沈秀麗,柳思遠(yuǎn),沈玉君,孟海波,王 芳,李 寧,張德俐
不同粒徑生物炭包膜尿素緩釋肥性能及緩釋效果
沈秀麗1,柳思遠(yuǎn)2,沈玉君1,孟海波1※,王 芳2,李 寧2,張德俐2
(1. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院,農(nóng)業(yè)農(nóng)村部資源循環(huán)利用技術(shù)與模式重點實驗室,北京 100125;2. 山東理工大學(xué)農(nóng)業(yè)工程與食品科學(xué)學(xué)院,淄博 255000)
為探究生物炭粉包膜處理對尿素緩釋效果的影響,該研究以不同粒徑稻殼生物炭粉為包膜材料,對尿素顆粒進(jìn)行不同層數(shù)包膜處理,分別制備了3種生物炭包膜尿素緩釋肥C_1(0.15 mm生物炭粉包膜)、C_2(內(nèi)層0.15 mm,外層0.25 mm生物炭粉包膜)和C_3(內(nèi)層0.15 mm,中層0.25 mm,外層0.425 mm生物炭粉包膜),并對生物炭包膜尿素緩釋肥性能及緩釋效果進(jìn)行了分析研究。研究結(jié)果表明3種生物炭包膜緩釋肥粒徑主要分布在2.90~4.80 mm,隨著包膜層數(shù)的增加,包膜緩釋肥粒徑隨之增大,C_2和C_3粒徑顯著高于C_1(<0.05)。C_1、C_2和C_3的抗壓強(qiáng)度為20.40~48.00 N,滿足工業(yè)生產(chǎn)需求。與C_1和C_2相比,C_3顆粒表面較光滑,切面具有致密且孔隙結(jié)構(gòu)豐富的層狀結(jié)構(gòu),吸水倍率最?。?.69),耐水性也顯著優(yōu)于C_1與C_2(<0.05),氮元素緩釋效果優(yōu)于C_1與C_2。綜上可以看出,3層包膜尿素緩釋肥膜殼強(qiáng)度高于單層和雙層包膜尿素緩釋肥,通過控制不同膜層生物炭的孔隙結(jié)構(gòu)和孔徑,減緩水分的滲入及養(yǎng)分的流出過程,緩釋效果突出,為生物炭包膜緩釋肥的開發(fā)應(yīng)用提供一個新技術(shù)路徑。
生物炭;粒徑;肥料;包膜;尿素;緩釋
傳統(tǒng)氮肥極易揮發(fā)和溶于水,利用率較低。據(jù)測算中國主要糧食作物水稻、小麥和玉米的氮肥利用率為39.2%,與歐美等國家存在較大差距[1]。大量溶解氮隨地表徑流和淋溶水流失,引起水體富營養(yǎng)化和硝態(tài)氮含量超標(biāo)等環(huán)境問題[2-3]。此外,氮肥長期施用容易引起土壤板結(jié)、酸化和養(yǎng)分比例失衡等生態(tài)破壞問題[4]。為有效控制氮素流失,近幾年國內(nèi)外研究學(xué)者利用高分子聚合物材料[5-7]開發(fā)研制包膜氮肥,控釋效果較好,受到廣泛關(guān)注。但高分子聚合材料存在成本高,難降解,易引發(fā)二次污染等問題[8],限制了包膜氮肥的推廣應(yīng)用。因此,尋求環(huán)境友好、價格低廉和緩釋效果好的膜材料成為研究熱點。
生物炭是將生物質(zhì)在缺氧或無氧狀態(tài)下經(jīng)過高溫?zé)崃呀猥@得的高含碳固體產(chǎn)物,其結(jié)構(gòu)穩(wěn)定[9],比表面積大[10-11],孔隙結(jié)構(gòu)豐富[12-13],陽離子交換量高[14],施入土壤后可以改善土壤團(tuán)聚現(xiàn)象,提高土壤的持水能力并促進(jìn)土壤中微生物的新陳代謝等[15],是一種環(huán)境友好的土壤改良劑。研究表明生物炭對NH4+、NO3-有較強(qiáng)的吸附作用[16-17],減少土壤養(yǎng)分淋失的同時,賦予肥料緩釋和固氮的功能[18-19],已被逐步應(yīng)用于緩釋肥料的制備[3, 20-24]。生物炭作為肥料載體,與肥料混合或通過復(fù)合作用制備生物炭基肥料不僅能夠消除生物炭養(yǎng)分不足的缺陷,也賦予尿素等肥料緩釋功能。同時生物炭制備原料主要來自于農(nóng)林廢棄物,原料成本低,目前生物炭市場價格約為1 500元/t[25],而聚氯乙烯、聚氨酯、聚丙烯酰胺等高分子聚合材料每噸價格基本都在5 000元以上。與高分子聚合物包膜材料相比,生物炭具有綠色安全、可再生、資源量巨大等優(yōu)勢,是一種潛力巨大的膜材料。目前,生物炭基肥相關(guān)研究主要集中在生物炭與其他包膜材料聯(lián)合使用[22,26]或與無機(jī)肥料混合擠壓成粒[27-28],而關(guān)于生物炭包膜緩釋肥的研究相對較少。
