徐丹丹, 王浩斌, 濮毅涵
氮沉降對(duì)人工林生長(zhǎng)的滯后性影響的研究進(jìn)展
徐丹丹1,2, *, 王浩斌1, 濮毅涵1
1. 南京林業(yè)大學(xué)生物與環(huán)境學(xué)院, 江蘇 210037 2. 南京林業(yè)大學(xué)南方現(xiàn)代林業(yè)協(xié)同創(chuàng)新中心, 江蘇 210037
氮沉降對(duì)人工林生長(zhǎng)的影響是目前的熱點(diǎn)問(wèn)題之一。但是, 現(xiàn)有的研究著重于氮沉降對(duì)人工林生長(zhǎng)的即時(shí)性影響, 而對(duì)人工林生長(zhǎng)的滯后性影響或效應(yīng)研究卻十分缺乏。氮沉降的滯后性效應(yīng)是其逐漸改變?nèi)斯ち稚鷳B(tài)功能的體現(xiàn), 而且滯后性影響機(jī)制與即時(shí)性影響完全不同。因此, 以氮沉降對(duì)人工林的滯后性影響為主線, 分別綜述不同氮沉降濃度對(duì)人工林生長(zhǎng)的影響, 氮沉降對(duì)不同林齡人工林的影響, 不同管理模式下氮沉降對(duì)人工林的影響, 氮沉降對(duì)人工林生長(zhǎng)的滯后性影響和即時(shí)性影響的區(qū)別。
氮沉降; 人工林; 滯后性影響; 即時(shí)性影響; 林齡
全球陸地生態(tài)系統(tǒng)氮沉降呈現(xiàn)日益增加的趨勢(shì), 嚴(yán)重影響了生態(tài)系統(tǒng)的健康[1–2]。我國(guó)氮沉降的程度日益嚴(yán)重, 尤其是亞熱帶地區(qū)[3]。僅從1980s到2000s, 我國(guó)氮沉降的量從13.2 kg·ha-1·a-1增加到21.1 kg·ha-1·a-1[4], 已成為繼北美和歐洲之后氮沉降增長(zhǎng)速度最快的地區(qū), 而且氣候變化的模型預(yù)測(cè)到我國(guó)大氣氮沉降的程度還將繼續(xù)加強(qiáng)[5]。大氣氮沉降大幅度的增加危害生態(tài)系統(tǒng)的健康, 導(dǎo)致生物多樣性的喪失[6–7]。氮沉降對(duì)生態(tài)系統(tǒng)的影響不僅僅表現(xiàn)在改變生態(tài)系統(tǒng)中的氮循環(huán)[8], 而且通過(guò)影響生態(tài)系統(tǒng)中凋落物的分解速度[3]、土壤微生物的豐富度和多樣性[9–10], 以及土壤呼吸[11], 從而影響生態(tài)系統(tǒng)中碳循環(huán)和其他營(yíng)養(yǎng)物質(zhì), 進(jìn)而影響整個(gè)生態(tài)系統(tǒng)的生產(chǎn)力[12]。相對(duì)于天然生態(tài)系統(tǒng)而言, 氮沉降對(duì)于人工林生產(chǎn)的影響具有特殊性, 因?yàn)槭艿饺斯ち植煌芾砟J?集約型管理模式和傳統(tǒng)型管理模式)[13]的交互性影響[14]。而且, 具有經(jīng)濟(jì)產(chǎn)出和生態(tài)價(jià)值雙重功能的人工林[15–16], 相較天然林更注重產(chǎn)量, 尤其是在我國(guó)人工林木材產(chǎn)量的年增長(zhǎng)量遠(yuǎn)低于國(guó)際平均水平的情況下(以楊樹(shù)人工林木材產(chǎn)量的年增長(zhǎng)量為例, 我國(guó)為4.4 Mg·ha-1·a-1、全球平均為6.3 Mg·ha-1·a-1、美國(guó)為8.1 Mg·ha-1·a-1、歐洲為5.1 Mg·ha-1·a-1)[17]。因此, 研究氮沉降對(duì)于人工林生長(zhǎng)的影響具有其特殊的意義。
