湯易 金藝鳳
[摘要]我國國民吸煙率長期處于較高水平且隨著電子煙在青年人群中的流行,由于肺鱗狀細胞癌(SQCC)與吸煙關系密切,吸煙是肺SQCC最重要的危險因素之一,故而在我國肺癌人群中肺SQCC將占據(jù)著舉足輕重的地位。本文通過分析近年來PubMed及Wiley等數(shù)據(jù)庫關于肺上皮細胞鱗狀化生及癌變的相關異常表達的基因及分子信號通路研究,闡述了多條與肺SQCC發(fā)生相關的分子通路機制,梳理了近年來新且較為有價值的肺SQCC發(fā)生相關的分子通路實驗研究及相應通路靶點藥物的進展,旨在介紹當前肺SQCC發(fā)生機制及靶向治療的一些新進展及可能的藥物研究方向。
[關鍵詞]肺鱗狀細胞癌;分子通路;發(fā)病機制;靶向治療
[中圖分類號] R735.7? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1674-4721(2020)6(a)-0014-05
[Abstract] The national smoking has been at a higher level for a long time and with the prevalence of electronic cigarette in the crowd of young people, due to the close relationship between lung squamous cell carcinoma (SQCC) and smoking, smoking is one of the most important risk factors for lung SQCC, therefore, lung SQCC will occupy a pivotal position among the lung cancer population in China. Through the analysis of recent studies on genes and molecular signaling pathways related to abnormal expression of lung epithelial squamous metaplasia and canceration in databases such as PubMed and Wiley, this paper elaborated a number of molecular pathway mechanisms related to the occurrence of lung SQCC, and summarized new and more valuable experimental studies on molecular pathways related to the occurrence of lung SQCC and the progress of corresponding pathway target drugs in recent years, aiming at introducing some new developments and possible drug research directions of the current lung SQCC generation mechanism and targeted therapy.
[Key words] Squamous cell carcinoma; Molecular pathway; Pathogenesis; Targeted therapy
肺癌是最常見的惡性腫瘤(11.6%)且是惡性腫瘤死亡的主要原因(占癌癥總死亡人數(shù)的18.4%)。肺鱗狀細胞癌(squamous cell carcinoma,SQCC)是常見的病理類型之一,多由肺支氣管上皮化生所致[1],由于部分肺腺癌(adenocarcinoma,ADC)存在表皮生長因子受體(EGFR)以及間變性淋巴瘤激酶(ALK)基因融合等突變靶點,針對肺ADC靶向治療使得肺ADC的預后已然得到了較大改善,但肺SQCC的常用一線治療大多數(shù)仍為化療,故對于缺乏肺SQCC靶點的現(xiàn)狀亟待改變。目前隨著在早期診斷方面更為靈敏且較為經(jīng)濟方便的新一代測序技術(next generation sequencing,NGS)等技術的進步使得肺癌患者越來越多的去接受基因檢測,這將為患者從肺癌驅(qū)動基因?qū)用嫔咸峁└鄠€性化治療選擇,而產(chǎn)生的大量肺癌基因組信息將加速肺SQCC驅(qū)動基因的靶向研究[2-3]。我國國民吸煙率長期處于較高水平且隨著電子煙在青年人群中的流行,由于肺SQCC與吸煙關系密切,吸煙是肺SQCC最重要的危險因素之一,故而在我國肺癌人群中肺SQCC將占據(jù)著舉足輕重的地位。本文通過分析近年來PubMed及Wiley等數(shù)據(jù)庫關于肺上皮細胞鱗狀化生及癌變的相關異常表達的基因及分子信號通路研究,闡述了多條與肺SQCC發(fā)生相關的分子通路機制,將當前肺SQCC發(fā)生機制及靶向治療的一些新進展及可能的藥物研究方向進行綜述如下。
