李策 張備 姜從玉 胡瑞萍
摘 要 近年來(lái),應(yīng)用干細(xì)胞治療神經(jīng)系統(tǒng)疾病逐漸成為神經(jīng)科學(xué)領(lǐng)域的研究熱點(diǎn)。本文概要介紹影響神經(jīng)干細(xì)胞增殖及分化的主要因素。
關(guān)鍵詞 神經(jīng)干細(xì)胞 分子機(jī)制 中樞神經(jīng)系統(tǒng)疾病
中圖分類(lèi)號(hào):R329.28 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-1533(2021)07-0021-05
*基金項(xiàng)目:①?lài)?guó)家自然科學(xué)基金資助項(xiàng)目(82002390);②上海市衛(wèi)生和計(jì)劃生育委員會(huì)重要薄弱學(xué)科建設(shè)項(xiàng)目(2015ZB0401)
The factors influencing the proliferation and differentiation of neural stem cells*
LI Ce**, ZHANG Bei, JIANG Congyu, HU Ruiping***
(Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China)
ABSTRACT Recently, stem cell therapy for the treatment of nervous system diseases has gradually become a hotspot in the field of neuroscience. This paper summarizes the factors influencing the proliferation and differentiation of neural stem cells in vivo.
KEy WORDS neural stem cells; molecular mechanism; central nervous system diseases
在成人腦組織中,主要有兩個(gè)區(qū)域可觀(guān)察到神經(jīng)干細(xì)胞的存在,即腦室下區(qū)和海馬體齒狀回。在人類(lèi)中,由腦卒中誘導(dǎo)的神經(jīng)再生似并不能導(dǎo)致患者的神經(jīng)功能在腦卒中后得到足夠程度的恢復(fù),但目前還不清楚這是否是因?yàn)樯窠?jīng)干細(xì)胞的數(shù)量太少的緣故。不過(guò),近年來(lái),神經(jīng)干細(xì)胞移植已被研究用于多種神經(jīng)系統(tǒng)疾病的治療,如腦外傷[1]、腦卒中[2]和帕金森病[3]等。
神經(jīng)干細(xì)胞的分化依賴(lài)于其周?chē)纳窠?jīng)細(xì)胞、基質(zhì)細(xì)胞和細(xì)胞外基質(zhì)?;谏窠?jīng)干細(xì)胞所處微環(huán)境的不同,同一來(lái)源的神經(jīng)干細(xì)胞可分化為不同種類(lèi)的神經(jīng)細(xì)胞,其分化過(guò)程涉及自我調(diào)節(jié)和外源信號(hào)物質(zhì)的調(diào)節(jié)。適當(dāng)誘導(dǎo)內(nèi)源性或外源性神經(jīng)干細(xì)胞向神經(jīng)元增殖和分化,以補(bǔ)償神經(jīng)元的損失,這被認(rèn)為是一種潛在的有效促進(jìn)神經(jīng)再生及其損傷修復(fù)的方法。因此,優(yōu)化神經(jīng)干細(xì)胞移植的微環(huán)境,使神經(jīng)干細(xì)胞發(fā)生特異性分化,對(duì)神經(jīng)功能恢復(fù)具有重要的作用。本文概要介紹影響神經(jīng)干細(xì)胞增殖及分化的主要因素。
1 激素
1.1 糖皮質(zhì)激素
許多激素均已被證實(shí)可影響神經(jīng)干細(xì)胞的增殖及分化,如糖皮質(zhì)激素[4]、生長(zhǎng)激素和催乳素[5]等。有研究表明,低氧誘導(dǎo)的大鼠海馬體糖皮質(zhì)激素水平增高是海馬體齒狀回神經(jīng)及其可塑性受損的原因之一[6]。氯倍他索為糖皮質(zhì)激素類(lèi)藥物,廣泛用于濕疹[7]、銀屑病[8]、扁平苔蘚[9]等皮膚病治療。然而,體內(nèi)研究發(fā)現(xiàn),氯倍他索可促進(jìn)神經(jīng)干細(xì)胞向少突膠質(zhì)前體細(xì)胞(oligodendrocyte precursor cells, OPCs)分化,并促進(jìn)OPCs分化為少突膠質(zhì)細(xì)胞,進(jìn)而促進(jìn)髓鞘形成[10-11],而神經(jīng)干細(xì)胞分化為星形膠質(zhì)細(xì)胞的比例則相應(yīng)下降[12]。