氮沉降是通過(guò)影響氮、磷、鉀等營(yíng)養(yǎng)循環(huán)來(lái)影響人工林樹(shù)木的生長(zhǎng)的[18], 主要表現(xiàn)在對(duì)細(xì)根、樹(shù)葉和樹(shù)干生長(zhǎng)的影響[19–20]。不同大氣氮沉降水平對(duì)人工林生長(zhǎng)的影響不同, 但是關(guān)于這方面的研究結(jié)論存在不一致性。中等水平的大氣氮沉降(40 kg·ha-1·a-1)促進(jìn)樹(shù)木的生長(zhǎng)[21], 而高水平的大氣氮沉降(大于90 kg·ha-1·a-1)會(huì)抑制植物的生長(zhǎng)[2]。然而Tu等用為期兩年的模擬氮沉降實(shí)驗(yàn)證明高水平的氮沉降(300 kg·ha-1·a-1)才能顯著增加苦竹人工林的生長(zhǎng)[22]; Du等對(duì)落葉松林的研究也證明氮沉降的水平越高, 對(duì)落葉松生長(zhǎng)的促進(jìn)作用也越大[23]。引起這方面研究結(jié)論不一致的原因可能是因?yàn)椴煌瑲夂騾^(qū)的影響人工林生長(zhǎng)的限制因子不同, 人工林對(duì)氮的需求不同, 并且對(duì)大氣氮沉降的敏感程度也不同。在亞熱帶地區(qū), 土壤對(duì)大氣氮沉降非常敏感, 大氣氮沉降會(huì)促進(jìn)土壤中N2O的排放量[24], 不一定會(huì)增加生態(tài)系統(tǒng)中的氮含量。更重要的是在亞熱帶地區(qū), 樹(shù)木生長(zhǎng)的營(yíng)養(yǎng)限制性因素為磷[25], 而在溫帶地區(qū), 限制因子為氮[11]。因此不同水平的氮沉降對(duì)亞熱帶和溫帶人工林的生態(tài)過(guò)程和樹(shù)木生長(zhǎng)的影響大不相同。也有研究表明短期的氮沉降模擬實(shí)驗(yàn)(兩年)對(duì)于樹(shù)木生長(zhǎng)的影響更多取決于人工林的樹(shù)種, 而不是磷元素的添加, 但氮沉降對(duì)土壤中的氮磷循環(huán)是很大程度上受到磷添加的影響的[20]。
氮沉降對(duì)于人工林生長(zhǎng)的影響與人工林的林齡有著密不可分的關(guān)系。氮沉降對(duì)毛竹人工林葉片中氮含量的增加程度在幼齡林中比在成熟林中強(qiáng), 而且這種增加作用隨著氮沉降含量超過(guò)60 kg·ha-1·a-1時(shí)減弱[26]。Mao等的研究也證實(shí)了氮沉降對(duì)促進(jìn)種植初期亞洲東北部落葉松的生長(zhǎng)效果顯著[27], 這是由于氮沉降增加了落葉松針葉中的氮含量和其余大量元素(鉀、鎂和葉綠素)的含量。氮沉降對(duì)不同林齡的影響不一樣可能是因?yàn)椴煌铸g的人工林對(duì)氮的吸收和需求不同, 例如楊樹(shù)在生長(zhǎng)的初期和間伐期, 氮對(duì)其生長(zhǎng)的促進(jìn)效果顯著, 而生長(zhǎng)的中后期, 氮對(duì)其并沒(méi)有明顯的作用[28]。氮沉降對(duì)不同樹(shù)種的人工林的影響也不同。短期氮添加(兩年)對(duì)樟子松的生長(zhǎng)有促進(jìn)作用, 但是對(duì)小葉楊樹(shù)的生長(zhǎng)沒(méi)有影響[20]。研究證明氮沉降對(duì)營(yíng)養(yǎng)循環(huán)的影響也和人工林樹(shù)木的種類(lèi)有關(guān)[29], 而氮沉降會(huì)通過(guò)影響人工林的營(yíng)養(yǎng)循環(huán)進(jìn)一步影響人工林的產(chǎn)量。
