具有復(fù)耗散和增益勢調(diào)制的SSH模型的性質(zhì)。系統(tǒng)的哈密頓量在動量空間中可以由方程(2)所描述,它是一個兩帶模型,其本征能量為:
(3)
我們定義系統(tǒng)的所有能量都為實(shí)數(shù)時(shí)為PT未破缺區(qū)域,而當(dāng)本征值能量中成對地出現(xiàn)實(shí)部為零且虛部能量對偶時(shí),為PT破缺區(qū)域。它們分屬不同的相區(qū),它們的分隔點(diǎn)稱為PT對稱性破缺點(diǎn),其特點(diǎn)為當(dāng)系統(tǒng)參數(shù)小于此點(diǎn)參數(shù)時(shí),能量無虛部,而大于此點(diǎn)時(shí),系統(tǒng)開始出現(xiàn)成對的虛部,且對稱地分布于零點(diǎn)兩側(cè)。由上式我們可以總結(jié)出PT對稱性破缺點(diǎn)為λPT=2|Δcosφ|,即當(dāng)λ<λPT時(shí),為PT對稱性未破缺區(qū)域,在此區(qū)域中系統(tǒng)的能量都為實(shí)數(shù)(如圖1(a)),然而,當(dāng)λ>λPT時(shí),PT對稱性被破缺。在轉(zhuǎn)變點(diǎn)位置,本征值的實(shí)部的能隙關(guān)閉,并且一對虛能量開始出現(xiàn)。如圖1所示(Δ=0.5,φ=0),隨著λ的增加,能量實(shí)部的能隙逐漸減小。當(dāng)λ處于λPT=1時(shí),兩個能帶的實(shí)部在k=π處能隙關(guān)閉,并且復(fù)能量開始出現(xiàn)(圖 1(b))。當(dāng)λ>λPT時(shí),如圖 1(c)所示,即λ=1.05,部分能量的實(shí)部變?yōu)榱?相應(yīng)的能量虛部在零兩側(cè)對稱出現(xiàn)。
Fig.2 Real parts and imaginary parts of (2)as a function of λ for different φ. (a) Δ=0.5,φ=0; (b) Δ=0.5,φ=π.圖2 對于不同φ以λ為函數(shù)的和的實(shí)部和虛部。(a) Δ=0.5,φ=0;(b) Δ=0.5,φ=π
(4)
(5)
(6)
Fig.3 (a) Real part of the energy spectra under open boundary condition (OBC);(b) imaginary part of the energy spectra under OBC.(c),(e) and (g) show the real parts of the wave function labeled in (a) and (b).And (d), (f) and (h) are the imaginary parts for the corresponding states.(c), (d) show one of edge modes at φ=π marked by circle in (a) and (b).And (e), (f) are the other edge mode marked by rhombus. For both cases,the eigenfunction are located at the left or right boundaries at the lattice.However, the bulk state corresponding to (g), (h) with φ=π andenergy -1.064 6 is marked by triangle. Here,Δ=0.5,λ=0.4.圖3 (a)在開邊界條件下能譜的實(shí)部;(b)在開邊界條件下能譜的虛部。(c),(e)和(g)展示了在(a),(b)中被標(biāo)記出來的波函數(shù)的實(shí)部。(d),(f)和(h)是相應(yīng)能態(tài)的虛部。(c),(d)展示了(a)和(b)中由圓環(huán)標(biāo)記出的在φ=π處的邊界模。(e),(f) 是另外一個由菱形標(biāo)記出的邊界模。這兩種情況,本征波函數(shù)都局域在左或者右邊界。然而對于由三角標(biāo)記的在φ=π且能量為-1.064 6的體態(tài)被展示在(g),(h)中。這里Δ=0.5,λ=0.4