因此,本文主要開展生物炭包膜緩釋肥的研制,并首次提出一種包膜方法,即以不同粒徑(0.15、0.25、0.425 mm)的生物炭粉作為包膜材料,對尿素顆粒進(jìn)行不同層數(shù)包膜處理,重點探究了多層覆膜處理對生物炭包膜尿素緩釋肥性能及養(yǎng)分釋放規(guī)律的影響,以期為中國生物炭包膜肥料的制備及推廣應(yīng)用提供理論依據(jù)。
海藻酸鈉,分析純,購于河南萬邦實業(yè)有限公司;聚乙烯醇,分析純,購于上海啟辰化工有限公司;尿素(兗礦魯南化肥廠,氮元素質(zhì)量分?jǐn)?shù)大于46.40%)。
生物炭粉:生物炭粉采用自然風(fēng)干的稻殼為原料,稻殼經(jīng)過粉碎、篩分制取粒徑為0.425 mm的稻殼粉,采用流化床熱解裝置(如圖1)制備生物炭粉,此設(shè)備為山東理工大學(xué)清潔能源示范工程與技術(shù)研究中心自主研發(fā),熱解溫度范圍為400~600 ℃,氣體流量為2.20 m3/h,喂料速率為18 g/min。制備的生物炭粉篩分后獲得0.425、0.25和0.15 mm生物炭樣本,密封保存用于生物炭包膜尿素緩釋肥的制備。
1.喂料器 2.流化床反應(yīng)器 3.加熱線圈 4.壓差計 5.氮氣瓶 6.質(zhì)量流量計 7.旋風(fēng)分離器 8.炭粉收集箱 9.冷凝器 10和12. 溶膠采樣器 11.總控箱
1.Feeder 2.Fluidized bed reactor 3.Heater coil 4.Differential gauge 5.Nitrogen cylinder 6.Mass flowmeter 7.Cyclone separator 8.Biochar collection box 9.Condenser 10,12. Aerosol sampler 11.Monitoring center
圖1 流化床熱解裝置
Fig.1 Fluidized bed pyrolysis equipment
淋溶裝置:淋溶柱選用直徑5 cm、高20 cm的塑料管,管底部用2層孔徑為75m脫脂紗網(wǎng)封底并用固定抱箍固定。土壤與石英砂分別置于105 ℃烘箱烘12 h后過0.6 mm篩,石英砂、土壤、肥料顆粒按照圖2所示順序進(jìn)行裝填。
圖2 土柱淋溶裝置示意圖
1.2.1 粘結(jié)劑和生物炭包膜尿素緩釋肥的制備
海藻酸鈉聚乙醇粘結(jié)劑:稱取1.00 g海藻酸鈉,60 ℃水浴加熱并攪拌至充分溶解后,定容至1 L。然后再稱取1.00 g聚乙烯醇樣品,于60 ℃水浴加熱并攪拌至充分溶解后定容至1 L,全部倒入配置好的1%海藻酸鈉溶液中,并充分?jǐn)嚢枋蛊浠旌暇鶆颍鋮s待用。
生物炭顆粒粒徑是影響生物炭比表面積及孔隙結(jié)構(gòu)的重要因素,也是影響生物炭吸附及緩釋性能的關(guān)鍵因素。大量前期試驗表明單層生物炭粉包膜尿素緩釋肥耐水性差,生物炭粉包膜尿素顆粒遇水即散。因此,本研究提出通過不同粒徑生物炭粉多層包膜的處理方法,降低生物炭粉的吸水性,提高緩釋性能,具體包膜處理如表1所示,分別制備3種生物炭包膜尿素緩釋肥C_1(0.15 mm生物炭粉包膜)、C_2(內(nèi)層0.15 mm目,外層0.25 mm生物炭粉包膜)和C_3(內(nèi)層0.15 mm,中層0.25 mm,外層0.425 mm生物炭粉包膜),尿素顆粒設(shè)為對照組(CK)。
表1 不同粒徑生物炭包膜尿素緩釋肥試驗設(shè)計
生物炭包膜尿素緩釋肥制備:篩分尿素獲取直徑為2.00~2.50 mm的尿素顆粒。每組試驗稱取500 g尿素投入到圓盤造粒機(jī)中,設(shè)備轉(zhuǎn)速設(shè)為40 r/min,轉(zhuǎn)動過程中使用高壓噴壺噴灑適量粘結(jié)劑,總量約為50 mL,同時緩慢撒入試驗組對應(yīng)粒徑的生物炭粉,轉(zhuǎn)動約5 min,待肥料表面形成一層致密的包裹層,間隔1 min重復(fù)此過程至制備的包膜尿素干至不再粘炭粉為止,重復(fù)上述操作,直到肥料顆粒達(dá)到目標(biāo)厚度,即可得到表面致密的生物炭包膜尿素緩釋肥。將生物炭包膜尿素顆粒取出,稱其質(zhì)量后并置于托盤中,放入烘箱中45 ℃烘干12 h后取出,冷卻后稱其質(zhì)量。