1由PAK1激活的信號傳導通路
p21活化激酶1(p21-activated kinase 1,PAK1)是絲氨酸蘇氨酸激酶家族成員,涉及腫瘤發(fā)生的多個信號傳導途徑[4]。Aguilar-Aragon等[5]通過使用非典型蛋白激酶C(atypical protein kinase C,aPKC)和PAK1的高特異性激酶抑制劑處理上皮細胞以破壞上皮極性和形態(tài)性,腫瘤向惡性腫瘤的進展涉及上皮形態(tài)的破壞,故而PAK1對于起源上皮組織的惡性腫瘤的發(fā)生起到了一定的作用。Chung等[6]通過對肺SQCC組織微陣列分析(tissue microarray analysis,TMA)的免疫染色和Western Blot(WB)實驗發(fā)現(xiàn)SQCC組織較之于鄰近正常組織其PAK-1表達更高,表明PAK1是肺SQCC的特異性標志物。利用單變量COX比例風險回歸模型與K-M曲線分析數(shù)據(jù)均表明PAK-1與肺SQCC患者存活率存在相關性,利用PAK1的小干擾RNA沉默肺SQCC細胞中PAK1表達將抑制肺SQCC細胞生長,反之促進PAK1的表達將刺激癌細胞增殖。在裸鼠致瘤模型中使用PAK1的小干擾RNA處理的實驗組較與未處理的實驗組腫瘤體積顯著減小,通過進一步利用WB實驗與免疫熒光共聚焦實驗表明PAK1與cAMP應答元件結合蛋白(cAMP response element-binding protein,CREB)存在顯著相關性,表明PAK1可能使3-磷酸絲氨酸磷酸酶處的CREB活化以激活蛋白激酶A,P90核糖體S6激酶和鈣離子調(diào)節(jié)蛋白等的靶基因轉錄。目前研究的PAK1抑制劑中,海參皂苷(Frondoside A)在多項研究發(fā)現(xiàn)其對肺SQCC細胞具有抑制作用,其能有效地抑制腫瘤血管發(fā)生,促進存活自噬及誘導細胞凋亡從而抑制癌細胞生長、侵襲和轉移。在小鼠異種移植物模型中海參皂苷聯(lián)合順鉑具有明顯的抗腫瘤作用[7-8]。氯己定也是一種新型潛在的PAK1變構抑制劑,在細胞試驗中氯己定顯示出良好的抑制PAK1的活化作用[9]。最近一項公布的研究使用PAK1抑制劑IP3-A聯(lián)合PKC抑制劑金諾芬在SQCC的細胞實驗及異種移植物實驗均表現(xiàn)出良好的抗腫瘤效應,但需進一步的臨床實驗數(shù)據(jù)支撐[10]。希望通過進一步研究PAK1抑制劑或PAK1抑制劑聯(lián)合其他靶向藥物等手段為肺SQCC的靶向治療帶來除化療及免疫治療之外更多的治療手段。
2 Sox2基因在肺SQCC發(fā)生中的作用
Sox2是Sry-box相關轉錄因子家族成員,Sox2在肺的分支形態(tài)發(fā)生和上皮細胞分化中起重要作用,其基因的復制擴增在94%的肺SQCC都會發(fā)生[11]。Kim等[12]研究發(fā)現(xiàn)常態(tài)下肺基底細胞能維持Sox2低表達(Sox2 Lo)及Sox9高表達(Sox9 Hi)狀態(tài)促進細胞增殖并預防鱗狀分化,但在發(fā)育異常的肺基底細胞中Sox2和PIK3基因?qū)㈩l繁共擴增使得基底細胞維持Sox2 Hi及Sox9 Lo狀態(tài),這一狀態(tài)將持續(xù)激活PI3K信號通路促進鱗狀損傷反應并抑制正常的黏膜纖毛分化,表明Sox2可以通過持續(xù)維持干細胞初始鱗狀損傷反應促進癌細胞浸潤性生長促進肺SQCC的發(fā)生。另一項研究中Mollaoglu等[13]通過建立過表達Sox2并敲除LKb1基因的肺SQCC小鼠模型發(fā)現(xiàn)小鼠肺SQCC組織中性粒細胞富集且甲狀腺轉錄因子1(NKX2-1)的基因表達降低,而Moisés等[14]研究表明Nkx2-1表達蛋白在肺的發(fā)育及功能上具重要作用,Nkx2-1高表達的肺SQCC患者總生存期比低表達患者(80.8 vs. 61.2個月,P=0.035)更長。在針對Sox2的靶向藥物研發(fā)上,目前已知有多種定位于Sox2上下游的靶向藥物研究正在進行,其中抑制PI3K是相對可行的靶點,利用低劑量PI3K抑制劑BMKM120聯(lián)合EP300D蛋白抑制劑產(chǎn)生了抑制肺癌細胞生長的效果[15]。Sox2轉錄因子的在肺鱗癌的發(fā)生及生長中起到了至關重要的調(diào)控作用,但需要進一步的研究以實現(xiàn)其臨床應用價值。