TREK-1是一種雙孔鉀離子通道,其已被證實(shí)參與了抑郁癥的發(fā)病[13],機(jī)制與神經(jīng)干細(xì)胞的增殖有關(guān)。TREK-1抑制劑布比卡因和姜黃素能顯著增強(qiáng)胚胎神經(jīng)干細(xì)胞的生存和增殖能力,糖皮質(zhì)激素類(lèi)藥物地塞米松則可顯著提高TREK-1及其蛋白mRNA的表達(dá)水平,進(jìn)而導(dǎo)致神經(jīng)干細(xì)胞的增殖能力下降,但地塞米松的此效應(yīng)能被氟西汀所逆轉(zhuǎn)[14]。氟西汀是一種選擇性5-羥色胺再攝取抑制劑,是一種具有TREK-1抑制作用的抗抑郁藥物[15],能顯著抑制TREK-1的表達(dá),從而改善地塞米松誘導(dǎo)的神經(jīng)干細(xì)胞增殖能力下降現(xiàn)象[14]??挂钟羲幬锇疚魈仗m也是通過(guò)減少TREK-1的表達(dá),進(jìn)而促進(jìn)海馬體齒狀回神經(jīng)干細(xì)胞的增殖,使腦卒中后抑郁大鼠體重增加、運(yùn)動(dòng)能力得到改善的[16]。此外,抑制TREK-1的活性可減少腦皮質(zhì)缺氧大鼠的神經(jīng)元凋亡[17]、抑制星形膠質(zhì)細(xì)胞增殖[18],提示TREK-1和壓力導(dǎo)致的糖皮質(zhì)激素水平增高與神經(jīng)再生減少有關(guān),而5-羥色胺或抗抑郁藥物水平增高則與神經(jīng)再生增加有關(guān)[19]。
綜合以上研究結(jié)果可以推知,由于糖皮質(zhì)激素既能抑制神經(jīng)干細(xì)胞增殖,又能促進(jìn)神經(jīng)干細(xì)胞向少突膠質(zhì)細(xì)胞分化,故其在神經(jīng)干細(xì)胞移植治療脫髓鞘病變性中樞神經(jīng)系統(tǒng)疾病中可能有很好的臨床應(yīng)用價(jià)值,但仍需進(jìn)行進(jìn)一步的深入研究。
1.2 生長(zhǎng)激素
一項(xiàng)研究發(fā)現(xiàn),使用生長(zhǎng)激素刺激可導(dǎo)致小鼠胚胎神經(jīng)干細(xì)胞增殖,且腦缺血小鼠同側(cè)腦室下區(qū)中生長(zhǎng)激素受體的免疫反應(yīng)活性顯著增高[20]。運(yùn)動(dòng)訓(xùn)練可提高學(xué)習(xí)記憶能力,此與其能增加生長(zhǎng)激素的分泌,進(jìn)而促進(jìn)神經(jīng)干細(xì)胞的增殖有關(guān),但運(yùn)動(dòng)訓(xùn)練不能促進(jìn)生長(zhǎng)激素受體缺失小鼠神經(jīng)干細(xì)胞的增殖[21]。這些發(fā)現(xiàn)提示,與生長(zhǎng)激素及其受體有關(guān)的神經(jīng)干細(xì)胞增殖在運(yùn)動(dòng)訓(xùn)練誘導(dǎo)的神經(jīng)再生及預(yù)防神經(jīng)退化中起著重要的作用,但具體機(jī)制還不十分清楚。
Devesa等[22]使用生長(zhǎng)激素聯(lián)合康復(fù)治療方法治療了1例9月齡大的尾端退化綜合征(caudal regression syndrome)患兒,治療共持續(xù)5年。治療6個(gè)月后,患兒的粗大運(yùn)動(dòng)功能測(cè)試88項(xiàng)(Gross Motor Function Measure-88 item, GMFM-88)評(píng)估結(jié)果提高至39.48%,感覺(jué)和運(yùn)動(dòng)功能明顯改善;治療18個(gè)月后,患兒的感覺(jué)神經(jīng)支配完成,并已可控制括約??;治療3年后,患兒開(kāi)始拄拐行走,但足底屈曲,GMFM-88評(píng)估結(jié)果為78.48%。該研究表明,使用生長(zhǎng)激素促進(jìn)神經(jīng)干細(xì)胞增殖,進(jìn)而治療中樞神經(jīng)系統(tǒng)損傷性疾病具有較好的臨床應(yīng)用前景。
1.3 促腎上腺皮質(zhì)激素釋放激素(corticotropinreleasing hormone, CRH)