1.2.2 生物質(zhì)炭包膜尿素肥料性能測定
1)粒徑
隨機(jī)取出30粒制備好的生物炭包膜尿素顆粒置于培養(yǎng)皿中,利用游標(biāo)卡尺測量每粒肥料顆粒的粒徑分析肥料粒徑分布并計算肥料平均粒徑及標(biāo)準(zhǔn)差。
2)抗壓強(qiáng)度與耐磨性能
抗壓強(qiáng)度:隨機(jī)取出30粒制備好的生物炭包膜尿素緩釋肥顆粒,利用質(zhì)構(gòu)儀測定每個肥料顆粒的抗壓力值,重復(fù)5次,計算其平均值和標(biāo)準(zhǔn)差。
耐磨性能:耐磨性能主要采用余重比進(jìn)行評價,余重比為耐磨試驗后顆粒相對完整的生物炭包膜尿素的質(zhì)量與試驗前稱取的尿素包膜緩釋肥的質(zhì)量比。具體實驗步驟如下:稱取制備好的生物炭包膜尿素肥料顆粒2.00 g并放入50 mL錐形瓶中,加入5粒鋼珠并混入肥料中,加蓋后置于搖床上以250 r/min振蕩30 min,取出后用1.50 mm不銹鋼篩分,稱量剩余的肥料顆粒質(zhì)量,根據(jù)余重比分析其耐磨性能。
3)結(jié)構(gòu)特征
采用掃描電鏡(SEM,賽默飛Apreo型)對制備好的不同粒徑生物炭粉包膜尿素顆粒表面及橫截面進(jìn)行掃描分析,觀察不同粒徑生物炭包膜尿素顆粒結(jié)構(gòu)特征。
4)吸水倍率及耐水性
吸水倍率:稱取干燥后的生物炭包膜尿素緩釋肥1.20 g放入孔徑為75m的尼龍紗網(wǎng)袋中,封口。將尼龍袋緩慢放入盛有100 mL蒸餾水的燒杯中,恒溫保存。每隔12 h尼龍袋取出一次,用濾紙拭去明水后連同袋子一起稱量,稱量結(jié)果取平均值。吸水倍率計算公式如下:
式中W為吸水前質(zhì)量,g;W為吸水后質(zhì)量為,g。
耐水性:用天平稱取2.00 g生物炭包膜尿素緩釋肥顆粒樣品放入50 mL錐形瓶中,向錐形瓶中加入40 mL蒸餾水,于室溫下放置30 d,觀察顆粒溶解情況并記錄完全溶解時間。
1.2.3 生物炭包膜尿素緩釋肥的氮素釋放特征測試
為更好地反應(yīng)肥料施入土壤后養(yǎng)分釋放規(guī)律,本研究采用實驗室土柱淋溶試驗測試不同粒徑生物炭包膜尿素緩釋肥的緩釋性能。尿素主要養(yǎng)分為氮元素,因此主要以氮元素釋放規(guī)律評價3類生物炭包膜緩釋肥的緩釋效果,試驗裝置為圖2自制的淋溶裝置。首先在制備好的淋溶柱中加入一定量的去離子水濕潤模擬土壤,靜止24 h后,使模擬土壤的含水量達(dá)到飽和,分別在第1、3、5、7和10天取淋溶液,尿素為對照組,無肥料添加的土壤淋溶柱為空白試驗組。采用凱氏定氮法(K9860)測定淋溶液中氮元素的含量,計算尿素淋失量,同時測定淋溶液pH值。
采用OriginPro 8.5分析數(shù)據(jù)并作圖,通過SPSS 17.0進(jìn)行ANOVA方差分析,數(shù)據(jù)均以平均值±標(biāo)準(zhǔn)差的形式來表達(dá)。
2.1.1 生物炭包膜尿素緩釋肥的粒徑
肥料顆粒均勻度是評價肥料質(zhì)量的重要標(biāo)準(zhǔn)之一,肥料行業(yè)一般采用2.00~4.00 mm顆粒作為成品顆粒[27]。生物炭包膜尿素緩釋肥粒徑統(tǒng)計數(shù)據(jù)如表2所示,粒徑分布如圖3所示。從表2可以看出,3種生物炭包膜尿素緩釋肥粒徑顯著高于尿素顆粒(<0.05),C_1、C_2與C_3粒徑變異系數(shù)均小于10%,表明生物炭包膜緩釋肥均勻度較高。C_1、C_2與C_3粒徑平均值高于秦麗元等[29]利用改性木質(zhì)素作為粘結(jié)劑制備的水稻秸稈生物炭單層包膜尿素肥料,而且C_1、C_2與C_3粒徑均勻度也優(yōu)于改性木質(zhì)素制備的水稻秸稈生物炭單層包膜尿素肥料。
表2 生物炭包膜尿素緩釋肥粒徑統(tǒng)計
注:不同字母代表不同處理組差異性顯著(<0.05), 下同。
Note: The different superscripted letters represent a significant difference between different treatments (<0.05),the same below.