一般來說,在開邊界條件下出現(xiàn)邊界態(tài)是拓?fù)浞瞧接瓜到y(tǒng)的特征。圖3(a),(b) 展示了在開邊界條件下以φ作為函數(shù)的能量的實(shí)部和虛部,取Δ=0.5,λ=0.4。邊界模被發(fā)現(xiàn)處于π/2<φ<3π/2,它類似于λ=0的情況[35]。邊界模的能量的實(shí)部為零,是二重簡并的,而虛部的絕對值總是相等,符號相反。在區(qū)域0<φ<π/2和3π/2<φ<2π并沒有邊界模出現(xiàn),這表明此區(qū)域?yàn)橥負(fù)淦接沟?。在圖3(a)和(b)中標(biāo)記出來的特殊點(diǎn)的波函數(shù)的分布被展示在圖 3(c)-(h)中,例如由圓環(huán)標(biāo)記的在φ=π處的邊界模被展示在圖 3(c)和(d)中,另一個由菱形標(biāo)記的被展示在圖 3(e)和(f)。這兩種情況下,波函數(shù)局域在左或者右邊界。而在φ=π處能量為-1.064 6由三角形標(biāo)記的體態(tài)被展示在圖 3(g)和(h)。
-t1φn,2-t2φn-1,2+iλφn,1=Eφn,1,
-t2φn+1,1-t1φn,1-iλφn.2=Eφn,2,
(7)
由此我們可以獲得轉(zhuǎn)移方程為:
(8)
這里M(E)是一個2×2的轉(zhuǎn)移矩陣,在開邊界條件下,出現(xiàn)邊界模的條件為M21(E)=0并且M11(E)M22(E)=1[36]。我們系統(tǒng)中的轉(zhuǎn)移矩陣可以寫為:
(9)
利用邊界模條件,我們發(fā)現(xiàn)當(dāng)|t1/t2|=|(1+Δcosφ)/(1-Δcosφ)|<1且能量E=iλ時(shí),波函數(shù)φn,2=0并且φn,1=(-t1/t2)n-1φ1,1,表明是局域在左邊界[見圖 3(c)和(d)],然而對于|t1/t2|≥1,邊界模不存在。同樣得到當(dāng)|t1/t2|>1,能量E=-iλ時(shí)邊界模局域在右邊界。
我們研究了具有PT對稱的SSH模型的拓?fù)湫再|(zhì),發(fā)現(xiàn)系統(tǒng)不具有宇稱不變,時(shí)間反演不變卻具有宇稱和時(shí)間反演聯(lián)合的對稱性。盡管系統(tǒng)是非厄米的,但是PT對稱的系統(tǒng)在某些參數(shù)區(qū)域能譜仍然為全實(shí)數(shù)。我們討論了系統(tǒng)能譜的特性,在λ<λPT時(shí),能譜為全實(shí)數(shù),而λ>λPT時(shí),能譜出現(xiàn)虛數(shù)。并且在PT對稱性未破缺區(qū)域,利用類貝里相位作為拓?fù)鋽?shù)來區(qū)分系統(tǒng)的拓?fù)涮匦?。在開邊界條件下,在拓?fù)浞瞧接瓜?系統(tǒng)具有非平庸的邊界模,而平庸相,則邊界模消失。最后我們利用轉(zhuǎn)移矩陣方法討論了系統(tǒng)邊界模的特性。通過研究發(fā)現(xiàn)在PT對稱性未破缺區(qū)域,系統(tǒng)的拓?fù)涮刭|(zhì)和標(biāo)準(zhǔn)的SSH模型相類似。而對于PT對稱性破缺的區(qū)域,其拓?fù)湫再|(zhì)仍然需要繼續(xù)研究。
參考文獻(xiàn):
[1] 張永德.量子力學(xué)(第三版)[M].北京:科學(xué)出版社,2017:16-22.
[2] Lee T,Wick G.Negative Metric and the Unitarity of the S-matrix[J].NuclearPhysicsB,1969,9(2):209-243.DOI:https:∥doi.org/10.1016/0550-3213(69)90098-4.
[3] Bender C M,Boettcher S.Real Spectra in Non-hermitianhamiltonians Having PT Symmetry[J].PhysRevLett,1998,80(24):5243-5246.DOI:https:∥doi.org/10.1103/PhysRevLett.80.5243.