CRH是哺乳動(dòng)物應(yīng)激反應(yīng)的主要介質(zhì),也是成人腦中的關(guān)鍵神經(jīng)調(diào)節(jié)因子,是海馬體區(qū)神經(jīng)干細(xì)胞增殖及分化所必需的物質(zhì)。CRH基因缺陷會(huì)損害海馬體區(qū)神經(jīng)干細(xì)胞對(duì)環(huán)境刺激的反應(yīng)能力,減少神經(jīng)形成,影響空間記憶能力,而暴露于CRH則可促進(jìn)神經(jīng)形成[23]。不過(guò),有關(guān)CRH對(duì)神經(jīng)干細(xì)胞增殖及分化影響的研究很少,需進(jìn)一步研究以明確CRH促進(jìn)神經(jīng)形成的機(jī)制。
2 神經(jīng)遞質(zhì)
2.1 5-羥色胺
以往研究表明,抗抑郁藥物可通過(guò)增加神經(jīng)祖細(xì)胞的增殖、加速樹(shù)突的生長(zhǎng)、提高新生神經(jīng)元的存活率來(lái)促進(jìn)成人海馬體區(qū)的神經(jīng)形成[24]。最近研究則發(fā)現(xiàn),運(yùn)動(dòng)訓(xùn)練誘導(dǎo)的5-羥色胺是神經(jīng)再生的參與者,對(duì)運(yùn)動(dòng)訓(xùn)練誘導(dǎo)的神經(jīng)再生至關(guān)重要[25],能直接促進(jìn)神經(jīng)干細(xì)胞的增殖[26]。5-羥色胺轉(zhuǎn)運(yùn)蛋白在運(yùn)動(dòng)訓(xùn)練誘導(dǎo)的神經(jīng)再生過(guò)程中也是必不可少的[27]。
盡管已知運(yùn)動(dòng)訓(xùn)練可導(dǎo)致腦中的5-羥色胺水平增高[28-29],但目前還不清楚5-羥色胺是如何促進(jìn)神經(jīng)干細(xì)胞增殖的。氟西汀是一種選擇性5-羥色胺再攝取抑制劑類(lèi)抗抑郁藥物。以往研究表明,非典型蛋白激酶C參與了神經(jīng)形成和氟西汀的抗抑郁作用過(guò)程[30]。近年研究還發(fā)現(xiàn),氟西汀也可通過(guò)蛋白激酶Mζ介導(dǎo)的信號(hào)通路增加海馬體區(qū)神經(jīng)干細(xì)胞的增殖,并經(jīng)作用于1A型5-羥色胺受體而激活絲裂原活化的蛋白激酶信號(hào)通路下游的磷酸化[31]。不過(guò),氟西汀只能特異性地增加海馬體腹側(cè)的神經(jīng)干細(xì)胞增殖,對(duì)海馬體背側(cè)的神經(jīng)干細(xì)胞沒(méi)有顯著影響。即使在海馬體腹側(cè),氟西汀亦僅能特異性地誘導(dǎo)Ⅱ型神經(jīng)干細(xì)胞和成神經(jīng)細(xì)胞的增殖,而Ⅰ型神經(jīng)干細(xì)胞的有絲分裂活性未發(fā)生改變[32]。
5-羥色胺與其受體相互作用后可增加成人大腦皮質(zhì)中神經(jīng)前體細(xì)胞的增殖。研究表明,給予1A型5-羥色胺受體激動(dòng)劑可增加成人腦室下區(qū)和海馬體齒狀回中的神經(jīng)前體細(xì)胞數(shù)量[33],而使用藥物降低5-羥色胺水平則可抑制成年動(dòng)物腦中神經(jīng)前體細(xì)胞的增殖[34]。不同亞型5-羥色胺受體參與的神經(jīng)發(fā)育階段也不同,如神經(jīng)再生、凋亡,以及軸突分支和樹(shù)突的形成等[35]。例如,3A型5-羥色胺受體在運(yùn)動(dòng)訓(xùn)練誘導(dǎo)的海馬體區(qū)神經(jīng)形成和抗抑郁治療中起著關(guān)鍵作用,但對(duì)學(xué)習(xí)能力沒(méi)有顯著影響[29];2A型5-羥色胺受體是腦中表達(dá)最廣泛的5-羥色胺受體之一,其在神經(jīng)元分化及其樹(shù)突成熟過(guò)程中起著重要作用[35],同時(shí)也是運(yùn)動(dòng)訓(xùn)練治療偏癱患者運(yùn)動(dòng)功能障礙有效的潛在機(jī)制之一[36]。因此,似可通過(guò)激活不同亞型的5-羥色胺受體來(lái)誘導(dǎo)神經(jīng)干細(xì)胞定向分化為不同類(lèi)型的神經(jīng)細(xì)胞。
2.2 多巴胺
