姜秀穎,王思敏,周 晴,翁 靜,馬 偉
(首都醫(yī)科大學 基礎(chǔ)醫(yī)學院 組織學與胚胎學教研室, 北京 100069)
胚胎的非整倍體性(aneuploidy)是臨床不育、自發(fā)性流產(chǎn)和先天性出生缺陷的最常見原因,這種染色體組成異常主要由母親卵母細胞減數(shù)分裂進程中染色體分離錯誤所導致[1- 2]。染色體的運動和分離由紡錘體牽引,紡錘體結(jié)構(gòu)的異常會影響染色體分離的精確性。在哺乳動物卵子發(fā)生早期,中心粒退化,缺乏中心體結(jié)構(gòu),減數(shù)分裂紡錘體的形成依賴于無中心粒的微管組織中心(microtubule organizing centers, MTOC)[3- 4]。MTOC結(jié)構(gòu)由核心蛋白和調(diào)節(jié)蛋白組成,前者包括結(jié)構(gòu)成分pericentrin和微管成核因子γ-tubulin;調(diào)節(jié)蛋白則主要指一些蛋白激酶,如Aurora-A激酶等,促進MTOC的結(jié)構(gòu)和功能完全成熟[5- 7]。
LIM kinase 1 (LIMK1)是一種絲氨酸(Ser)/蘇氨酸(Thr)蛋白激酶,其活化依賴于Thr508殘基的磷酸化,活化的LIMK1通過調(diào)控F-actin的聚合而參與細胞運動、胞質(zhì)分裂和囊泡運輸?shù)壬磉^程[8];同時也參與維持微管的穩(wěn)定性,促進星狀微管的形成和紡錘體的準確定位[9]。關(guān)于LIMK1在卵母細胞減數(shù)分裂過程中表達模式及其與MTOC蛋白之間的關(guān)系仍無研究報道。
清潔級21日齡CB6F1雌性小鼠(雄性C57BL6與雌性BALB/C的雜交一代)[北京維通利華實驗動物技術(shù)有限公司,許可證編號SCXK(京)2012- 0001];兔抗pLIMK1Thr508抗體(Millipore公司);小鼠抗acetylated-tubulin抗體、小鼠抗Aurora-A抗體和牛血清白蛋白(bovine serum albumin, BSA)(Sigma-Aldrich公司);小鼠抗pericentrin抗體(BD Biosci-ences公司);LIMKI抑制劑BMS- 3(Synkinase公司);孕馬血清促性腺激素(pregnant mare serum gonadotropin,PMSG)(寧波第二激素廠);胎牛血清(fetal bovine serum, FBS)(Gibco公司);防熒光淬滅封片劑(mounting medium with DAPI)(Vector Lab公司)。
1.2.1 卵母細胞的收集和培養(yǎng):給CB6F1代雌性小鼠腹腔注射10 IU PMSG,44~48 h后使用CO2窒息法對小鼠實行安樂死,隨后收集卵丘-卵母細胞復合體(cumulus cell-oocyte complexes, COC)進行培養(yǎng)?;A(chǔ)培養(yǎng)液為Minimum Essential Medium(MEM),培養(yǎng)過程中添加10% FBS和3 mg/mL BSA。體外培養(yǎng)0、2、8、10和16 h,分別對應減數(shù)分裂前期(即生發(fā)泡期,germinal vesicle,GV)、生發(fā)泡破裂期(germinal vesicle breakdown, GVBD)、第1次減數(shù)分裂中期(metaphase Ⅰ, MⅠ)、第1次減數(shù)分裂后期(anaphase Ⅰ, AⅠ)和末期(telphase Ⅰ, Tel Ⅰ)以及第2次減數(shù)分裂中期(metaphase Ⅱ, MⅡ)。
1.2.2 免疫熒光染色(immunofluorecent staining):室溫條件下,將脫去卵丘的卵母細胞在1%多聚甲醛(paraformaldehyde,PFA)/0.5% Triton X- 100中固定45 min,漂洗后在10%山羊血清中封閉1 h,隨后在一抗溶液中孵育,4 ℃、過夜。細胞漂洗后繼續(xù)在Alexa Flour- 488或Alexa Flour- 594標記的相應二抗溶液中避光孵育45 min,充分漂洗后移至干凈的載玻片上并以含有DAPI的防淬滅封片劑封片。樣品用Olympus熒光顯微鏡進行觀察并分析減數(shù)分裂中pLIMK1Thr508和Aurora-A的時空分布相關(guān)性。試驗中抗體主要包括:兔抗pLIMK1Thr508(1∶1 000),小鼠抗acetylated-tubulin(1∶10 000)和小鼠抗Aurora-A(1∶3 000)。