[4] Brower R C,Furman M A,Moshe M.Critical Exponents for the Reggeon Quantum Spin Model[J].PhysicsLettersB,1978,76(2):213-219.DOI:https:∥doi.org/10.1016/0370-2693(78)90279-4.
[5] Denham S,Harms B,Jones S.Complex Energy Spectra in Reggeon Quantum Mechanics with Cubic Plus Generalized Quartic Interactions[J].NuclearPhysicsB,1981,188(1):155-175.DOI:https:∥doi.org/10.1016/0550-3213(81)90110-3.
[6] Andrianov A.The Large N Expansion as a Local Perturbation Theory[J].AnnalsofPhysics,1982,140(1):82-100.DOI:https:∥doi.org/10.1016/0003-4916(82)90336-0.
[7] Hollowood T.Solitons in Affine Toda Field Theories[J].NuclearPhysicsB,1992,384(3):523-540.DOI:https:∥doi.org/10.1016/0550-3213(92)90579-Z.
[8] Scholtz F,Geyer H,Hahne F.Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle[J].AnnalsofPhysics,1992,213(1):74-101.DOI:https:∥doi.org/10.1016/0003-4916(92)90284-S.
[9] Caliceti E,Graffi S,Maioli M.Perturbation Theory of Odd Anharmonic Oscillators[J].CommunicationsinMathematicalPhysics,1980,75(1):51-66.DOI:https:∥doi.org/10.1007/BF01962591.
[10] El-Ganainy R,Makris K G,Christodoulides D N,etal.Theory of Coupled Optical PT-symmetric Structures[J].OptLett,2007,32(17):2632-2634.DOI:https:∥doi.org/10.1364/OL.32.002632.
[11] Klaiman K,Günther U,Moiseyev N.Visualization of Branch Points in PT-symmetric Waveguides[J].PhysRevLett,2008,101(8):080402-4.DOI:https:∥doi.org/10.1103/PhysRevLett.101.080402.
[12] Makris K G,El-Ganainy R,Christodoulides D N,etal.Beam Dynamics in PT symmetric Optical Lattices[J].PhyRevLett,2008,100(10):103904-4.DOI:https:∥doi.org/10.1103/PhysRevLett.100.103904.
[13] Musslimani Z H,Makris K G,El-Ganainy R,etal.Optical Solitons in PT Periodic Potentials[J].PhysRevLett,2008,100(3):030402-4.DOI:https:∥doi.org/10.1103/PhysRevLett.100.030402.
[14] Longhi S.Bloch Oscillations in Complex Crystals with PT Symmetry[J].PhysRevLett,2009,103(12):123601-4.DOI:https:∥doi.org/10.1103/PhysRevLett.103.123601.
[15] Guo A,Salamo G J,DuchesneD,etal.Observation of PT-symmetry Breaking in Complex Optical Potentials[J].PhysRevLett,2009,103(9):093902-4.DOI:https:∥doi.org/10.1103/PhysRevLett.103.093902.
[16] Rüter C E,Makris K G,El-Ganainy R,etal.Observation of Parity-time Symmetry in Optics[J].NatPhys,2010,6:192-195.DOI:10.1038/NPHYS1515.
[17] Szameit A,Rechtsman M C,Bahat-Treidel O,etal.PT-symmetry in Honeycomb Photonic Lattices[J].PhysRevA,2011,84(2):021806-5.DOI:https:∥doi.org/10.1103/PhysRevA.84.021806.
[18] Longhi S.Convective and Absolute PT-symmetry Breaking in Tightbindinglattices[J].PhysRevA,2013,88(5):052102-12.DOI:https:∥doi.org/10.1103/PhysRevA.88.052102.
[19] Fleury R,Sounas D,Alù A.An Invisible Acoustic Sensor based on Parity-time Symmetry[J].NatCommun,2015,6:5905.DOI:10.1038/ncomms6905.
