張娜 謝俊霞 徐華敏
[摘要]?目的?探討外源性鐵蛋白(Ferritin)對1-甲基-4-苯基吡啶陽離子(MPP+)誘導(dǎo)的MES23.5細胞損傷的作用。
方法用四甲基偶氮唑鹽(MTT)比色法篩選MPP+最適造模濃度;分別應(yīng)用MPP+、Ferritin、Ferritin+MPP+處理MES23.5多巴胺能神經(jīng)細胞,然后應(yīng)用CCK8試劑盒檢測細胞存活率,流式細胞術(shù)檢測細胞線粒體跨膜電位(△Ψm)。
結(jié)果MPP+處理MES23.5細胞后,細胞存活率和△Ψm均下降,與對照組相比差異具有統(tǒng)計學(xué)意義(F=143.044、70.924,P<0.01)。Ferritin預(yù)處理4 h可明顯抑制MPP+導(dǎo)致的細胞存活率和△Ψm的下降(F=51.905、35.218,P<0.01)。
結(jié)論Ferritin對MPP+誘導(dǎo)的MES23.5細胞損傷具有保護作用,能夠拮抗MPP+誘導(dǎo)的細胞存活率和△Ψm的下降。
[關(guān)鍵詞]?鐵蛋白質(zhì)類;帕金森病;1-甲基-4-苯基吡啶;神經(jīng)保護
[中圖分類號]?R338;R977.6
[文獻標(biāo)志碼]?A
[文章編號]??2096-5532(2019)01-0028-04
EFFECT OF FERRITIN ON MES23.5 CELL DAMAGE INDUCED BY 1-METHYL-4-PHENYLPYRIDINIUM
ZHANG Na, XIE Junxia, XU Huamin
(Department of Physiology and Pathophysiology, Medical College of Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effect of exogenous ferritin on MES23.5 cell damage induced by 1-methyl-4-phenylpyridinium (MPP+).
MethodsMethyl thiazolyl tetrazolium colorimetry was used to screen out the optimal concentration of MPP+ for modeling. MES23.5 dopaminergic neural cells were treated with MPP+, ferritin, or ferritin+MPP+. CCK8 assay was used to measure cell viability, and flow cytometry was used to measure mitochondrial transmembrane potential (ΔΨm).
Results
Compared with the control group, the MPP+ treatment group had significant reductions in cell viability and ΔΨm of MES23.5 cells (F=143.044 and 70.924,P<0.01). Ferritin pretreatment for 4 hours significantly inhibited the reductions in cell viability and ΔΨm induced by MPP+ (F=51.905 and 35.218,P<0.01).
ConclusionFerritin exerts a protective effect against MPP+-induced damage in MES23.5 cells and can antagonize the reductions in cell viability and ΔΨm induced by MPP+.
[KEY WORDS]ferritins; Parkinson disease; 1-Methyl-4-phenylpyridinium; neuroprotection