在不同的管理模式下, 氮沉降對(duì)人工林生長(zhǎng)的影響也可能不一樣。目前, 人工林的管理模式主要有集約型管理和傳統(tǒng)管理模式。集約型管理模式有更多人為管理方式, 如: 施肥[30]、林下植物的撫育[31-34]、灌溉[16]和土壤耕作[14]等。氮沉降會(huì)增加樹(shù)木和林下草本植物的碳儲(chǔ)量, 但會(huì)減少凋落物中的碳儲(chǔ)量[8]。在集約型管理模式下(移除林下草本植物), 氮沉降增加土壤中有機(jī)碳和氮的量, 而單純的氮沉降或者是集約管理均會(huì)減少春季土壤中有機(jī)碳和氮的量[14]。在干旱區(qū), 若灌溉量不夠?qū)е赂珊得{迫也會(huì)影響氮添加對(duì)樹(shù)木生長(zhǎng)的影響程度[20]。
氮沉降對(duì)于人工林的生長(zhǎng)有即時(shí)的影響和滯后的影響(效應(yīng))。目前, 對(duì)于氮沉降對(duì)人工林生長(zhǎng)的研究, 無(wú)論是不同氮沉降的程度、不同林齡還是在特定的人工林管理模式下, 除模型模擬實(shí)驗(yàn)[35]以外均為小于3年的即時(shí)性研究[2,22]。但是, 氮沉降對(duì)人工林生長(zhǎng)不僅僅具有即時(shí)的影響, 還可能具有滯后的影響(效應(yīng)), 而且導(dǎo)致即時(shí)效應(yīng)和滯后效應(yīng)的機(jī)制可能不一樣。氮沉降對(duì)人工林生長(zhǎng)的即時(shí)影響很大程度上取決于該人工林中氮含量是否豐富還是氮是限制因子[11]。而氮沉降對(duì)人工林生長(zhǎng)的滯后性影響可能受到兩方面因素的影響。一方面由于土壤對(duì)氮的緩沖性能(soil buffering capacity)[36], 某一年氮沉降對(duì)人工林生長(zhǎng)的影響可能包含前幾年氮沉降的疊加作用; 另一方面, 氮沉降會(huì)逐漸影響人工林的營(yíng)養(yǎng)循環(huán)和土壤的理化性質(zhì), 而進(jìn)一步影響人工林樹(shù)木的生長(zhǎng)。氮沉降影響人工林凋落物的分解速率[37], 改變生態(tài)系統(tǒng)的營(yíng)養(yǎng)循環(huán), 進(jìn)而影響人工林樹(shù)木的生長(zhǎng), 而且氮沉降對(duì)凋落物分解的影響由于人工林林齡的不同而有所區(qū)別[38]。即使在高水平的大氣氮沉降影響下, 樹(shù)木生長(zhǎng)仍然吸收大量的由凋落物分解所釋放到土壤中的氮[39]。大量的氮沉降會(huì)最終導(dǎo)致氮沉降過(guò)剩, 氮沉降過(guò)剩得越多, 氮的淋失就越多, 從而加速土壤酸化的過(guò)程[7,40]。然而, 氮沉降對(duì)人工林生長(zhǎng)的滯后性影響規(guī)律在現(xiàn)有的研究中并未得到闡述, 而這些可能導(dǎo)致氮沉降對(duì)人工林生長(zhǎng)的滯后性影響的機(jī)制也尚未經(jīng)研究論證。
綜上所述, 氮沉降對(duì)人工林生長(zhǎng)的滯后性效應(yīng)與機(jī)制, 比即時(shí)影響更為復(fù)雜, 是氮沉降對(duì)生態(tài)功能的改變?cè)谌斯ち稚L(zhǎng)上的體現(xiàn)。因此, 研究氮沉降對(duì)人工林生長(zhǎng)的滯后性效應(yīng), 在全面揭示氮沉降對(duì)生態(tài)系統(tǒng)的影響規(guī)律上具有重要的理論和實(shí)踐意義。并且在研究氮沉降對(duì)人工林生長(zhǎng)的滯后性效應(yīng)時(shí), 控制氮沉降濃度、林齡和管理模式這三個(gè)因素, 能更全面地厘清滯后性效應(yīng)與機(jī)制。