多巴胺系統(tǒng)具有調(diào)控行為表型的生理學(xué)功能,如運(yùn)動(dòng)控制、獎(jiǎng)賞、焦慮和抑郁等。研究表明,多巴胺可增加成人腦中海馬體區(qū)新生神經(jīng)元的數(shù)量,而去除多巴胺能神經(jīng)元?jiǎng)t會(huì)減少海馬體齒狀回顆粒下區(qū)中神經(jīng)干細(xì)胞的增殖[37],提示多巴胺具有促進(jìn)成人腦中神經(jīng)干細(xì)胞及祖細(xì)胞增殖和分化的作用[38],機(jī)制可能與多巴胺D1受體和Wnt/β-連環(huán)蛋白信號(hào)通路的激活有關(guān)[39]。腦多巴胺神經(jīng)營(yíng)養(yǎng)因子(cerebral dopamine neurotrophic factor, CDNF)是一種可能具有保護(hù)和恢復(fù)多巴胺能神經(jīng)元作用的關(guān)鍵蛋白,給予CDNF可改善帕金森病大鼠的運(yùn)動(dòng)功能,并增加其腦室下區(qū)中表達(dá)雙皮質(zhì)素的神經(jīng)母細(xì)胞數(shù)量,促進(jìn)神經(jīng)干細(xì)胞向受損的紋狀體遷移[40]。一項(xiàng)研究將多巴胺功能化于通過(guò)三維打印制成的甲基丙烯酸明膠生物支架上,神經(jīng)干細(xì)胞被用作此支架的主要干細(xì)胞來(lái)源,其最終能分化為多種神經(jīng)細(xì)胞類(lèi)型,包括神經(jīng)元、星形膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞,由此形成的多巴胺-甲基丙烯酸明膠生物支架具有高孔隙度和互聯(lián)的三維環(huán)境,有利于神經(jīng)干細(xì)胞增殖[41]。
2.3 谷氨酸
神經(jīng)可塑性降低和谷氨酸能神經(jīng)遞質(zhì)在突觸間隙的積聚是導(dǎo)致腦卒中后抑郁的主要病理學(xué)因素。腦卒中后抑郁患者星形膠質(zhì)細(xì)胞中谷氨酸轉(zhuǎn)運(yùn)蛋白-1水平的下降會(huì)刺激神經(jīng)干細(xì)胞向星形膠質(zhì)細(xì)胞分化,也會(huì)影響谷氨酸代謝并抑制功能性突觸的形成[42]。代謝型谷氨酸受體-2/3表達(dá)于增殖的來(lái)自人前腦的神經(jīng)干細(xì)胞及其分化產(chǎn)生的神經(jīng)元和星形膠質(zhì)細(xì)胞上,激活這些受體可刺激神經(jīng)干細(xì)胞增殖,但不會(huì)顯著影響神經(jīng)干細(xì)胞的分化[43],提示谷氨酸及其受體在神經(jīng)干細(xì)胞調(diào)控中起著重要作用。
2.4 組胺
組胺在中樞神經(jīng)系統(tǒng)中起著神經(jīng)遞質(zhì)的作用。體外研究表明,透明質(zhì)酸可通過(guò)激活1型組胺受體而增加神經(jīng)干細(xì)胞分化為神經(jīng)元的數(shù)量,機(jī)制可能與皮質(zhì)上皮祖細(xì)胞中prospero-1和neurogenin-1基因的表達(dá)水平增高有關(guān)[44]。未來(lái)應(yīng)進(jìn)一步研究組胺對(duì)神經(jīng)干細(xì)胞分化的影響及其機(jī)制。
3 轉(zhuǎn)錄因子
3.1 Sox2
Sox2對(duì)神經(jīng)干細(xì)胞的生存和腦發(fā)育至關(guān)重要[45]。螺羥吲哚1a(spirooxindole 1a)是一種在研小分子抗腫瘤化合物,其能通過(guò)降低Sox2和提高β-微管蛋白Ⅲ水平來(lái)誘導(dǎo)神經(jīng)干細(xì)胞分化,治療膠質(zhì)瘤可能有效[46]。
3.2 sonic hedgehog(Shh)
在胚胎發(fā)育過(guò)程中,Shh信號(hào)通路的短暫激活對(duì)少突膠質(zhì)細(xì)胞祖細(xì)胞的產(chǎn)生及其在大腦和脊髓中的分化和成熟至關(guān)重要,且Shh信號(hào)通路的激活可促進(jìn)神經(jīng)干細(xì)胞的增殖[47]。研究表明,使用小分子抑制劑GANT61對(duì)神經(jīng)干細(xì)胞中Shh信號(hào)通路的轉(zhuǎn)錄因子——膠質(zhì)瘤相關(guān)致癌基因-1進(jìn)行短暫和部分抑制可產(chǎn)生遷移能力更強(qiáng)的OPCs,并使之更早地向產(chǎn)生髓鞘蛋白的少突膠質(zhì)細(xì)胞分化[48]。
4 生長(zhǎng)因子和神經(jīng)營(yíng)養(yǎng)因子
4.1 生長(zhǎng)因子
神經(jīng)干細(xì)胞的增殖及分化受周?chē)h(huán)境的調(diào)控。當(dāng)從培養(yǎng)基中去除生長(zhǎng)因子后,神經(jīng)干細(xì)胞的增殖便會(huì)停滯并分化為神經(jīng)元和膠質(zhì)細(xì)胞[49]。研究表明,胰島素樣生長(zhǎng)因子-1[50]和血管內(nèi)皮生長(zhǎng)因子[51]在運(yùn)動(dòng)訓(xùn)練誘導(dǎo)的神經(jīng)形成增加過(guò)程中起著重要的作用。各種營(yíng)養(yǎng)和化學(xué)因子能與生長(zhǎng)因子協(xié)同作用,共同促進(jìn)神經(jīng)干細(xì)胞分化為神經(jīng)元[52]。