帕金森?。≒D)是一種常見的神經(jīng)退行性疾病,臨床表現(xiàn)主要有靜止性震顫、肌僵直、運動遲緩和姿勢反射障礙等,其病理特征主要為中腦黑質(zhì)(SN)致密帶多巴胺(DA)能神經(jīng)元死亡[1]。雖然PD的病因尚未完全明確,但越來越多的證據(jù)表明SN鐵沉積是PD發(fā)病的關(guān)鍵因素之一[2-4]。鐵蛋白(Ferritin)是一種中空的對稱蛋白質(zhì),由24個亞基組成,分子量約48萬,其空芯中可儲存多達4 500個鐵原子[5-7]。有研究結(jié)果證實,PD病人SN中Ferritin水平下降,并且Ferritin的負荷量高于正常[8-9]。本實驗旨在探討外源性Ferritin對1-甲基-4-苯基吡啶陽離子(MPP+)誘導(dǎo)的MES23.5細胞損傷的作用,從而為PD診斷和干預(yù)提供可靠的實驗依據(jù)?,F(xiàn)將結(jié)果報告如下。
1?材料與方法
1.1?材料
MES23.5細胞(由大鼠的中腦神經(jīng)元和小鼠的神經(jīng)母細胞瘤細胞雜交而成的融合細胞系)由樂衛(wèi)東教授惠贈。DMEM/F12培養(yǎng)液、胎牛血清購自美國Gibco公司,多聚賴氨酸、羅丹明123(Rh123)、Ferritin、四甲基偶氮唑鹽(MTT)均購自美國Sigma公司,青霉素-鏈霉素溶液(100×)購自江蘇海門碧云天生物技術(shù)研究所,CCK8試劑盒購自北京索萊寶科技有限公司。
1.2MES23.5細胞培養(yǎng)
在細胞培養(yǎng)之前,先應(yīng)用100 mg/L的多聚賴氨酸處理細胞培養(yǎng)瓶,再用無菌三蒸水洗3次。將MES23.5細胞從液氮中復(fù)蘇后用培養(yǎng)液懸浮,接種于預(yù)先鋪有多聚賴氨酸的培養(yǎng)瓶中,置于37 ℃、含體積分數(shù)0.05 CO2的培養(yǎng)箱中。之后用加入血清的培養(yǎng)液每2~3 d傳代1次。
1.3?MTT法篩選MPP+濃度
將MES23.5細胞以8×107/L的密度接種于96孔板,每孔100 μL,培養(yǎng)48 h后,棄上清,再分別加入終濃度為0、50、100、150、200、300 μmol/L的MPP+處理24 h。細胞處理結(jié)束后,每孔加入5 g/L的MTT 20 μL,培養(yǎng)4 h后取出培養(yǎng)板,棄上清,每孔加入100 μL的DMSO,震蕩5 min。用酶標(biāo)儀在波長570 nm處測各孔吸光度(A)值。
1.4?實驗分組
在確定MPP+造模濃度的基礎(chǔ)上,后續(xù)實驗分為4組:對照組、MPP+處理組、Ferritin處理組、Ferritin+MPP+處理組。將MES23.5細胞以1×108/L的密度種植于12孔板中,每孔1 mL。第3天分組處理細胞,對照組和MPP+處理組換用無血清培養(yǎng)液,F(xiàn)erritin處理組和Ferritin+MPP+處理組加入80 mg/L Ferritin,孵育4 h后,MPP+處理組和Ferritin+MPP+處理組再加入MPP+,繼續(xù)孵育24 h,置于37 ℃、含體積分數(shù)0.05 CO2的培養(yǎng)箱中培養(yǎng)。
1.5CCK8實驗
細胞處理結(jié)束后,棄去上清,每孔加入CCK8溶液100 μL,將培養(yǎng)板放在培養(yǎng)箱中孵育1 h,用酶標(biāo)儀測定各孔在波長450 nm處的A值。按照公式(A加藥-A空白)/(A0加藥-A空白)計算細胞存活率,A加藥為有細胞、CCK8溶液和藥物孔的A值,A空白為有培養(yǎng)液和CCK8溶液而沒有細胞孔的A值,A0加藥為有細胞、CCK8溶液而沒有藥物孔的A值。
1.6?細胞線粒體跨膜電位(△Ψm)的檢測
細胞處理后棄上清,每孔加5 mg/L的Rh123溶液1 mL,37 ℃避光負載30 min,以0.01 mol/L的HBS洗2次后,每孔加入新的HBS 1 mL,吹打成單細胞懸液,用300目鋼絲網(wǎng)過濾。將樣品加入流式細胞儀的樣品管中,以激發(fā)波長488 nm、發(fā)射波長523 nm進行測定。FCS/SSC設(shè)門,收集門內(nèi)10 000個細胞,用CELLQuest Pro分析系統(tǒng)分析每組細胞的熒光強度。
1.7?統(tǒng)計學(xué)處理
采用SPSS 23.0軟件進行統(tǒng)計學(xué)分析。所得計量數(shù)據(jù)以[AKx-D]±s表示,單因素影響組間比較采用單因素方差分析;多因素影響的比較采用析因設(shè)計的方差分析,若存在交互作用則進行簡單效應(yīng)分析,若無交互作用則報告主效應(yīng)結(jié)果。以P<0.05為差異有顯著性。
2?結(jié)??果
2.1不同濃度的MPP+對MES23.5細胞存活率的影響