圖3 生物炭包膜尿素緩釋肥粒徑分布
3層不同粒徑生物炭粉包膜尿素緩釋肥C_3平均粒徑最大,且顯著高于C_1和C_2緩釋肥(<0.05),C_1和 C_2包膜生物炭粒徑不存在顯著性差異(>0.05)。如圖3所示,C_1和C_2粒徑均呈雙峰分布,80%顆粒粒徑在2.00~4.00 mm。C_3粒徑分布呈現(xiàn)正態(tài)分布,隨著包膜層數(shù)增加,粒徑在4.00 mm及以上的中大顆粒所占的比例逐漸增多,但粒徑分布相對集中,主要在3.90~4.50 mm之間。
2.1.2 生物炭包膜尿素緩釋肥的抗壓強(qiáng)度與耐磨性
表3為尿素及生物炭包膜尿素緩釋肥抗壓強(qiáng)度與耐磨性能。肥料抗壓強(qiáng)度及耐磨性能越高,其硬度越大,越利于儲存與運輸。一般復(fù)混肥顆粒平均抗壓強(qiáng)度大于12.00 N代表具有較高的硬度。由表3可以看出,尿素的平均抗壓強(qiáng)度最高,生物炭包膜處理后,抗壓強(qiáng)度顯著降低,但3種生物炭包膜尿素顆粒緩釋肥抗壓強(qiáng)度主要分布在20.40~48.00 N,顯著高于12.00 N,表明3種生物炭包膜尿素緩釋肥均具有較高的強(qiáng)度,可以滿足運輸儲存的要求。3種生物炭包膜處理抗壓強(qiáng)度依次為:C_1>C_2>C_3,隨著包膜層數(shù)增多,抗壓強(qiáng)度降低,但3種生物炭包膜尿素緩釋肥抗壓強(qiáng)度不存在顯著性差異。邱現(xiàn)奎[30]利用粉煤灰包膜尿素制備緩釋肥,研究發(fā)現(xiàn)隨著包膜厚度的增加,肥料顆粒的抗壓強(qiáng)度不斷增加,與本研究結(jié)果相反,分析其原因可能主要是由于生物炭粉相比粉煤灰孔隙結(jié)構(gòu)豐富,脆性強(qiáng),包覆成粒過程中,顆粒之間縫隙多,粘結(jié)不夠充分。蔣恩臣等[31]采用高嶺土作為粘結(jié)劑,制備生物炭包膜尿素緩釋肥,結(jié)果表明隨著生物炭粉比例的增加,肥料顆??箟簭?qiáng)度逐漸降低,與本文研究結(jié)果一致。
由表3可以看出,3類生物炭包膜尿素緩釋肥余重比均高于97%,表明耐磨性能均較高。耐磨性能排序為:CK>C_1>C_3>C_2,C_1顯著高于C_3與C_2,C_3與C_2不存在顯著性差異(>0.05)。結(jié)果表明生物炭粉包膜尿素緩釋肥耐磨性能顯著低于尿素顆粒,單層包膜尿素緩釋肥耐磨性能最好,主要原因是單層包膜主要是0.15 mm生物炭粉,炭粉較細(xì),粘結(jié)效果較好,更密實。
表3 不同處理尿素及生物炭包膜緩釋肥抗壓強(qiáng)度及耐磨性能
2.1.3 生物炭包膜尿素緩釋肥的微觀結(jié)構(gòu)
不同粒徑生物炭包膜尿素緩釋肥顆粒形貌結(jié)構(gòu)如圖4所示。其中圖4a、4c與4e分別為C_1、C_2和C_3肥料顆粒表面形貌結(jié)構(gòu),4b、4d與4f分別為C_1、C_2和C_3肥料顆粒切面形貌結(jié)構(gòu)。從圖4a和4c中可以看出,C_1和C_2樣品表面呈現(xiàn)明顯顆粒堆疊形貌,表面粗糙,顆粒分布不規(guī)則,C_3表面主要為成型的塊狀物質(zhì),表面結(jié)構(gòu)平滑但不夠平整。圖4b可以看出肥料顆粒切面存在較大的孔隙結(jié)構(gòu),主要為生物炭粉顆粒之間的縫隙,而生物炭顆粒自身孔隙結(jié)構(gòu)占比相對較少,圖4d顯示C_2條狀孔隙結(jié)構(gòu)相對C_1更加豐富,且孔隙更狹長,圖4f顯示3層包膜生物炭肥已經(jīng)形成比較致密且孔隙結(jié)構(gòu)豐富的層狀結(jié)構(gòu),孔徑較小,主要為生物炭顆粒自身的孔隙結(jié)構(gòu)。生物炭基肥理論模型為水分子通過稻殼生物炭豐富的孔隙結(jié)構(gòu)將肥芯的肥料緩慢養(yǎng)分溶出,從而達(dá)到緩釋的效果,因此可以看出C_3比較符合要求。該研究未對生物炭包膜與尿素顆粒接觸界面顯微結(jié)構(gòu)進(jìn)行電鏡分析,在后續(xù)研究中將加入切片試驗,以便更全面立體地表征生物炭粉包膜尿素緩釋肥料顆粒結(jié)構(gòu)特征。
2.1.4 生物炭包膜尿素緩釋肥的吸水倍率與耐水性
吸水性是評價緩釋肥性能的重要指標(biāo),研究表明包膜材料吸水倍率越低,緩釋效果越好[32]。生物炭基肥因生物炭孔隙結(jié)構(gòu)復(fù)雜,具有較強(qiáng)的吸水性,吸水后體積膨脹,生物炭膜殼結(jié)構(gòu)容易龜裂,進(jìn)而使整個肥料顆粒溶解,緩釋效果減弱,表4為不同粒徑生物炭包膜尿素緩釋肥吸水倍率。圖5為去離子水浸泡15 d后的生物炭包膜尿素緩釋肥耐水性示意圖。
注:a、c、e為表面形貌結(jié)構(gòu)圖;b、d、f為切面形貌結(jié)構(gòu)圖。
表4 生物炭包膜尿素緩釋肥吸水倍率
圖5 浸泡15 d的尿素及生物炭包膜尿素緩釋肥形態(tài)