4.2 神經(jīng)營(yíng)養(yǎng)因子
睫狀神經(jīng)營(yíng)養(yǎng)因子(ciliary neurotrophic factor, CNTF)是腦室下區(qū)和海馬體區(qū)神經(jīng)形成的主要決定因子[53]。一項(xiàng)研究將一種基于CNTF的生物活性區(qū)域設(shè)計(jì)的11聚多肽(即肽6)注入健康成年小鼠的外周皮下,結(jié)果發(fā)現(xiàn)小鼠海馬體區(qū)神經(jīng)祖細(xì)胞的增殖及其分化為神經(jīng)元的數(shù)量均增加,且記憶也獲改善[54]。
膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子(glial cell line-derived neurotrophic factor, GDNF)具有保護(hù)多巴胺能神經(jīng)元、挽救運(yùn)動(dòng)神經(jīng)元的作用,可用于退行性神經(jīng)系統(tǒng)疾病治療。一項(xiàng)研究利用重組腺相關(guān)病毒載體構(gòu)建了整合有GDNF基因的改良神經(jīng)干細(xì)胞,然后將此神經(jīng)干細(xì)胞移植至小鼠海馬體CA1區(qū),結(jié)果發(fā)現(xiàn)此改良神經(jīng)干細(xì)胞可在維持GDNF表達(dá)的同時(shí)向海馬體齒狀回區(qū)遷移并分化為神經(jīng)元細(xì)胞[55],提示人神經(jīng)祖細(xì)胞移植有治療腦損傷和退行性神經(jīng)系統(tǒng)疾病的潛力。
中腦星形膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子(mesencephalic astrocyte-derived neurotrophic factor, MANF)在神經(jīng)系細(xì)胞中呈高表達(dá)狀態(tài)。MANF缺失的神經(jīng)干細(xì)胞雖可增殖,但在神經(jīng)元分化過(guò)程中軸突的擴(kuò)展方面存在缺陷,而體內(nèi)去除MANF后也會(huì)導(dǎo)致神經(jīng)元遷移減慢及其軸突生長(zhǎng)受損[56],表明MANF是哺乳動(dòng)物大腦皮質(zhì)發(fā)育過(guò)程中神經(jīng)元遷移及其軸突生長(zhǎng)的一種重要調(diào)節(jié)因子。
5 其他
β-雌激素受體調(diào)節(jié)因子參與了細(xì)胞黏附、軸突引導(dǎo)、notch和γ-氨基丁酸受體的信號(hào)傳導(dǎo),以及神經(jīng)元前體細(xì)胞分化為多巴胺能神經(jīng)元和少突膠質(zhì)細(xì)胞的過(guò)程。研究表明,β-雌激素受體是胚胎干細(xì)胞分化為中腦神經(jīng)元的一種重要介質(zhì),能防止新生的少突膠質(zhì)細(xì)胞的早熟[57]。芳烴受體是一種可由環(huán)境激動(dòng)劑和飲食色氨酸代謝物激活的配體依賴(lài)性轉(zhuǎn)錄因子,也會(huì)參與免疫反應(yīng)和細(xì)胞周期的調(diào)節(jié)。
6 結(jié)語(yǔ)
影響神經(jīng)干細(xì)胞增殖及分化的因素很多。遺憾的是,目前還不能確定有效、精準(zhǔn)地誘導(dǎo)神經(jīng)干細(xì)胞增殖并分化為腦中特定類(lèi)型的神經(jīng)細(xì)胞所必需的精確的分子信號(hào)組合,也不清楚內(nèi)源性和外源性神經(jīng)干細(xì)胞的發(fā)育過(guò)程是否相同。未來(lái)需進(jìn)行更深入的研究,以明確影響神經(jīng)干細(xì)胞增殖及分化的關(guān)鍵機(jī)制,為神經(jīng)干細(xì)胞移植更好地應(yīng)用于臨床提供理論依據(jù)。
參考文獻(xiàn)
[1] Luo ML, Pan L, Wang L, et al. Transplantation of NSCs promotes the recovery of cognitive functions by regulating neurotransmitters in rats with traumatic brain injury [J]. Neurochem Res, 2019, 44(12): 2765-2775.