不同濃度MPP+作用MES23.5細胞24 h后,0、50、100、150、200、300 μmol/L MPP+處理組的細胞存活率分別為1.00±0.11、0.75±0.07、0.68±0.73、0.63±0.82、0.58±0.10、0.55±0.06(n=5)。50、100、150、200、300 μmol/L MPP+處理組與未用MPP+處理組相比,細胞存活率均有不同程度的降低(F=31.15,P<0.01),且呈濃度依賴性。若細胞存活率過高則損傷不夠,細胞存活率過低則造成細胞不可逆死亡,最終選用100 μmol/L作為MPP+最適造模濃度進行后續(xù)實驗。
2.2Ferritin對MPP+誘導(dǎo)的MES23.5細胞存活率下降的影響
對照組、MPP+處理組、Ferritin處理組、Ferritin+MPP+處理組的細胞存活率分別為1.00±0.04、0.70±0.05、1.02±0.03、0.89±0.04(n=6)。析因設(shè)計方差分析顯示,MPP+和Ferritin兩種因素存在交互作用(F=13.792,P<0.01),進而進行簡單效應(yīng)分析。100 μmol/L MPP+處理MES23.5細胞24 h后,MPP+處理組細胞存活率較對照組有明顯下降,差異具有統(tǒng)計學(xué)意義(F=143.044,P<0.01);Ferritin處理組與對照組相比,細胞存活率差異無顯著性(F=2.851,P>0.05);與MPP+處理組相比,F(xiàn)erritin+MPP+處理組MPP+誘導(dǎo)的細胞存活率下降受到明顯抑制,差異具有統(tǒng)計學(xué)意義(F=51.905,P<0.01)。
2.3Ferritin對MPP+誘導(dǎo)的MES23.5細胞△Ψm下降的影響
對照組、MPP+處理組、Ferritin處理組、Ferritin+MPP+處理組細胞△Ψm分別為100.00±5.49、72.56±8.34、97.52±7.21、90.36±8.78(n=6)。析因設(shè)計方差分析顯示,MPP+和Ferritin兩種因素存在交互作用(F=26.336,P<0.01),進而進行簡單效應(yīng)分析。應(yīng)用100 μmol/L MPP+處理MES23.5細胞24 h后,MPP+處理組細胞△Ψm較對照組有明顯的下降,差異具有統(tǒng)計學(xué)意義(F=70.924,P<0.01);Ferritin處理組與對照組相比較,△Ψm差異無顯著意義(F=1.325,P>0.05);與MPP+處理組相比,F(xiàn)erritin+MPP+處理組MPP+誘導(dǎo)的細胞△Ψm下降受到明顯抑制,差異具有統(tǒng)計學(xué)意義(F=35.218,P<0.01)。
3?討??論
PD是一種常見的中樞神經(jīng)系統(tǒng)退行性疾病,但其確切的病因及發(fā)病機制尚未完全闡明。研究表明,年齡老化、環(huán)境因素、遺傳因素、氧化應(yīng)激、炎癥反應(yīng)等均可能參與了DA能神經(jīng)元的變性死亡過程[2,10-14]。大量研究證實,PD病人SN鐵異常沉積,腦內(nèi)鐵代謝紊亂,鐵沉積通過Fenton反應(yīng)催化產(chǎn)生具有高細胞毒性的羥自由基[15-17],誘發(fā)DA能神經(jīng)元變性壞死,導(dǎo)致PD發(fā)病[18-21]。DEXTER等用熱油提取和離心法從PD病人腦組織中提取蛋白,發(fā)現(xiàn)在PD病人的SN和全腦中Ferritin水平都下降,并且PD病人SN中Ferritin的負荷量超過正常[8]。鐵含量增加而Ferritin表達未出現(xiàn)上調(diào)使SN區(qū)DA能神經(jīng)元更容易受到氧化應(yīng)激損傷[9,22]。
在腦內(nèi),鐵主要與Ferritin結(jié)合[23]。Ferritin由重鏈(FTH)和輕鏈(FTL)組成,其空腔可以儲存多達4 500個鐵原子[5,24]。FTH含有鐵氧化酶,負責(zé)將可溶性亞鐵轉(zhuǎn)化成可儲存的三價鐵,有助于鐵在Ferritin中的積累[25-26]。FTL不含有這些酸性氨基酸,但存在成核位點,其主要功能是促進鐵的礦化和核的形成[27]。在Ferritin儲存鐵的初期,F(xiàn)e2+在FTH的鐵氧化酶中心被氧化成Fe3+,并形成含鐵-磷的二聚體水合物,然后該二聚體在成核位點被水解,最終形成鐵核[28]。