可以看出,浸泡60 h后,3類生物炭包膜緩釋肥吸水率均達(dá)到平衡,吸水倍率依次是C_1>C_2>C_3,各時間段C_1吸水率均顯著高于C_2與C_3(<0.05),C_2與C_3吸水倍率相對接近,3類生物炭包膜尿素緩釋肥的吸水倍率均高于1.50。生物炭包膜尿素緩釋肥較高的吸水倍率主要是因為稻殼生物炭豐度的孔隙結(jié)構(gòu)賦予的強(qiáng)持水性,但粘結(jié)劑海藻酸鈉與聚乙烯醇吸水膨脹,對生物炭粉包膜尿素緩釋肥吸水倍率有一定的貢獻(xiàn)。耐水性試驗結(jié)果顯示尿素在1 h內(nèi)完全溶解,C_1在第3天完全溶解,C_2在第15天開始出現(xiàn)龜裂現(xiàn)象,30天基本溶解,C_3在第30天仍保持完好的粒型。上述結(jié)果表明多層包膜緩釋肥耐水性高于單層細(xì)粉包膜尿素緩釋肥,其中C_3耐水性最強(qiáng)。結(jié)合形貌結(jié)構(gòu)特征分析原因,一方面是由于C_3包膜厚度大,膜殼表面比較光滑,水分不容易浸入且擴(kuò)散路徑較長,從而降低了水分滲入的速率;另一方面可能是C_3不同層的細(xì)粉與粗粉之間容易形成氣泡孔隙,水分子不容易滲透到生物炭顆粒之間的孔隙,而是通過生物炭顆粒自身的孔隙結(jié)構(gòu)結(jié)構(gòu)慢慢滲入,然而單層包膜緩釋肥因炭粉顆粒較小,水分子主要通過顆粒之間的縫隙滲入,容易破壞生物炭粉的粘結(jié),造成顆粒溶解破碎??梢钥闯觯锾堪ぞ忈尫瘦^強(qiáng)的耐水性主要得益于膜殼多層致密的孔隙結(jié)構(gòu)。
圖6為尿素及3類生物炭包膜尿素緩釋肥淋溶液pH值及氮元素累積釋放率。由圖6a可以看出,隨著淋溶時間延長,尿素及其3類生物炭包膜緩釋肥淋溶液pH值變化趨勢基本相同,均呈現(xiàn)先降低后升高的趨勢,淋溶第1天和第10天pH值相對較高。尿素的淋出液pH值變化最為平緩,C_3 pH值變化最為劇烈??梢钥闯?類生物炭包膜緩釋肥的pH值變化趨勢與其耐水性結(jié)果相符,越易溶解,pH值越穩(wěn)定。
CK、C_1及C_2淋溶液中氮素含量變化趨勢相近,均是在1~3 d內(nèi)快速釋放。尿素第1天淋溶液中氮含量最高(7.47 g/L),隨后淋溶液中總氮含量逐漸下降至最低值0.30 g/L,從第7天至第10天總氮含量略微升高至0.70 g/L,表明尿素中的氮素在淋溶過程中呈現(xiàn)出集中式爆發(fā)的釋放特征,與吸水倍率及耐水性試驗結(jié)果一致。C_1和C_2淋溶液中總氮含量下降速度相對緩慢,緩釋效果明顯略優(yōu)于尿素。C_3淋溶液中總氮含量在整個淋溶過程中呈持續(xù)緩慢上升的趨勢,由第1天的0.20 g/L逐漸升高至第10天的0.90 g/L,說明其中生物炭包膜尿素緩釋肥中的氮是緩慢釋放的,隨著淋溶時間的延長,水分慢慢進(jìn)入顆粒內(nèi)部,氮素溶出率緩慢增加,C_3緩釋效果顯著優(yōu)于C_1和C_2。
由圖6b可以看出,尿素在第1天氮素釋放率高于70%,第10 天基本釋放完全。C_1、C_2與C_3包膜尿素第10 天氮素累積釋放率分別為51.79%、40.97%和20.22%,均小于50%,顯著低于尿素的97.5%,也低于秦麗元等[29]利用改性木質(zhì)素制備的水稻秸稈生物炭包膜尿素的累積釋放率(>80%)。C_1與C_2包膜尿素緩釋肥氮素釋放規(guī)律與陳松嶺[33]利用玉米秸稈、水稻秸稈及樹枝生物炭制備的水基共聚物-生物炭包膜尿素的氮素釋放規(guī)律基本一致。C_3氮素釋放速率低于秦麗元等[29]制備的水稻秸稈生物炭包膜尿素及陳松嶺[33]制備的玉米秸稈、水稻秸稈及樹枝生物炭-水基共聚物包膜尿素,表明3層不同粒徑稻殼生物炭粉包膜處理擁有較好的緩釋性能。
圖6 尿素及不同粒徑生物炭尿素緩釋肥淋溶液pH值及氮元素累積釋放率的變化曲線
根據(jù)形貌結(jié)構(gòu)圖可以看出,粒徑為0.15 mm生物炭粉包膜孔隙結(jié)構(gòu)主要是顆粒間的大孔隙,水分容易滲透,隨著生物炭粒徑增加,孔隙結(jié)構(gòu)變得更加豐富且復(fù)雜,尤其是大顆粒生物炭粉,顆粒自身存在大量的微孔結(jié)構(gòu),會減弱水分滲入的速度。C_3最外層為0.425 mm大顆粒生物炭粉,含有豐富的介孔和微孔結(jié)構(gòu),限制水分的快速滲入和養(yǎng)分的快速溶出,同時防止顆粒溶解龜裂,內(nèi)層為0.15 mm細(xì)粉,孔隙結(jié)構(gòu)較大,相對利于養(yǎng)分的溶出。3層生物炭之間形成一個致密的屏障,顆粒由外向內(nèi)限制水分的滲入,由內(nèi)向外又逐漸減緩養(yǎng)分的溶出,從而達(dá)到養(yǎng)分緩釋的效果。
本研究采用土柱淋溶試驗探究了生物炭包膜的緩釋效果,但淋溶時間點較少,同時缺乏對生物炭包膜緩釋肥初期養(yǎng)分釋放率、28 d養(yǎng)分累積釋放率及總養(yǎng)分釋放率的分析。后續(xù)研究中將延長淋溶時間,同時采用緩/控釋肥料行業(yè)標(biāo)準(zhǔn)方法HGT4215-2011對生物炭包膜尿素緩釋肥緩釋效果進(jìn)行分析,全面系統(tǒng)評價多層生物炭包膜處理的緩釋效果。
本研究首次采用不同粒徑稻殼生物炭粉對尿素進(jìn)行不同層數(shù)包膜處理,通過性能分析和淋溶試驗比較研究了不同粒徑生物炭粉包膜尿素緩釋性能,研究得到如下結(jié)論:
1)3種生物炭包膜緩釋肥粒徑主要分布在2.90~4.80 mm,隨著包膜層數(shù)的增加,包膜緩釋肥粒徑隨之增大,2層包膜(內(nèi)0.15 mm,外0.25 mm)和3層包膜(內(nèi)0.15 mm,中0.25 mm,外0.425 mm)的肥料粒徑顯著高于0.15 mm單層包膜肥料粒徑(<0.05),3種不同處理的生物炭包膜尿素緩釋肥的抗壓強(qiáng)度為20.40~48.00 N,能夠滿足工業(yè)生產(chǎn)需求。
2)SEM結(jié)構(gòu)分析顯示,相較于單層包膜與雙層包膜尿素緩釋肥,3層包膜尿素緩釋肥顆粒表面較光滑,切面具有致密且孔隙結(jié)構(gòu)豐富的層狀結(jié)構(gòu),3層包膜尿素緩釋肥吸水倍率最?。?.69),耐水性也顯著優(yōu)于單層包膜與雙層包膜尿素緩釋肥(<0.05)。