[2] Zhang GL, Zhu ZH, Wang YZ. Neural stem cell transplantation therapy for brain ischemic stroke: review and perspectives [J/OL]. World J Stem Cells, 2019, 11(10): 817-830. doi: 10.4252/wjsc.v11.i10.817.
[3] Han F, Hu B. Stem cell therapy for parkinsons disease [J]. Adv Exp Med Biol, 2020, 1266: 21-38.
[4] Sundberg M, Savola S, Hienola A, et al. Glucocorticoid hormones decrease proliferation of embryonic neural stem cells through ubiquitin-mediated degradation of cyclin D1 [J]. J Neurosci, 2006, 26(20): 5402-5410.
[5] Pathipati P, Gorba T, Scheepens A, et al. Growth hormone and prolactin regulate human neural stem cell regenerative activity [J]. Neuroscience, 2011, 190: 409-427.
[6] Baitharu I, Deep SN, Jain V, et al. Inhibition of glucocorticoid receptors ameliorates hypobaric hypoxia induced memory impairment in rat [J]. Behav Brain Res, 2013, 240: 76-86.
[7] Nagaich U, Gulati N. Nanostructured lipid carriers (NLC) based controlled release topical gel of clobetasol propionate: design and in vivo characterization [J]. Drug Deliv Transl Res, 2016, 6(3): 289-298.
[8] Kumar S, Prasad M, Rao R. Topical delivery of clobetasol propionate loaded nanosponge hydrogel for effective treatment of psoriasis: formulation, physicochemical characterization, antipsoriatic potential and biochemical estimation [J]. Mater Sci Eng C Mater Biol Appl, 2021, 119: 111605.
[9] Santonocito S, Polizzi A, De Pasquale R, et al. Analysis of the efficacy of two treatment protocols for patients with symptomatic oral lichen planus: a randomized clinical trial[J]. Int J Environ Res Public Health, 2021, 18(1): 56.
[10] Bove RM, Green AJ. Remyelinating pharmacotherapies in multiple sclerosis [J]. Neurotherapeutics, 2017, 14(4): 894-904.
[11] Yao X, Su T, Verkman AS. Clobetasol promotes remyelination in a mouse model of neuromyelitis optica [J/OL]. Acta Neuropathol Commun, 2016, 4(1): 42. doi: 10.1186/s40478-016-0309-4.
[12] Shi W, Bi S, Dai Y, et al. Clobetasol propionate enhances neural stem cell and oligodendrocyte differentiation [J]. Exp Ther Med, 2019, 18(2): 1258-1266.
[13] Heurteaux C, Lucas G, Guy N, et al. Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype [J]. Nat Neurosci, 2006, 9(9): 1134-1141.
[14] Xi G, Zhang X, Zhang L, et al. Fluoxetine attenuates the inhibitory effect of glucocorticoid hormones on neurogenesis in vitro via a two-pore domain potassium channel, TREK-1[J]. Psychopharmacology (Berl), 2011, 214(3): 747-759.
[15] Kennard LE, Chumbley JR, Ranatunga KM, et al. Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine [J]. Br J Pharmacol, 2005, 144(6): 821-829.
[16] Lin DH, Zhang XR, Ye DQ, et al. The role of the two-pore domain potassium channel TREK-1 in the therapeutic effects of escitalopram in a rat model of poststroke depression [J]. CNS Neurosci Ther, 2015, 21(6): 504-512.