一方面, 遙感提供長(zhǎng)期一致且穩(wěn)定的影像數(shù)據(jù), 不僅可以對(duì)楊樹(shù)人工林的生長(zhǎng)進(jìn)行非接觸性監(jiān)測(cè), 而且可以利用長(zhǎng)時(shí)間的影像資料擬合楊樹(shù)的生長(zhǎng)曲線[41], 反映氮沉降對(duì)楊樹(shù)人工林生長(zhǎng)的即時(shí)影響和滯后效應(yīng)。另一方面, 相較與傳統(tǒng)的測(cè)量樹(shù)木生長(zhǎng)的方法, 遙感技術(shù)具有監(jiān)測(cè)人工林生長(zhǎng)的差異性的優(yōu)勢(shì), 更有利于比較氮沉降對(duì)不同林齡梯度的影響。樹(shù)木活體蓄積量是遙感監(jiān)測(cè)人工林生長(zhǎng)的重要指標(biāo)。計(jì)算樹(shù)木活體蓄積量?jī)蓚€(gè)所必須的參數(shù)為樹(shù)高和胸徑[42]。自從地面激光掃描技術(shù)被應(yīng)用于森林的研究中, 再也無(wú)須砍伐大量的樹(shù)木就能測(cè)量活立木的樹(shù)高和胸徑[43]。并且激光掃描技術(shù)測(cè)量樹(shù)高和胸徑的準(zhǔn)確度已經(jīng)被大量的研究證實(shí)[44]。近幾年來(lái), 無(wú)人機(jī)載激光雷達(dá)也廣泛應(yīng)用于樹(shù)高、胸徑和活立木蓄積量的測(cè)量[45]。但是激光掃描技術(shù)的價(jià)格昂貴, 測(cè)量樹(shù)高、胸徑和樹(shù)木蓄積量的精確度受結(jié)構(gòu)復(fù)雜的樹(shù)葉枝條和花蕾等噪音的影響很大[46], 因此近兩年來(lái)利用無(wú)人機(jī)載光學(xué)傳感器測(cè)量樹(shù)高、胸徑和蓄積量的方法的研究成為現(xiàn)階段的研究熱點(diǎn)[47]。
區(qū)分氮沉降對(duì)人工林生長(zhǎng)的滯后性影響和即時(shí)性影響。導(dǎo)致氮沉降對(duì)人工林生長(zhǎng)的即時(shí)性影響和滯后性影響的機(jī)制不一樣, 因此不能以氮沉降對(duì)人工林生長(zhǎng)的即時(shí)性影響規(guī)律推斷滯后性影響。氮沉降對(duì)于人工林的滯后性影響主要取決于氮是否為該人工林生長(zhǎng)的限制因子; 而滯后性影響機(jī)制更為復(fù)雜, 是氮沉降對(duì)人工林生態(tài)功能的逐漸改變?cè)谌斯ち稚L(zhǎng)上的體現(xiàn)。因此區(qū)分氮沉降的即時(shí)性和滯后性影響, 并分析其滯后性影響機(jī)制對(duì)完善氮沉降對(duì)人工林生態(tài)影響的綜合理論有一定的貢獻(xiàn)并且有不可替代的意義。
現(xiàn)有的研究結(jié)果表明氮沉降對(duì)人工林生長(zhǎng)的即時(shí)性影響在不同氮沉降程度、不同林齡和不同管理模式下有區(qū)別: (1)在亞熱帶地區(qū), 中等程度的大氣氮沉降促進(jìn)樹(shù)木生長(zhǎng), 高程度的氮沉降則抑制樹(shù)木生長(zhǎng); 而在溫帶地區(qū), 氮沉降的程度越大對(duì)樹(shù)木生長(zhǎng)的促進(jìn)作用越強(qiáng)。(2)相對(duì)于成熟林, 氮沉降對(duì)幼齡林影響作用更大, 而且這種影響作用隨著氮沉降程度的改變也會(huì)發(fā)生變化。(3)在林下草本植物撫育(移除)的情況下, 氮沉降會(huì)增加土壤中有機(jī)碳和氮的量, 而在林下草本植物不撫育(保留)的情況下, 結(jié)果則完全不同。