3涉及緊密連接蛋白(claudins,CLDNs)家族相關的多個通路
CLDNs家族在上皮細胞的緊密連接(tight junction,TJ)中擁有至關重要的作用[16]。Paschoud等[17]通過將肺癌組織標本進行免疫組化及定量逆轉錄聚合酶鏈反應(quantitative reverse transcription polymerase chain reaction,qRT-PCR)分析發(fā)現(xiàn)CLDN-1在肺SQCC中表達較多,CLDN-1通過調(diào)節(jié)β-連環(huán)蛋白/Tcf信號通路影響細胞的發(fā)育,分化及誘導細胞鱗狀化生。另一項研究中使用qRT-PCR和WB實驗證實在肺SQCC病例中肺SQCC細胞與鄰近正常組織中CLDN3的表達存在差異,CLDN-3參與調(diào)控Nothc信號通路并抑制Wnt/β-連環(huán)蛋白通路影響細胞侵襲遷移及肺上皮細胞的上皮間質(zhì)轉換(epithelial-mesenchymal transition,EMT)作用,進一步分析各期肺SQCC組織標本表明CLDN3可以作為SQCC患者早期診斷和預后的生物標志物[18]。Akizuki等[19]發(fā)現(xiàn)CLDN-3,-5,-7和-18在人肺SQCC組織中的表達低于正常組織,CLDN-5,-7和-18通過抑制蛋白激酶B(protein kinase B,PKB/AKT)磷酸化和減少細胞周期蛋白D1顯著抑制肺SQCC的增殖,CLDN-3和-4的大鼠單克隆抗體xi5A亦展現(xiàn)出體外抗SQCC細胞作用[20]。CLDN家族的多個成員在肺SQCC的發(fā)生中涉及激活PI3K/AKT通路,Nothc信號及Wnt/β-連環(huán)蛋白通路等多個通路,其將有希望可能作為肺SQCC的靶向治療之一。
4跨膜葡萄糖轉運蛋白-1(glucose transporter-1,GLUT-1)相關通路
GLUT-1可以促進葡萄糖轉運到細胞中,通常存在于依賴葡萄糖代謝的組織中表達,GLUT-1的表達增強在大部分的癌細胞中均可發(fā)現(xiàn)[21]。Goodwin等[22]通過對人類非小細胞肺癌(non-small cell lung cancer,NSCLC)腫瘤樣本、異種移植物、NSCLC小鼠模型、NSCLC細胞系和癌基因組圖譜(the cancer genome atlas,TCGA)進行綜合分析,發(fā)現(xiàn)肺SQCC組織相比肺ADC組織其GLUT-1表達高出約6倍,實驗發(fā)現(xiàn)肺SQCC細胞葡萄糖攝取和糖酵解通量增加,且通過TCGA發(fā)現(xiàn)GLUT-1與p63、細胞角蛋白5和細胞角蛋白6A等鱗癌標志物表達存在強相關性。通過敲低GLUT-1蛋白表達的肺SQCC細胞和裸鼠致瘤模型中發(fā)現(xiàn)SQCC的生長被顯著抑制,進一步研究發(fā)現(xiàn)這與GLUT-1在肺SQCC細胞中特異性地轉錄上調(diào)以促進質(zhì)膜上葡萄糖攝取相關,通過TCGA和篩選差異表達基因(differences genetic screening,DEGS)技術發(fā)現(xiàn)GLUT-1表達和PI3K/AKT/mTOR信號密切相關,在肺SQCC中PI3K、AKT途徑致肺細胞活化,下調(diào)了硫氧還原蛋白的作用促進細胞葡萄糖的攝取。在對人群中肺SQCC患者的5年K-M生存曲線發(fā)現(xiàn),高GLUT-1的表達與預后具有強相關性,且在吸煙患者中尤為明顯。Jiang等[23]小組發(fā)現(xiàn)利用GLUT-1 siRNA抑制GLUT-1并通過Ly294002(PI3Ks抑制劑)抑制PI3K/AKT可以協(xié)同抑制Hep-2(喉癌細胞,來源于上皮細胞)的增殖,并能與順鉑產(chǎn)生協(xié)同作用,這證明其在治療SQCC的潛力,但需進一步實驗比較其是否同樣能夠增強肺SQCC的順鉑化療敏感性。另外雙氫青蒿素可降低細胞GLUT-1水平從而抑制癌細胞的葡萄糖攝取以減弱癌細胞的糖酵解代謝及誘導細胞凋亡等作用產(chǎn)生抗癌作用[24],人參皂苷化合物K也可通過抑制HIF-1α及其下游基因GLUT-1的表達介導葡萄糖代謝可抑制肺癌細胞的生長[25]。其還可通過利用癌細胞的Warburg效應使用基于葡萄糖轉運蛋白合成的鉑糖綴合物能使其具有更好的水溶性和在癌細胞中更高的細胞毒性[26]。由于GIUT-1抑制劑的作用主要為抑制鱗癌細胞的能量攝取使得其機制有別于作用于特定突變靶點而使其擁有抗鱗癌作用的廣泛適用性,簡而言之即是針對肺鱗癌的高代謝特性去抑制鱗癌細胞的能量攝取去餓死癌細胞,圍繞GLUT-1相關途徑上下游關鍵位點無需特定基因突變靶點的治療方法對于多點突變和非典型突變擁有極高的臨床價值。