MPP+作用于DA能神經(jīng)元或細胞系被認為是經(jīng)典的PD細胞模型之一,MPP+可與線粒體復(fù)合物Ⅰ結(jié)合,阻礙呼吸鏈電子傳遞,導(dǎo)致線粒體功能障礙,引起ATP的耗竭,誘導(dǎo)氧化應(yīng)激[29]。在氧化應(yīng)激的刺激下,F(xiàn)e2+從溶酶體或內(nèi)吞體釋放,通過線粒體的鈣單向轉(zhuǎn)運體進入線粒體,或者通過內(nèi)吞體/溶酶體直接到線粒體的鐵轉(zhuǎn)運機制進入線粒體,加重線粒體的氧化應(yīng)激損傷。本實驗中用MPP+處理MES23.5細胞后,細胞存活率和△Ψm均下降,提示線粒體功能受損。而Ferritin預(yù)處理可明顯抑制MPP+誘導(dǎo)的細胞存活率和△Ψm的下降,在一定程度上能保護細胞免受氧化應(yīng)激的損傷,從而保護DA能神經(jīng)元。本實驗為PD的治療提供了新的靶點和思路。
[參考文獻]
[1]NASSIF D V, PEREIRA J S. Fatigue in Parkinsons disease:concepts and clinical approach[J]. ?Psychogeriatrics, 2018,18(2):143-150.
[2]COOKSON M R. The biochemistry of Parkinsons disease[J]. ?Annual Review of Biochemistry, 2005,74:29-52.
[3]DE FARIAS C C, MAES M, BONIFACIO K L, et al. ?Parkinsons disease is accompanied by intertwined alterations in iron metabolism and activated immune-inflammatory and oxidative stress pathways[J]. ?CNS & Neurological Disorders-Drug Targets, 2017,16(4):484-491.
[4]JIANG H, WANG J, ROGERS J, et al. ?Brain iron metabolism dysfunction in Parkinsons disease[J]. ?Molecular Neurobiology, 2017,54(4):3078-3101.
[5]KOORTS A M, VILJOEN M. Ferritin and ferritin isoforms Ⅰ:structure-function relationships,synthesis,degradation and secretion[J]. ?Arch Physiol Biochem, 2007,113(1):30-54.
[6]THEIL E C, BEHERA R K, TOSHA T. Ferritins for che-mistry and for life[J]. ?Coordination Chemistry Reviews, 2013,257(2,SI):579-586.
[7]THEIL E C. Ferritin:the protein nanocage and iron biomineral in health and in disease[J]. ?Inorganic Chemistry, 2013,52(21):12223-12233.
[8]FAUCHEUX B A, MARTIN M E, BEAUMONT C, et al. ?Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinsons disease[J]. ?Journal of Neurochemistry, 2003,86(5):1142-1148.
[9]FAUCHEUX B A, MARTIN M E, BEAUMONT C, et al. ?Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinsons disease[J]. ?Journal of Neurochemistry, 2002,83(2):320-330.
[10]REEVE A, SIMCOX E, TURNBULL D. Ageing and Parkinsons disease:why is advancing age the biggest risk factor[J]? ?Ageing Research Reviews, 2014,14(100):19-30.