氮沉降對(duì)人工林的滯后性影響比即時(shí)性影響更加復(fù)雜。在不同氮沉降程度下, 引起即時(shí)性影響規(guī)律的原因在于氮是否是該地區(qū)樹(shù)木生長(zhǎng)的限制性因子, 在氮缺失的情況下氮沉降促進(jìn)樹(shù)木生長(zhǎng), 但是當(dāng)?shù)两翟斐傻^(guò)剩的情況下, 土壤中氮淋失增多, 加速土壤酸化, 反而抑制樹(shù)木的生長(zhǎng), 現(xiàn)有研究結(jié)果也證實(shí)了氮沉降除影響人工林中的氮循環(huán)外, 還會(huì)影響凋落物分解、碳循環(huán)、土壤pH值等生態(tài)功能的變化, 而這種被改變的生態(tài)功能最終也會(huì)影響人工林樹(shù)木的生長(zhǎng), 而且這種影響是具有滯后性的。在不同的管理模式下, 氮沉降對(duì)人工林生長(zhǎng)的滯后性影響可能也有區(qū)別, 但是不同林齡人工林在不同程度氮沉降和不同管理模式情況下的滯后性影響在現(xiàn)有研究中并未得到詳細(xì)的研究和論證, 氮沉降對(duì)人工林生長(zhǎng)的滯后性影響是氮沉降改變?nèi)斯ち稚鷳B(tài)功能的體現(xiàn), 對(duì)理解氮沉降對(duì)整個(gè)生態(tài)系統(tǒng)的影響規(guī)律有不可替代的理論貢獻(xiàn), 因此分別研究不同林齡人工林在不同程度氮沉降、不同管理模式的情況下生長(zhǎng)的滯后性影響是有必要的, 也會(huì)成為將來(lái)的研究方向。
[1] Morse J, Durán J, Beall F, et al. Soil denitrification fluxes from three northeastern North American forests across a range of nitrogen deposition[J]. Oecologia, 2015, 177(1): 17–27.
[2] SONG Xinzhang, LI Quan, GU Honghao. Effect of nitrogen deposition and management practices on fine root decomposition in Moso bamboo plantations[J]. Plant and Soil, 2017, 410(1/2): 207–215.
[3] ZHANG Junbo, LV Jianhua, LI Quan, et al. Effects of nitrogen deposition and management practices on leaf litterfall and N and P return in a Moso bamboo forest[J]. Biogeochemistry, 2017, 134(1/2): 115–124.
[4] Liu Xuejun, Zhang Ying, Han Wenxuan, et al. Enhanced nitrogen deposition over China[J]. Nature: International weekly journal of science, 2013, 494(7438): 459–462.
[5] KANAKIDOU M, MYRIOKEFALITAKIS S, DASKALAKIS N, et al. Past, Present, and Future Atmospheric Nitrogen Deposition[J]. Journal of the Atmospheric Sciences, 2016, 73(5): 2039–2047.