5涉及Polo樣激酶1(Polo-like kinase 1,PLK1)的通路
PLK1是屬于CDC5/Polo亞家族的絲氨酸/蘇氨酸蛋白激酶,已發(fā)現(xiàn)PLK1在眾多人類惡性腫瘤中過表達并促進腫瘤細胞增殖[27]。Li等[28]通過分析微陣列數(shù)據(jù)集,在肺ADC、肺SQCC和正常肺組織中采用qRT-PCR和免疫組化方法檢測發(fā)現(xiàn)肺SQCC組織中PLK1的水平高于肺ADC組織、肺正常組織及肺SQCC鄰肺組織中的水平,且PLK1蛋白的高表達與分化程度、臨床分期、腫瘤大小、淋巴結轉移和遠處轉移息息相關,數(shù)據(jù)分析顯示,PLK1蛋白高表達是肺SQCC患者的不利預后生物標志物。Lee等[29]小組發(fā)現(xiàn)在有絲分裂期間,PLK1介導的磷酸化導致BEX4蛋白的致癌修飾將破壞有絲分裂期間的微管伸長和穩(wěn)定,這致使PLK1-BEX4相互作用允許異常的非整倍體有絲分裂細胞出現(xiàn)而不出現(xiàn)凋亡性細胞死亡。Zhang等[30]發(fā)現(xiàn)PLK1激酶可通過磷酸化Gli1(Gli1蛋白是Hedgehog信號傳導的效應物)負調(diào)節(jié)Hedgehog信號通路導致血管生成因子,細胞周期蛋白及抗細胞凋亡基因的增加和凋亡基因(Fas)的減少從而誘發(fā)癌變。近期研究發(fā)現(xiàn)PLK1可以調(diào)節(jié)在細胞G2/M過渡期Notch1表達,持續(xù)的DNA損傷維持PLK1表達以調(diào)控Notch1通路促進癌細胞增殖[31]。目前在8種食品藥品監(jiān)督管理局(Food and Drug Administration,F(xiàn)DA)批準的(2017)抗PLK1的抗癌藥物中brigatinib、niraparib和ribociclib對PLK1的激酶結構域顯示出較好的結合親和力,其已被FDA批準用于治療NSCLC、卵巢/輸卵管癌和乳腺癌。另外有研究者將疏水性標志物(金剛烷基)結合于PLK1抑制劑Poloxin-2上形成Poloxin-2HT,相關的細胞實驗表明其抗癌作用更優(yōu)[32]。最近Li等[33]通過引入非天然氨基酸殘基的這一新設計使得PLK1抑制劑能在小鼠血漿中穩(wěn)定存在并能特異性與PLK1結合抑制其作用,但需進一步研究該化合物作為PLK1抑制劑的作用。期待這些新的PLK1抑制劑能夠為肺SQCC的治療提供新的可行方案。
6小結與展望
肺SQCC是肺癌中僅次于肺ADC的病理分型,肺SQCC可有效利用靶向基因的找尋必然將是一個有價值的研究方向,癌癥基因組圖譜計劃中發(fā)現(xiàn)肺SQCC及肺ADC的基因突變模式有很大不同,肺SQCC患者缺乏肺ADC患者常見的ALK、EGFR等常見突變靶點。隨著肺ADC通過基因檢測的靶向治療在臨床已然取得明顯的療效將為肺SQCC的靶向治療提供一個可供借鑒的研究模式。另外肺SQCC基因組圖譜表明超過一半的肺SQCC患者可能是分子靶向治療的候選者,這些均鼓舞了肺SQCC的靶向研究[34]?,F(xiàn)在大多數(shù)關于肺SQCC的靶向研究仍處于基礎研究階段,隨著NGS等基因檢測技術不斷的普及,大量的基因檢測加速了癌癥的個性化治療,利用DEGS及TMA等技術對鱗癌基因進行綜合分析以找尋可能的靶標并深入研究可行的靶向治療方法。當前很多肺SQCC靶向基因的研究已經(jīng)在細胞學實驗及異體移植動物實驗取得了一定的進展,這些將可能成為有效的基因靶點用于臨床,提高患者的生存率。肺SQCC中目前研究的靶向療法包括PI3K、PLK1、PAK1等,針對所述靶點新療法的臨床試驗已經(jīng)在進行,相信不久將有更多研究去推進提高肺SQCC患者的生存率及生存期。靶向治療的發(fā)展將為肺SQCC患者的治療開辟了新途徑,使得肺SQCC患者走向精準醫(yī)學的新時代。
[參考文獻]
[1]Travis WD,Brambilla E,Nicholson AG,et al.The 2015 World Health Organization Classification of lung tumors:impact of genetic,clinical and radiologic advances since the 2004 Classification[J].J Thorac Oncol,2015,10(9):1243-1260.
[2]Ettinger DS,Aisner DL,Wood DE,et al.NCCN guidelines insights:non-small cell lung cancer,Version 5.2018[J].J Natl Compr Canc Netw,2018,16(7):807-821.