3)單層、雙層及3層生物炭包膜尿素緩釋肥在第10天氮素累積釋放率分別為51.79%、40.97%和20.22%,顯著低于尿素的97.5%,表明生物炭包膜處理具有顯著的緩釋作用,其中3層生物炭包膜尿素緩釋肥緩釋效果相對較好。3層生物炭包膜尿素緩釋肥由內(nèi)到外分別為細(xì)到粗生物炭粉組成的細(xì)密生物炭粉包殼,提高了肥料膜殼強(qiáng)度,控制不同膜層生物炭的孔隙結(jié)構(gòu)和孔徑,減緩水分的滲入及養(yǎng)分的流出過程,提高緩釋效果,為生物炭緩釋肥開發(fā)利用提供一個新的研究方向。
[1] 梁秋坪,王欲然. 三大糧食作物化肥農(nóng)藥減量增效[N]. 人民日報,2019-12-19(7).
[2] 邱月,張輝. 包膜氮肥-保水劑和生物炭在控制農(nóng)田土壤氮素?fù)p失方面的應(yīng)用綜述[J]. 江蘇農(nóng)業(yè)科學(xué),2015,43(10):417-422.
Qiu Yue, Zhang Hui. Review on the application of enveloped nitrogen fertilizer, water retaining agent and biochar in controlling nitrogen loss in farmland soil[J]. Jiangsu Agricultural Sciences, 2015, 43(10): 417-422. (in Chinese with English abstract)
[3] Huang J, Xu C, Ridoutt B, et al. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China[J]. Journal of Cleaner Production, 2017, 159: 171-179.
[4] 陳序根,徐衛(wèi)紅,王崇力,等. 脲酶硝化雙抑制劑緩釋肥提高番茄產(chǎn)量及NPK養(yǎng)分吸收[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(21):168-176.
Chen Xugen, Xu Weihong, Wang Chongli, et al. Slow-release fertilizer containing urease inhibitor and nitrification inhibitor improving nitrogen release characteristic and uptake and utilization of nitrogen, phosphorus and potassium in tomato[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 168-176. (in Chinese with English abstract)
[5] 金爽,趙蘇,馬廣一. 高分子包膜材料對抗凝冰劑緩釋性能的影響[J]. 功能材料,2019,6(50):6120-6127.
Jin Shuang, Zhao Su, Ma Guangyi. Effect of polymer coating materials on slow release properties of anticoagulant ice agent[J]. Journal of Functional Materials, 2019, 6(50): 6120-6127. (in Chinese with English abstract)
[6] Feng G, Ma Y, Zhang M, et al. Polyurethane-coated urea using fully vegetable oil-based polyols: Design, nutrient release and degradation [J]. Progress in Organic Coatings, 2019, 133: 267-275.
[7] Li L, Sun Y, Cao B, et al. Preparation and performance of polyurethane/mesoporous silica composites for coated urea[J]. Materials & Design, 2016, 99: 21-25.
[8] 曲萍,常志州,趙永富,等.蛋白水解物改性脲甲醛緩釋肥的結(jié)構(gòu)及氮素釋放特征[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(21):240-245.
Qu Ping, Chang Zhizhou, Zhao Yongfu, et al. Structure of hydrolyzed soy protein modified urea formaldehyde and its nitrogen release characteristic[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 240-245. (in Chinese with English abstract)
[9] 陳宏坤,徐廣飛,高璐陽,等. 緩控釋肥包膜材料的研究進(jìn)展[J].磷肥與復(fù)肥,2016,31(12):19-21.