[6] Crowley K and Lovett G. Effects of nitrogen deposition on nitrate leaching from forests of the northeastern United States will change with tree species composition[J]. Canadian Journal of Forest Research, 2017, 47(8): 997–1009.
[7] Ochoa R. Nonlinear disruption of ecological interactions in response to nitrogen deposition[J]. Ecology, 2016, 97(10): 2802–2814.
[8] Gentilesca T, Vieno M, Perks M, et al. Effects of Long-Term Nitrogen Addition and Atmospheric Nitrogen Deposition on Carbon Accumulation inPlantations[J]. Ecosystems, 2013, 16(7): 1310–1324.
[9] Li Quan, Song Xinzhang, Gu Honghao, et al. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations[J]. Scientific Reports, 2016, 6(1): 1–11.
[10] LIU Caixia, DONG Yuhong, SUN Qiwu, et al. Soil bacterial community response to short-term manipulation of the nitrogen deposition form and dose in a Chinese fir plantation in southern China[J]. Water Air and Soil Pollution, 2016, 227(12): 447.
[11] LIU Xiaofei, YANG Zhijie, LIN Chengfang, et al. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation[J]. Agricul-tural and Forest Meteorology, 2017, 246: 78–85.
[12] TU Lihua, HU Hongling, Chen Gang, et al. Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition[J]. Plos One, 2014, 9(2): 1–9.
[13] TRUAX B, GAGNON D, LAMBERT F, et al. Multiple-use zoning model for private forest owners in agricultural landscapes: A case study[J]. Forests, 2015, 6(10): 3614– 3664.
[14] LEI Zhaofeng, SUN Huangfa, LI Quan, et al. Effects of nitrogen deposition on soil dissolved organic carbon and nitrogen in moso bamboo plantations strongly depend on management practices[J]. Forests, 2017, 8(11): 452.
[15] VANCE E, LOEHLE C, WIGLEY T, et al. Scientific basis for sustainable management of eucalyptus and populus as short-rotation woody crops in the U.S.[J]. Forests, 2014, 5(5): 901–918.
[16] YAN Xiaoli, DAI Tengfei, ZHAO Dehai, et al. Combined surface drip irrigation and fertigation significantly increase biomass and carbon storage in a Populus x euramericana cv. Guariento plantation[J]. Journal of Forest Research, 2016, 21(6): 280–290.
[17] WANG Dan, FAN Jiazhi, JING Panpan, et al. Analyzing the impact of climate and management factors on the productivity and soil carbon sequestration of poplar plantations[J]. Environmental Research, 2016, 144: 88–95.
[18] CHEN Hao, CHEN Meiling, Li Dejun, et al. Responses of soil phosphorus availability to nitrogen addition in a legume and a non-legume plantation[J]. Geoderma, 2018, 322: 12–18.
[19] BIAN Haixue, GENG Qinghong, XIAO Hanran, et al. Fine Root Biomass Mediates Soil Fauna Community in Response to Nitrogen Addition in Poplar Plantations (Populus deltoids) on the East Coast of China[J]. Forests, 2019, 10(2): 122.
[20] ZHAO Qiong, ZENG Dehui. Nitrogen addition effects on tree growth and soil properties mediated by soil phosphorus availability and tree species identity[J]. Forest Ecology and Management, 2019, 449: 117478.
[21] SONG Lei, TIAN Peng, ZHANG Jinbo, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China[J]. Science of the Total Environment, 2017, 609: 1303–1311.
[22] TU Lihua, HU Tingxing, ZHANG Jian, et al. Short-term simulated nitrogen deposition increases carbon seques-tration in aplantation[J]. Plant and Soil, 2011, 340(1-2): 383–396.
[23] DU Zhihong, WANG Wei, ZENG Wenjing, et al. Nitrogen deposition enhances carbon sequestration by plantations in northern China[J]. Plos One, 2014, 9(2): e87975.