[3]Lu YQ,Lu KH.Advancements in next-generation sequencing for diagnosis and treatment of non-small-cell lung cancer[J].Chronic Dis Transl Med,2017,3(1):1-7.
[4]Radu M,Semenova G,Kosoff R,et al.PAK signalling during the development and progression of cancer[J].Nat Rev Cancer,2014,14(1):13-25.
[5]Aguilar-Aragon M,Elbediwy A,F(xiàn)oglizzo V,et al.Pak1 kinase maintains apical membrane identity in epithelia[J].Cell Rep,2018,22(7):1639-1646.
[6]Chung JH,Kim DH,Kim YS,et al.Upregulation of p21-activated kinase 1(PAK1)/CREB axis in squamous non-small cell lung carcinoma[J].Cell Physiol Biochem,2018,50(1):304-316.
[7]Attoub S,Arafat K,Gelaude A,et al.Frondoside a suppressive effects on lung cancer survival,tumor growth,angiogenesis,invasion,and metastasis[J].PLoS One,2013,8(1):e53087.
[8]Adrian TE,Collin P.The anti-cancer effects of Frondoside A[J].Mar Drugs,2018,16(2):E64.
[9]Huang HW,Zhang XY,Song PL,et al.Old drug new tricks:Chlorhexidine acts as a potential allosteric inhibitor toward PAK1[J].Biochem Biophys Res Commun,2018,495(1):728-732.
[10]Ito M,Codony-Servat C,Codony-Servat J,et al.Targeting PKCiota-PAK1 signaling pathways in EGFR and KRAS mutant adenocarcinoma and lung squamous cell carcinoma[J].Cell Commun Signal,2019,17(1):137.
[11]Gontan C,De Munck A,Vermeij M,et al.Sox2 is important for two crucial processes in lung development:Branching morphogenesis and epithelial cell differentiation[J].Dev Biol,2008,317(1):296-309.
[12]Kim BR,Van de Laar E,Cabanero M,et al.SOX2 and PI3K cooperate to induce and stabilize a squamous-committed stem cell injury state during lung squamous cell carcinoma pathogenesis[J].PLoS Biol,2016,14(11):e1002581.
[13]Mollaoglu G,Jones A,Wait SJ,et al.The lineage-defining transcription factors SOX2 and NKX2-1 determine lung cancer cell fate and shape the tumor immune microenvironment[J].Immunity,2018,49(4):764-779.e9.
[14]Moisés J,Navarro A,Santasusagna S,et al.NKX2-1 expression as a prognostic marker in early-stage non-small-cell lung cancer[J].BMC Pulm Med,2017,17(1):197.