Chen Hongkun, Xu Guangfei, Gao Luyang, et al. Research advances of coated material of slowly controlled release fertilizer[J]. Phosphate & Compound Fertilizer, 2016, 31(12): 19-21. (in Chinese with English abstract)
[10] Shen X, Zeng J, Wang F, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure[J]. Science of the Total Environment, 2020. 704: 135283.
[11] Luo L, Wang G, Shi G, et al. The characterization of biochars derived from rice straw and swine manure, and their potential and risk in N and P removal from water[J]. Journal of Environmental Management, 2019, 245: 1-7.
[12] Zhou Y, Liu X, Xiang Y, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling[J]. Bioresource Technology, 2017, 245: 266-273.
[13] Tian R, Li C, Xie S, et al. Preparation of biochar via pyrolysis at laboratory and pilot scales to remove antibiotics and immobilize heavy metals in livestock feces[J]. Journal of Soils and Sediments, 2019, 19(7): 2891-2902.
[14] Li R, Wang J, Lewis A, et al. An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution[J]. Carbon, 2018, 129: 674-687.
[15] 張迪,姜佰文,梁世鵬,等. 草甸黑土團(tuán)聚體穩(wěn)定性對耕作與炭基肥施用的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(14):125-132.
Zhang Di, Jiang Baiwen, Liang Shipeng, et al. Responsive of aggregate stability of meadow black soil to different tillage practices and carbon-based fertilizers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 125-132. (in Chinese with English abstract)
[16] Zhao B, David O, Zhang J, et al. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar[J]. Journal of Cleaner Production, 2018,174: 977-987.
[17] Mizuta K, Matsumoto T, Hatate Y, et al. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal[J]. Bioresource Technology, 2004, 95(3): 255-257.
[18] Spokas K A, Novak J M, Ventere R T. Biochar’s role as an alternative N-fertilizer: ammonia capture[J]. Plant and Soil, 2012, 350(1): 35-42.
[19] 高德才,張蕾,劉強(qiáng),等. 旱地土壤施用生物炭減少土壤氮損失及提高氮素利用率[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(6):54-61.
Gao Decai, Zhang Lei, Liu Qiang, et al. Application of biochar in dryland soil decreasing loss of nitrogen andimproving nitrogen using rate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(6): 54-61. (in Chinese with English abstract)
[20] Li H, Dong X, Evandro B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478.
[21] Gonzalez M, Cea M, Medina C. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material[J]. Science of the Total Environment, 2015, 505: 446-453.
[22] Chen S, Ming Y, Chuang B, et al. Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers[J]. Science of the Total Environment, 2018, 615: 431-437.
[23] 朱曉旭. 生物質(zhì)炭包膜控釋尿素的制備及性能研究[D]. 長春:吉林農(nóng)業(yè)大學(xué),2016.
Zhou Xiaoxu. Preparation and Properties Research of Biochar Coated Controlled-release Urea[D]. Changchun: Jilin Agricultural University, 2016. (in Chinese with English abstract)
[24] 周旻旻.水稻秸桿生物質(zhì)炭基緩釋肥的制備與應(yīng)用研究[D]. 杭州:浙江大學(xué),2013.
Zhou Yiyi. Production and Application of Slow Release Fertilizer Based on Rice Straw Derived Biochar[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract)
[25] 霍麗麗,趙立欣,姚宗路,等. 秸稈熱解炭化多聯(lián)產(chǎn)技術(shù)應(yīng)用模式及效益分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(3):227-232.
Huo Lili, Zhao Llixin, Yao Zonglu, et al. Utilization model and its efficiency analysis of biochar-gas-oil polygeneration by straw pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 227-232. (in Chinese with English abstract)
[26] Lateef A, Nazir R, Nadia J, et al. Synthesis and characterization of environmental friendly corncob biochar based nano-composite; A potential slow release nano- fertilizer for sustainable agriculture[J]. Environmental Nanotechnology, Monitoring & Management, 2019, 11: 100212.
[27] 彭春輝,任奕林,李寶軍. 生物炭基肥擠壓成型工藝參數(shù)優(yōu)化[J]. 中國農(nóng)業(yè)科技導(dǎo)報,2019,21(5):74-84.
Peng Chunhui, Ren Yilin, Li Baojun. Process optimization of biochar-based fertilizer compressing modeling experiments[J]. Journal of Agricultural Science and Technology, 2019, 21(5): 74-84. (in Chinese with English abstract)
[28] 馬歡歡,周建斌,王劉江,等. 秸稈炭基肥料擠壓造粒成型優(yōu)化及主要性能[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(5):270-276.
Ma Huanhuan, Zhou Jianbin, Wang Liujiang, et al. Straw carbon based fertilizer granulation molding optimization and its main properties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 270-276. (in Chinese with English abstract)
[29] 秦麗元,王秋靜,蔣恩臣,等. 改性木質(zhì)素粘結(jié)生物質(zhì)炭包膜尿素肥料性能試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(5):171-182.
Qin Liyuan, Wang Qiujing, Jiang Enchen, et al. Study on biochar coated urea fertilizer with lignin adhesive modified by different solvents[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 171-182. (in Chinese with English abstract)
[30] 邱現(xiàn)奎. 粉煤灰包膜緩釋肥的制備及其對作物生長的影響研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2011.