[11]DAUER W, PRZEDBORSKI S. Parkinsons disease:mechanisms and models[J]. ?Neuron, 2003,39(6):889-909.
[12]SHULMAN J M, DE JAGER P L, FEANY M B. Parkin-sons disease:genetics and pathogenesis[J]. ?Annu Rev Pathol, 2011,6:193-222.
[13]BRAAK H, DEL TREDICI K, RB U, et al. ?Staging of brain pathology related to sporadic Parkinsons disease[J]. ?Neuro-biology of Aging, 2002,24(2):197-211.
[14]SULZER D. Multiple hit hypotheses for dopamine neuron loss in Parkinsons disease[J]. ?Trends in Neurosciences, 2007,30(5):244-250.
[15]WYPIJEWSKA A, GALAZKA-FRIEDMAN J, BAUMIN-GER E R, et al. ?Iron and reactive oxygen species activity in Parkinsonian substantia nigra[J]. ?Parkinsonism & Related Disorders, 2010,16(5):329-333.
[16]GOZZELINO R, AROSIO P. Iron homeostasis in health and disease[J]. ?International Journal of Molecular Sciences, 2016,17(1):130.
[17]SUN Y, PHAM A, WAITE T D. The effect of vitamin C and iron on dopamine-mediated free radical generation: implications to Parkinsons disease[J]. ?Dalton Transactions, 2018,47(12):4059-4069.
[18]HARE D J, ARORA M, JENKINS N L, et al. ?Is early-life iron exposure critical in neurodegeneration[J]? ?Nature Reviews Neurology, 2015,11(9):536-544.
[19]BENARROCH E E. Brain iron homeostasis and neurodegene-rative disease[J]. ?Neurology, 2009,72(16):1436-1440.
[20]LOGROSCINO G, GAO X, CHEN H L, et al. ?Dietary iron intake and risk of Parkinsons disease[J]. ?Am J Epidemiol, 2008,168(12):1381-1388.
[21]ZECCA L, STROPPOLO A, GATTI A, et al. ?The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging[J]. ?Proceedings of the National Academy of Sciences of the United States of America, 2004,101(26):9843-9848.
[22]QUINTANA C, GUTIERREZ L. Could a dysfunction of ferritin be a determinant factor in the aetiology of some neurodegenerative diseases[J]? ??Biochimica et Biophysica Acta-Ge-neral Subjects, 2010,1800(8,SI):770-782.
[23]AROSIO P, INGRASSIA R, CAVADINI P. Ferritins: a fa-mily of molecules for iron storage, antioxidation and more[J]. ?Biochimica et Biophysica Acta, 2009,1790(7):589-599.
[24]LINDER M C. Mobilization of stored iron in mammals: a review[J]. ?Nutrients, 2013,5(10):4022-4050.
[25]SAKAMOTO S, KAWABATA H, MASUDA T, et al.
H-ferritin is preferentially incorporated by human erythroid cells through transferrin receptor 1 in a threshold-dependent manner[J]. ?PLoS One, 2015,10(10):e0139915.
[26]LI L, FANG C J, RYAN J C, et al. ?Binding and uptake of H-ferritin are mediated by human transferrin receptor-1[J]. ?Proceedings of the National Academy of Sciences of the United States of America, 2010,107(8):3505-3510.
[27]KOORTS A M, VILJOEN M. Ferritin and ferritin isoforms Ⅱ: protection against uncontrolled cellular proliferation,oxidative damage and inflammatory processes[J]. ?Archives of Physiology and Biochemistry, 2007,113(2):55-64.
[28]TESFAY L, HUHN A J, HATCHER H, et al. ?Ferritin blocks inhibitory effects of two-chain high molecular weight kininogen (HKa) on adhesion and survival signaling in endothelial cells[J]. ?PLoS One, 2012,7(7):e40030.
[29]KOTAKE Y, OHTA S. MPP plus analogs acting on mitochondria and inducing neuro-degeneration[J]. ?Current Medicinal Chemistry, 2003,10(23):2507-2516.