[15]Kim BR,Coyaud E,Laurent EMN,et al.Identification of the SOX2 interactome by bioID reveals EP300 as a mediator of SOX2-dependent squamous differentiation and lung squamous cell carcinoma growth[J].Mol Cell Proteomics,2017,16(10):1864-1888.
[16]Krause G,Winkler L,Mueller SL,et al.Structure and function of claudins[J].Biochim Biophys Acta,2008,1778(3):631-645.
[17]Paschoud S,Bongiovanni M,Pache JC,et al.Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas[J].Mod Pathol,2007, 20(9):947-954.
[18]Lv J,Sun B,Mai Z,et al.CLDN-1 promoted the epithelial to migration and mesenchymal transition (EMT) in human bronchial epithelial cells via Notch pathway[J].Mol Cell Biochem,2017,432(1-2):91-98.
[19]Akizuki R,Shimobaba S,Matsunaga T,et al.Claudin-5,-7,and -18 suppress proliferation mediated by inhibition of phosphorylation of Akt in human lung squamous cell carcinoma[J].Biochim Biophys Acta Mol Cell Res,2017,1864(2):293-302.
[20]Li X,Iida M,Tada M,et al.Development of an anti-claudin-3 and -4 bispecific monoclonal antibody for cancer diagnosis and therapy[J].J Pharmacol Exp Ther,2014,351(1):206-213.
[21]Mueckler M,Caruso C,Baldwin SA,et al.Sequence and structure of a human glucose transporter[J].Science,1985, 229(4717):941-945.
[22]Goodwin J,Neugent ML,Lee SY,et al.The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition[J].Nat Commun,2017,8:15 503.
[23]Jiang T,Zhou ML,F(xiàn)an J.Inhibition of GLUT-1 expression and the PI3K/Akt pathway to enhance the chemosensitivity of laryngeal carcinoma cells in vitro[J].Onco Targets Ther,2018,11:7865-7872.
[24]Mi YJ,Geng GJ,Zou ZZ,et al.Dihydroartemisinin inhibits glucose uptake and cooperates with glycolysis inhibitor to induce apoptosis in non-small cell lung carcinoma cells[J].PLoS One,2015,10(3):e0120426.
[25]Chen HF,Wu LX,Li XF,et al.Ginsenoside compound K inhibits growth of lung cancer cells via HIF-1α-mediated glucose metabolism[J].Cell Mol Biol(Noisy-le-grand),2019,65(4):48-52.
[26]Wang H,Yang X,Zhao C,et al.Glucose-conjugated platinum(IV) complexes as tumor-targeting agents:design,synthesis and biological evaluation[J].Bioorg Med Chem,2019,27(8):1639-1645.
[27]Holtrich U,Wolf G,Brauninger A,et al.Induction and down-regulation of PLK,a human serine/threonine kinase expressed in proliferating cells and tumors[J].Proc Natl Acad Sci USA,1994,91(5):1736-1740.
[28]Li H,Wang H,Sun Z,et al.The clinical and prognostic value of polo-like kinase 1 in lung squamous cell carcinoma patients:immunohistochemical analysis[J].Biosci Rep,2017,37(4):pii:BSR20170852.
[29]Lee JK,Ha GH,Kim HS,et al.Oncogenic potential of BEX4 is conferred by Polo-like kinase 1-mediated phosphorylation[J].Exp Mol Med,2018,50(10):1-12.
[30]Zhang T,Xin G,Jia M,et al.The Plk1 kinase negatively regulates the Hedgehog signaling pathway by phosphorylating Gli1[J].J Cell Sci,2019,132(2):pii:jcs220384.
[31]De Blasio C,Zonfrilli A,F(xiàn)ranchitto M,et al.PLK1 targets NOTCH1 during DNA damage and mitotic progression[J].J Biol Chem,2019,294(47):17 941-17 950.
[32]Rubner S,Scharow A,Schubert S,et al.Selective degradation of Polo-like kinase 1 by a hydrophobically tagged inhibitor of the polo-box domain[J].Angew Chem Int Ed Engl,2018,57(52):17 043-17 047.
[33]Li Z,Zhang Z,Sun H,et al.Identification of novel peptidomimetics targeting the polo-box domain of polo-like kinase 1[J].Bioorg Chem,2019,91:103 148.
[34]Cancer Genome Atlas Research Network.Comprehensive genomic characterization of squamous cell lung cancers[J].Nature,2012,489(7417):519-525.
(收稿日期:2019-10-18? 本文編輯:任秀蘭)