[17] Wu X, Liu Y, Chen X, et al. Involvement of TREK-1 activity in astrocyte function and neuroprotection under simulated ischemia conditions [J]. J Mol Neurosci, 2013, 49(3): 499-506.
[18] Wang M, Song J, Xiao W, et al. Changes in lipid-sensitive two-pore domain potassium channel TREK-1 expression and its involvement in astrogliosis following cerebral ischemia in rats [J]. J Mol Neurosci, 2012, 46(2): 384-392.
[19] Malberg JE, Eisch AJ, Nestler EJ, et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus [J]. J Neurosci, 2000, 20(24): 9104-9110.
[20] Christophidis LJ, Gorba T, Gustavsson M, et al. Growth hormone receptor immunoreactivity is increased in the subventricular zone of juvenile rat brain after focal ischemia: a potential role for growth hormone in injury-induced neurogenesis [J]. Growth Horm IGF Res, 2009, 19(6): 497-506.
[21] Blackmore DG, Golmohammadi MG, Large B, et al. Exercise increases neural stem cell number in a growth hormonedependent manner, augmenting the regenerative response in aged mice [J]. Stem Cells, 2009, 27(8): 2044-2052.
[22] Devesa J, Alonso A, López N, et al. Growth hormone (GH) and rehabilitation promoted distal innervation in a child affected by caudal regression syndrome [J/OL]. Int J Mol Sci, 2017, 18(1): 230. doi: 10.3390/ijms18010230.
[23] Koutmani Y, Gampierakis IA, Polissidis A, et al. CRH promotes the neurogenic activity of neural stem cells in the adult hippocampus [J]. Cell Rep, 2019, 29(4): 932-945.e7.
[24] Sahay A, Hen R. Adult hippocampal neurogenesis in depression [J]. Nat Neurosci, 2007, 10(9): 1110-1115.
[25] Klempin F, Beis D, Mosienko V, et al. Serotonin is required for exercise-induced adult hippocampal neurogenesis [J]. J Neurosci, 2013, 33(19): 8270-8275.
[26] Tong CK, Chen J, Cebrián-Silla A, et al. Axonal control of the adult neural stem cell niche [J]. Cell Stem Cell, 2014, 14(4): 500-511.
[27] Rogers J, Chen F, Stanic D, et al. Paradoxical effects of exercise on hippocampal plasticity and cognition in mice with a heterozygous null mutation in the serotonin transporter gene[J]. Br J Pharmacol, 2019, 176(17): 3279-3296.
[28] Meeusen R, Thorré K, Chaouloff F, et al. Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats [J]. Brain Res, 1996, 740(1/2): 245-252.
[29] Kondo M, Nakamura Y, Ishida Y, et al. The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects [J]. Mol Psychiatry, 2015, 20(11): 1428-1437.
[30] Wang J, Gallagher D, Devito LM, et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation [J]. Cell Stem Cell, 2012, 11(1): 23-35.
[31] Wang YX, Zhang XR, Zhang ZJ, et al. Protein kinase Mζ is involved in the modulatory effect of fluoxetine on hippocampal neurogenesis in vitro [J]. Int J Neuropsychopharmacol, 2014, 17(9): 1429-1441.
[32] Zhou QG, Lee D, Ro EJ, et al. Regional-specific effect of fluoxetine on rapidly dividing progenitors along the dorsoventral axis of the hippocampus [J/OL]. Sci Rep, 2016, 6: 35572. doi: 10.1038/srep35572.
[33] Banasr M, Hery M, Printemps R, et al. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone [J]. Neuropsychopharmacology, 2004, 29(3): 450-460.
[34] Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants [J]. Science, 2003, 301(5634): 805-809.
[35] Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics [J]. Nat Rev Neurosci, 2003, 4(12): 1002-1012.
[36] Mizutani K, Sonoda S, Wakita H. Ritanserin, a serotonin-2 receptor antagonist, inhibits functional recovery after cerebral infarction [J]. Neuroreport, 2018, 29(1): 54-58.
[37] H?glinger GU, Rizk P, Muriel MP, et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease [J]. Nat Neurosci, 2004, 7(7): 726-735.
[38] Ohira K. Dopamine as a growth differentiation factor in the mammalian brain [J/OL]. Neural Regen Res, 2020, 15(3): 390-393. doi: 10.4103/1673-5374.266052.
[39] Mishra A, Singh S, Tiwari V, et al. Dopamine D1 receptor activation improves adult hippocampal neurogenesis and exerts anxiolytic and antidepressant-like effect via activation of Wnt/b-catenin pathways in rat model of Parkinsons disease [J]. Neurochem Int, 2019, 122: 170-186.