1.2.3 BMS- 3處理:1 mmol/L BMS- 3儲存在二甲基亞砜(DMSO, Sigma-Aldrich公司)中,并在培養(yǎng)基(MEM/BSA/10% FBS)中稀釋至實驗濃度0.001 mmol/L。正常培養(yǎng)至MⅠ期的卵母細胞在0.001 mmol/L BMS- 3中處理1 h后固定染色,觀察pLIMK1Thr508和Aurora-A的空間分布以及紡錘體結(jié)構(gòu)的變化。
免疫熒光染色分析表明在減數(shù)分裂前期,卵母細胞內(nèi)Aurora-A沒有任何特殊聚集(圖1B),此時pLIMK1Thr508的熒光信號亦比較弱,主要分布在生發(fā)泡中(圖1C: 箭)。在臨近減數(shù)分裂重啟時,pLIMK1Thr508離開生發(fā)泡并以一致密點狀聚集在胞質(zhì)中,Aurora-A信號出現(xiàn)并與pLIMK1Thr508高度重合(圖1F, G: 箭)。在生發(fā)泡完全破裂后,染色質(zhì)凝集成為單個的棒狀染色體(圖1I),pLIMK1Thr508和Aurora-A由單一點狀裂解為多個片狀信號并圍繞在染色體周圍,在此過程中兩種信號保持重合(圖1J, K, L:箭)。在第1次減數(shù)分裂中期(metaphase I, MI),所有的染色體整齊排列在赤道板中央(圖1M),pLIMK1Thr508和Aurora-A同時高度聚集,呈“C”形或“O”形特異地定位于染色體陣列的兩側(cè),即推測中紡錘體的兩極部位(圖1N, O, P:箭),兩者在胞質(zhì)中也有散在點狀分布(圖1N, O, P:箭頭)。在第1次減數(shù)分裂后期(anaphase I, AI)到末期(telphase I, TelI)過程中,隨著同源染色體相互分離(圖1Q),pLIMK1Thr508離開紡錘體區(qū)域,聚集在收縮環(huán)部位(圖1S:箭),提示pLIMK1Thr508可能與胞質(zhì)分裂的完成相關(guān);Aurora-A信號變?nèi)酰瑥浬⒌胤植荚谖⒐芩诓课?圖1R:箭)。在卵母細胞成熟至第2次減數(shù)分裂中期(metaphase II, MII)時,第一極體(first polar body, 1st PBD)被排出(圖1U:箭),在其附近的皮質(zhì)區(qū)染色體重新排列整齊(圖1U),此時pLIMK1Thr508和Aurora-A又同時聚集在染色體陣列兩側(cè),即紡錘體兩極部位(圖1V,W,X:箭),在胞質(zhì)中也有致密的點狀分布(圖1V,W,X:箭頭)。pLIMK1Thr508和Aurora-A在紡錘體兩極部位的共定位模式提示LIMK1可能通過調(diào)控Aurora-A的定位和表達而參與紡錘體組裝過程,而pLIMK1Thr508在收縮環(huán)部位的聚集也提示LIMK1活性可能還與胞質(zhì)分裂密切相關(guān)。
正常培養(yǎng)至MI期的卵母細胞在用1 μmol/L BMS- 3處理1 h后,pLIMK1Thr508和Aurora-A的空間分布發(fā)生了明顯改變,失去了對稱的雙極定位格局,以類似于前中期的模式圍繞在染色體周圍(圖2A. f, g:箭),此時,染色體非線性排列而是凌亂地聚集在一起(圖2A. e; B. e),微管并沒有組織形成雙極對稱的紡錘體結(jié)構(gòu),而是成球狀圍繞在染色體組周圍(圖2B. f:方框)。統(tǒng)計分析證實,在BMS- 3處理組內(nèi)表現(xiàn)出pLIMK1Thr508和Aurora-A非雙極定位的細胞數(shù)目顯著高于對照組(P<0.01)(圖2C, D),而具有非雙極對稱紡錘體的細胞數(shù)目亦在BMS- 3組顯著高于對照組(P<0.01)(圖2E)。上述數(shù)據(jù)說明LIMK1活性通過調(diào)控Aurora-A的空間分布而影響MTOC結(jié)構(gòu)形成和紡錘體組裝。
Aurora-A激酶參與調(diào)節(jié)體細胞有絲分裂進程中中心體的復制和分離、染色體的中板聚合以及雙極紡錘體的形成等多個事件[5],并在卵母細胞內(nèi)參與MTOC功能和雙極紡錘體形成的調(diào)控,是一種MTOC調(diào)節(jié)蛋白,其活性異常或表達缺失會影響MTOC形成和紡錘體組裝過程[6- 7]。在有絲分裂過程中LIMK1活性能夠促進Aurora-A在Ser288位點磷酸化,使其全面活化[10],說明LIMK1與Aurora-A的功能相關(guān)。本項研究進一步發(fā)現(xiàn)pLIMK1Thr508與Aurora-A在小鼠卵母細胞減數(shù)分裂過程中共同定位于紡錘體兩極,抑制LIMK1活性會導致Aurora-A定位和紡錘體結(jié)構(gòu)異常,提示LIMK1活性可能通過調(diào)控Aurora-A的活化和極性定位而參與紡錘體的組裝和維持。