[24] WANG Yongsheng, CHENG Shulan, FANG Huajun, et al. Simulated nitrogen deposition reduces CH4uptake and increases N2O emission from a subtropical plantation forest soil in southern China[J]. Plos One, 2014, 9(4): e93571.
[25] ZHENG Linlin, ZHAO Qiong, SUN Qingye, et al. Nitrogen addition elevated autumn phosphorus retranslocation of living needles but not resorption in a nutrient-poor Pinus sylvestris var. Mongolica plantation[J]. Forest Ecology and Management, 2020, 468: 118174.
[26] SONG Xinzhang, GU Honghao, WANG Meng, et al. Management practices regulate the response of Moso bamboo foliar stoichiometry to nitrogen deposition[J]. Scientific Reports, 2016, 6: 24107.
[27] MAO Qiaozhi, WATANABE M, MAKOTO K, et al. High nitrogen deposition may enhance growth of a new hybrid larch F-1 growing at two phosphorus levels[J]. Landscape and Ecological Engineering, 2014, 10(1): 1–8.
[28] Georgiadis P, Taeroe A, Stupak I, et al. Fertili-zation effects on biomass production, nutrient leaching and budgets in four stand development stages of short rotation forest poplar[J]. Forest Ecology and Management, 2017, 397: 18–26.
[29] BU Wensheng, CHEN Fusheng, WANG Fangchao, et al. The species-specific responses of nutrient resorption and carbohydrate accumulation in leaves and roots to nitrogen addition in a subtropical mixed plantation[J]. Canadian Journal of Forest Research, 2019, 49(7): 826–835.
[30] Pinno B, Thomas B and Belanger N. Predicting the productivity of a young hybrid poplar clone under intensive plantation management in northern Alberta, Canada using soil and site characteristics[J]. New Forests, 2010, 39(1): 89–103.
[31] Goehing J, Thomas B, Macdonald S, et al. Effects of alternative establishment systems on resource availability, understorey composition and tree performance in juvenile hybrid poplar plantations[J]. Forestry, 2017, 90(4): 515–529.
[32] San Martin C, Andujar D, Fernandez- Quintanilla C, et al. Spatio-temporal dynamics ofin poplar short-rotation coppice under several vegetation management systems[J]. Forest Ecology and Management, 2016, 379: 37–49.
[33] Henkel-Johnson D, Macdonald S, Bork E, et al. Influence of weed composition, abundance, and spatial proximity on growth in young hybrid poplar plantations[J]. Forest Ecology and Management, 2016, 362: 55–68.
[34] Ault K, Viswanath V, Jayawickrama J, et al. Improved growth and weed control of glyphosate-tolerant poplars[J]. New Forests, 2016, 47(5): 653–667.
[35] ZHAO Meifeng, XIANG Wenhua, TIAN Dalun, et al. Effects of increased nitrogen deposition and rotation length on long-term productivity ofplantation in southern China[J]. Plos One, 2013, 8(2): e55376.
[36] LU Xiankai, MAO Qinggong, MO Jiangming, et al. Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history[J]. Environmental Science & Technology, 2015, 49(7): 4072–4080.
[37] YUAN Yinghong. Effects of nitrogen deposition on soil microbial biomass, microbial functional diversity and enzyme activities in fir plantations of subtropical China[J]. Progress in Environmental Science and Engineering, 2013, 610/613: 323–330.
[38] MA Yuecun, ZHU Biao, SUN Zhenzhong, et al. The effects of simulated nitrogen deposition on extracellular enzyme activities of litter and soil among different-aged stands of larch[J]. Journal of Plant Ecology, 2014, 7(3): 240–249.
[39] Nair R, Perks M and Mencuccini M. Decomposition nitrogen is better retained than simulated deposition from mineral amendments in a temperate forest[J]. Global Change Biology, 2017, 23(4): 1711–1724.