[40] Nasrolahi A, Mahmoudi J, Karimipour M, et al. Effect of cerebral dopamine neurotrophic factor on endogenous neural progenitor cell migration in a rat model of Parkinsons disease[J/OL]. EXCLI J, 2019, 18: 139-153 [2019-11-17]. https:// www.excli.de/vol18/Mahmoudi_Farhoudi_05032019_proof. pdf.
[41] Zhou X, Cui H, Nowicki M, et al. Three-dimensional-bioprinted dopamine-based matrix for promoting neural regeneration [J]. ACS Appl Mater Interfaces, 2018, 10(10): 8993-9001.
[42] Yu D, Cheng Z, Ali AI, et al. Down-expressed GLT-1 in PSD astrocytes inhibits synaptic formation of NSC-derived neurons in vitro [J]. Cell Cycle, 2019, 18(1): 105-114.
[43] Dindler A, Blaabjerg M, Kamand M, et al. Activation of group II metabotropic glutamate receptors increases proliferation but does not influence neuronal differentiation of a human neural stem cell line [J]. Basic Clin Pharmacol Toxicol, 2018, 122(4): 367-372.
[44] Rodríguez-Martínez G, Velasco I, García-López G, et al. Histamine is required during neural stem cell proliferation to increase neuron differentiation [J]. Neuroscience, 2012, 216: 10-17.
[45] Bertolini JA, Favaro R, Zhu Y, et al. Mapping the global chromatin connectivity network for Sox2 function in neural stem cell maintenance [J]. Cell Stem Cell, 2019, 24(3): 462-476.e6.
[46] Amaral JD, Silva D, Rodrigues CMP, et al. A novel small molecule p53 stabilizer for brain cell differentiation [J/OL]. Front Chem, 2019, 7: 15. doi: 10.3389/fchem.2019.00015.
[47] Shitasako S, Ito Y, Ito R, et al. Wnt and Shh signals regulate neural stem cell proliferation and differentiation in the optic tectum of adult zebrafish [J]. Dev Neurobiol, 2017, 77(10): 1206-1220.
[48] Namchaiw P, Wen H, Mayrhofer F, et al. Temporal and partial inhibition of GLI1 in neural stem cells (NSCs) results in the early maturation of NSC derived oligodendrocytes in vitro[J/OL]. Stem Cell Res Ther, 2019, 10(1): 272. doi: 10.1186/ s13287-019-1374-y.
[49] Vescovi A, Gritti A, Cossu G, et al. Neural stem cells: plasticity and their transdifferentiation potential [J]. Cells Tissues Organs, 2002, 171(1): 64-76.
[50] Mir S, Cai W, Carlson SW, et al. IGF-1 mediated neurogenesis involves a novel RIT1/Akt/Sox2 cascade [J/OL]. Sci Rep, 2017, 7(1): 3283. doi: 10.1038/s41598-017-03641-9.
[51] Chen Z, Hu Q, Xie Q, et al. Effects of treadmill exercise on motor and cognitive function recovery of MCAO mice through the caveolin-1/VEGF signaling pathway in ischemic penumbra [J]. Neurochem Res, 2019, 44(4): 930-946.
[52] Zhao H, Zuo X, Ren L, et al. Combined use of bFGF/EGF and all-trans-retinoic acid cooperatively promotes neuronal differentiation and neurite outgrowth in neural stem cells [J]. Neurosci Lett, 2019, 690: 61-68.
[53] Yang P, Arnold SA, Habas A, et al. Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice [J]. J Neurosci, 2008, 28(9): 2231-2241.
[54] Chohan MO, Li B, Blanchard J, et al. Enhancement of dentate gyrus neurogenesis, dendritic and synaptic plasticity and memory by a neurotrophic peptide [J]. Neurobiol Aging, 2011, 32(8): 1420-1434.
[55] Zhang J, Liu X, Zhang Y, et al. Human neural stem cells with GDNF site-specific integration at AAVS1 by using AAV vectors retained their stemness [J]. Neurochem Res, 2018, 43(4): 930-937.
[56] Tseng KY, Danilova T, Domanskyi A, et al. MANF is essential for neurite extension and neuronal migration in the developing cortex [J/OL]. eNeuro, 2017, 4(5): ENEURO.0214-17.2017. doi: 10.1523/ENEURO.0214-17.2017.
[57] Varshney MK, Inzunza J, Lupu D, et al. Role of estrogen receptor beta in neural differentiation of mouse embryonic stem cells [J]. Proc Natl Acad Sci U S A, 2017, 114(48): E10428-E10437.