在卵母細胞減數(shù)分裂末期,胞質(zhì)分裂的完成依賴于收縮環(huán)的有效活動,而收縮環(huán)結(jié)構(gòu)的形成依賴于絲狀肌動蛋白(filament actin, F-actin)聚合和解聚的動態(tài)平衡[11- 12],以往研究證實LIMK1能夠磷酸化微絲切割蛋白cofilin,抑制其解聚F-actin的活性,誘導F-actin聚合[13- 14]。本項研究發(fā)現(xiàn)pLIMK1Thr508高度聚集在收縮環(huán)部位,提示卵母細胞內(nèi)LIMK1-cofilin通路可能通過調(diào)節(jié)收縮環(huán)的功能而促進胞質(zhì)分裂過程的有序完成??傊?,本項研究初步證實卵母細胞內(nèi)pLIMK1Thr508是一種MTOC相關(guān)蛋白,LIMK1活性可能通過參與MTOC形成和胞質(zhì)分裂等環(huán)節(jié)而調(diào)控減數(shù)分裂進程,研究結(jié)果為進一步揭示卵母細胞內(nèi)染色體分離的調(diào)控機制和認識非整倍體胚胎的形成提供了依據(jù)。
DNA was labeled in blue,whereas pLIMK1Thr508in red, Aurora-A in green; pLIMK1Thr508concentrated in the germinal vesicle (C, arrow)with no signal of Aurora-A(B) at GV stage; upon GVBD, pLIMK1Thr508aggregated as a single dense dot in the vicinity of nuclear, and co-localized with Aurora-A(G,F,arrow); at G,V,B,D, pLIMK1Thr508and Aurora-A (J,K,arrow)concentrated as multi foci around the chromosomes; at MI and MII, pLIMK1Thr508(O,W, arrow) was co-localized with Aurora-A(N,V, arrow) on spindle poles, pLIMK1Thr508(O,W, arrowhead) which scattered as dots in cytoplasm was co-localized with Aurora-A(N,V, arrowhead); during Tel I, pLIMK1Thr508(S, arrow) concentrated on the cleavage furrow, while Aurora-A (R) loosely congressed on spindle
圖1pLIMK1Thr508和Aurora-A在卵母細胞減數(shù)分裂中的亞細胞定位模式
Fig1Sub-cellularlocalizationofpLIMK1Thr508andAurora-Ainoocytemeiosis(×400)
DNA was labeled in blue,whereas pLIMK1Thr508in red, Aurora-A and acetylated tubulin in green; A.abnormal pLIMK1Thr508(g) and abnormal Aurora-A (f) in oocytes cultured with BMS-3 for 8 hours(×400); B.in BMS-3-treated oocytes, microtubules were not organised into a bipolar structure (f) and pLIMK1Thr508(g) were not recruited to spindle poles, the number of oocytes with (×400); C.non-polar location of pLIMK1Thr508; D.non-polar location of Aurora-A; E.disrupted spindle; was significantly higher in BMS-3 treatment group;*P<0.01 compared with DMSO group
圖2小鼠卵母細胞中抑制LIMK1活性破壞Aurora-A的空間分布和紡錘體形成
參考文獻:
[1] Fragouli E, Alfarawati S, Goodall NN,etal. The cytogenetics of polar bodies: insights into female meiosis and the diagnosis of aneuploidy [J]. Mol Hum Reprod, 2011, 17:286- 295.
[2] Dai X, Zhang M, Lu Y,etal.Cullin9 protects mouse eggs from aneuploidy by controlling microtubule dynamics via Survivin [J]. Biochim Biophys Acta, 2016, 1863:2934- 2941.
[3] Balboula AZ, Nguyen AL, Gentilello AS,etal. Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes [J]. J Cell Sci, 2016, 129:3648- 3660.
[4] Clift D, Schuh M. A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes [J]. Nat Commun, 2015, 6:7217- 7229.
[5] Barr AR, Gergely F. Aurora-A: the maker and breaker of spindle poles [J]. J Cell Sci, 2007, 120:2987- 2996.
[6] Saskova A, Solc P. Aurora kinase A controls meiosis I progression in mouse oocytes [J]. Cell Cycle, 2008, 7: 2368- 2376.
[7] Solc P, Baran V, Mayer A,etal. Aurora kinase A drives MTOC biogenesis but does not trigger resumption of meiosis in mouse oocytes matured in vivo [J]. Biol Reprod, 2012, 87:85: 1- 12.doi:10.1095/biolreprod.112.101014.
[8] Bernard O. Lim kinases, regulators of actin dynamics [J]. Int J Biochem Cell B, 2007, 39: 1071- 1076.
[9] Kaji N, Muramoto A, Mizuno K. LIM kinase-mediated cofilin phosphorylation during mitosis is required for precise Spindle positioning [J]. J Biol Chem, 2008, 283:4983- 4992.
[10] Ritchey L,Ottman R, Roumanos M,etal. A functional cooperativity between Aurora A kinase and LIM kinase1 [J]. Cell Cycle, 2012, 11: 296- 309.
[11] Azoury J, Verlhac MH, Dumont J. Actin filaments: key players in the control of asymmetric divisions in mouse oocytes [J]. Biol Cell, 2009, 101:69- 76.
[12] Mierzwa B, Gerlich DW. Cytokinetic abscission: mole-cular mechanisms and temporal control [J]. Dev Cell, 2014, 31:525- 538.
[13] Delorme V, Machacek M, DerMardirossian C,etal. Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks [J]. Dev Cell, 2007, 13:646- 662.
[14] Zhou Y, Su J, Shi L, Liao Q,etal. DADS downregulates the Rac1-ROCK1/PAK1-LIMK1-ADF/cofilin signaling pathway, inhibiting cell migration and invasion [J]. Oncol Rep, 2013, 29:605- 612.