[20] Zhu X,Ramezani H,Shi C,etal.PT-symmetric Acoustics[J].PhysRevX,2014,4(3):031042-7.DOI:https:∥doi.org/10.1103/PhysRevX.4.031042.
[21] Lin Z,Schindler J,Ellis F M,etal.Experimental Observation of the Dual Behavior of PT-symmetric Scattering[J].PhysRevA,2012,85(5):050101(R)-4.DOI:https:∥doi.org/10.1103/PhysRevA.85.050101.
[22] Su W P,Schrieffer J R,Heeger A J.Solitons in Polyacetylene[J].PhysRevLett,1979,42(25):1698-1701.DOI:https:∥doi.org/10.1103/PhysRevLett.42.1698.
[23] Takayama H,Lin-Liu Y R,Maki K.Continuum Model for Solitons in Polyacetylene[J].PhysRevB,1980,21(6):2388-2393.DOI:https:∥doi.org/10.1103/PhysRevB.21.2388.
[24] Su W R,Schrieffer J R,Heeger A J.Soliton Excitations in Polyacetylene[J].PhysRevB,1980,22(4):2099-2111.DOI:https:∥doi.org/10.1103/PhysRevB.22.2099.
[25] Jackiw R,Rebbi C.Solitons with Fermion Number 1/2[J].PhysRevD,1976,13(12):3398-3409.DOI:https:∥doi.org/10.1103/PhysRevD.13.3398.
[26] Heeger A J,Kivelson S,Schrieffer J R,etal.Solitons in Conducting Polymers[J].RevModPhys,1988,60(3):781-850.DOI:https:∥doi.org/10.1103/RevModPhys.60.781.
[27] Ganeshan S,Sun K,Sarma S D.Topological Zero-energy Modes in Gapless Commensurate Aubry-André-Harper Models[J].PhysRevLett,2013,110(18):180403-5.DOI:https:∥doi.org/10.1103/PhysRevLett.110.180403.
[28] Li L,Xu Z,Chen S.Topological Phases of Generalized Su-Schrieffer-Heegermodels[J].PhysRevB,2014,89(8):085111-7.DOI:https:∥doi.org/10.1103/PhysRevB.89.085111.
[29] Ryu S,Hatsugai Y.Topological Origin of Zero-energy Edge States in Particle-hole Symmetric Systems[J].PhysRevLett,2002,89(7):077002-4.DOI:https:∥doi.org/10.1103/PhysRevLett.89.077002.
[30] Goldman N,Budich J C,Zoller P.Topological Quantum Matter with Ultracold Gases in Optical Lattices[J].NatPhys,2016,12:350-354.DOI:10.1038/nphys3803.
[31] Nakajima S,Tomita T,Taie S,etal.Topological Thouless Pumping of Ultracold Fermions[J].NatPhys,2016,12:296-300.DOI:10.1038/nphys3622.
[32] Meier E J,An F A,Gadway B.Observation of the Topological Soliton State in the Su—Schrieffer—Heegermodel[J].NatComm,2016,7:13986-6.DOI:10.1038/ncomms13986.
[33] Bender C M,Brody D C,Jones H F.Complex Extension of Quantum Mechanics[J].PhysRevLett,2002,89(27):270401-4.DOI:https:∥doi.org/10.1103/PhysRevLett.89.270401.
[34] Zhang X Z,Song Z.Geometric Phase and Phase Diagram for a Non-Hermitian Quantum XY Nodel[J].PhysRevA,2013,88(4):042108-5.DOI:https:∥doi.org/10.1103/PhysRevA.88.042108.
[35] Zhu B,Lü R,Chen S.PT Symmetry in the Non-Hermitian Su-Schrieffer-Heeger Model with Complex Boundary Potentials[J].PhysRevA,2014,89(6):062102-6.DOI:https:∥doi.org/10.1103/PhysRevA.89.062102.
[36] Bernevig B A,Hughes T L.Topological Insulators and Topological Superconductors[M].Princeton:Princeton University Press,2013.