Qiu Xiankui. Study on the Making of Fly Ash Slow Release Fertilizer andIts Effects on Crop Growth[D]. Tai’an: Shan Dong University, 2011. (in Chinese with English abstract)
[31] 蔣恩臣,張偉,秦麗元. 粒狀生物質(zhì)炭基尿素肥料制備及其性能研究[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報,2014,45(11):89-94.
Jiang Enchen, Zhang Wei, Qin Liyuan. Study on preparation of granular biochar-based urea and property[J]. Journal of Northeast Agricultural University, 2014, 45(11): 89-94. (in Chinese with English abstract)
[32] Noppakundilograt S, Pheatcharat N, Kiatkamjornwong S, et al. Multilayer-Coated NPK compound fertilizer hydrogel with controlled nutrient release and water absorbency[J]. Journal of Applied Polymer Science, 2015, 132: 41249.
[33] 陳松嶺. 環(huán)境友好型水基共聚物-生物炭復(fù)合包膜氮肥制備及其緩釋性能的研究[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2017.
Chen Songling. Study on Preparation and Slow-release Properties of Environmental Friendly Water-based Copolymer-biochar Composite Coating Nitrogen Fertilizer[D]. Shenyang: Shenyang Agricultural University, 2017. (in Chinese with English abstract)
Property and slow-release effect of coated urea with different particle-size biochar
Shen Xiuli1, Liu Siyuan2, Shen Yujun1, Meng Haibo1※, Wang Fang2, Li Ning2, Zhang Deli2
(1.,,,100125; 2.,255000,)
Coated urea fertilizer is widely used to provide nutrient nitrogen for growing plants in agriculture industry. This type of slow-release fertilizer can effectively improve nitrogen utilization, particularly due to a large amount of dissolved nitrogen in conventional fertilizer lost along with surface runoff and leached water, thereby to cause severely environmental and ecological problems, such as water eutrophication. Biochar, a fine-grained porous material rich in carbon, shows excellent coating properties. Compared with organic-solvent-dissolvable polymers, biochar was cheap, renewable, and environmentally friendly non-toxic during production. Moreover, the presence of highly-porous structure and various functional groups can be expected to store more carbon, and thereby to reduce soil emission of greenhouse gases. Therefore, biochar coating can decrease nutrient leaching, further to improve soil quality and crop yield, via reduced irrigation and fertilizer requirements. At present, most previous studies focused on the combined use of biochar with other envelopment materials, or the extruded granulation with inorganic fertilizers. The slow-release behaviors of biochar coated fertilizer still remain unknown. In this study, a novel slow-release nitrogen fertilizer was developed by coating urea granules with different biochar powder, in order to explore the effect of biochar particle size in various coating layers on the slow-release behavior. Before coating, urea granules were sieved to obtain fertilizer particles with a diameter of 2.00-2.50 mm. Taking biochar powder as the coating materials, the coated urea fertilizers were prepared in a sugar-coating machine under the revolving speed of 40 r/min. Three slow-release fertilizers were produced: C_1 (single coating layer, 100-mesh biochar powder coated in the single layer), C_2 (two coating layers, 100-mesh in inner layer and 60-80-mesh in outer layer), and C_3 (three coating layers, 100-mesh in inner layer, 60-80-mesh in middle layer and 40-60-mesh in outer layer). The obtained coated urea fertilizers were then characterized, including the distribution of particle size, microstructure, compressive strength, wearability, and water absorbency with different particle-size biochar powder. A leaching test of soil column was used to evaluate the nutrient release behaviors in soil. The results demonstrated that the particle size of three slow-release fertilizers distributed in 2.90-4.80 mm, increasing with the number of layers, indicating that the particle sizes of C_2 and C_3 were significantly higher than that of C1. The compressive strength of three slow-release fertilizers was in the range of 20.40-48.00 N, which meeting the demand of industrial production. Compared with C_1 and C_2, C_3 showed the least water absorption ratio (1.69) in much smoother surface of particles, indicating that the dense layered microstructure with abundant pores was observed in the cross section of the C_3 particles. The nitrogen concentration of C_3 in leaching solution increased as the leaching time increased, while the urea concentrations of C_1 and C_2 were contrary to that of C_3. In the treatment of C_3, the water resistance and slow release effect of nitrogen were significantly better than those of C_1 and C_2. Therefore, it infers that controlling the particle-size of coating materials (biochar) and coating layers can significantly reduce the water infiltration and nutrients outflow, further to improve the slow-release behavior of fertilizer. The finding can provide a new technical path for the potential development and application of biochar coated slow-release fertilizer.
biochar; particle-size; fertilizers; coat; urea; slow release
沈秀麗,柳思遠(yuǎn),沈玉君,等. 不同粒徑生物炭包膜尿素緩釋肥性能及緩釋效果[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(15):159-166.doi:10.11975/j.issn.1002-6819.2020.15.020 http://www.tcsae.org
Shen Xiuli, Liu Siyuan, Shen Yujun, et al. Property and slow-release effect of coated urea with different particle-size biochar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 159-166. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.15.020 http://www.tcsae.org
2020-04-12
2020-05-29
國家自然科學(xué)基金(51706127);農(nóng)業(yè)部重點實驗室開放課題(KLERUAR2017-02)
沈秀麗,博士,主要從事生物質(zhì)資源化利用方面的研究。Email:shenxiuli111@163.com
孟海波,研究員,主要從事生物質(zhì)資源開發(fā)利用方面研究。Email:menghb7029@163.com
10.11975/j.issn.1002-6819.2020.15.020
TK6; S216.2
A
1002-6819(2020)-15-0159-08