[40] Blanco J, WeiXiaohua, Jiang Hong, et al. Impacts of enhanced nitrogen deposition and soil acidification on biomass production and nitrogen leaching in Chinese fir plantations[J]. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 2012, 42(3): 437– 450.
[41] KELES S. Optimum cutting ages in hybrid poplar plantations including carbon sequestration: A case study in Turkey[J]. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 2016, 22(3): 339–349.
[42] ZHANG Dong, ZHANG Liyan, Ye Qiaolin, et al. Robust learning-based prediction for timber-volume of living trees[J]. Computers and Electronics in Agriculture, 2017, 136: 97–110.
[43] EMERY M, WROBEL A, HANSEN M, et al. Using Traditional Ecological Knowledge as a Basis for Targeted Forest Inventories: Paper Birch () in the US Great Lakes Region[J]. Journal of Forestry, 2014, 112(2): 207–214.
[44] RIGGIO M, ANTHONY R, AUGELLI F, et al. In situ assessment of structural timber using non-destructive techniques[J]. Materials and Structures, 2014, 47(5): 749– 766.
[45] BREDE B, LAU A, BARTHOLOMEUS H, et al. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR[J]. Sensors, 2017, 17(10): 2371.
[46] GREGOIRE T, NASSET E, MCROBERTS R, et al. Statistical rigor in LiDAR-assisted estimation of above-ground forest biomass[J]. Remote Sensing of Environ-ment, 2016, 173: 98–108.
[47] PATRICK A, LI C. High Throughput Phenotyping of Blueberry Bush Morphological Traits Using Unmanned Aerial Systems[J]. Remote Sensing, 2017, 9(12): 1250.
Review on the lag effects of nitrogen deposition on plantations
XU Dandan1, 2,*, WANG Haobin1, PU Yihan1
1. College of Biology and the Environment, Nanjing Forestry University, Jiangsu 210037, China 2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu 210037, China
The influence of nitrogen deposition on the growth of plantation is one of the most important research focused currently. However, current research is focused on the immediate effects of nitrogen deposition on the growth of plantation, lacking study the lag effects of nitrogen deposition on tree growth. The lag effects of nitrogen deposition on the growth of plantation are the result of gradually altered ecological function by nitrogen deposition in the plantation ecosystem, and the mechanism of the lag effects of nitrogen deposition is completely different from the immediate effects. Therefore, this review mainly reviews the lag effects of nitrogen deposition on the growth of plantations, including the impact of nitrogen deposition with different concentration on plantations, the effects of nitrogen deposition on plantation of different stand age, the influences of nitrogen deposition on plantation under different managements, and the difference between the immediate and lag effects of nitrogen deposition on plantation.
nitrogen deposition; plantation; lag effects; immediate effects; stand age
10.14108/j.cnki.1008-8873.2022.02.030
Q148, S718.5
A
1008-8873(2022)02-259-10
2020-06-16;
2020-07-24
國(guó)家自然科學(xué)基金(41901361); 江蘇省自然科學(xué)基金青年項(xiàng)目(BK20180769); 江蘇省"六大人才高峰"創(chuàng)新人才團(tuán)隊(duì)項(xiàng)目(TD-XYDXX-006); 江蘇省高校自然科學(xué)研究面上項(xiàng)目(18KJB180009)
徐丹丹(1987—)女, 博士, 副教授, 主要從事生態(tài)遙感研究, E-mail: dandan.xu@njfu.edu.cn
通信作者:徐丹丹
徐丹丹, 王浩斌, 濮毅涵, 等. 氮沉降對(duì)人工林生長(zhǎng)的滯后性影響的研究進(jìn)展[J]. 生態(tài)科學(xué), 2022, 41(2): 259–264.
XU Dandan, WANG Haobin, PU Yihan, et al. Review on the lag effects of nitrogen deposition on plantations[J]. Ecological Science, 2022, 41(2): 259–264.