邢錦城 何蘇南 洪立洲 劉沖 董靜 朱小梅 陳環(huán)宇 王凱 郁凱 孫果麗 張振華
摘要: 微塑料是重要的環(huán)境污染物之一,在水環(huán)境中大量存在。為了解水環(huán)境中微塑料污染的現(xiàn)狀,增強(qiáng)人們治理微塑料污染的意識(shí),本文概述了水環(huán)境中微塑料的來源、分布、遷移特征及對水生動(dòng)物的危害。水環(huán)境中的微塑料來源廣泛,源頭貢獻(xiàn)分析發(fā)現(xiàn),環(huán)境中80%的微塑料來源于人類陸地活動(dòng),20%來源于海洋活動(dòng)。按性質(zhì)分類,微塑料可分為初生微塑料、次生微塑料兩大類,碎片、纖維是水環(huán)境中最常見的微塑料形態(tài),淡水中主要的微塑料類型是聚乙烯(PE)、聚丙烯(PP),海洋中的微塑料類型則主要是PE、PP和聚苯乙烯(PS)。水環(huán)境中的微塑料含量、分布主要受到區(qū)域人口密度、地理位置、水文條件和氣象環(huán)境等因素影響,微塑料在水系統(tǒng)表面和沉積物中均有分布,淡水系統(tǒng)是微塑料進(jìn)入海洋的主要運(yùn)輸路徑。微塑料通過直接、間接方式進(jìn)入水生生物體內(nèi),導(dǎo)致其群體、個(gè)體、組織、器官、細(xì)胞和分子水平上的生理健康受損。水生態(tài)系統(tǒng)中的微塑料會(huì)給環(huán)境及動(dòng)物健康帶來不同程度的風(fēng)險(xiǎn),進(jìn)一步通過食物鏈威脅人類健康。微塑料污染研究的重點(diǎn)應(yīng)包括制定厘清源頭、查明分布、科學(xué)監(jiān)測的綜合治理模式。本文可為水環(huán)境中微塑料的污染防治提供較為系統(tǒng)的參考資料和研究思路。
關(guān)鍵詞: 微塑料;水環(huán)境;來源;遷移;生態(tài)危害
中圖分類號(hào): S181.6 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1000-4440(2023)01-0277-10
Research progress on distribution and migration characteristics and ecological hazards of microplastics in water environment
XING Jin-cheng, HE Su-nan, HONG Li-zhou, LIU Chong, DONG Jing, ZHU Xiao-mei, CHEN Huan-yu,WANG Kai, YU Kai, SUN Guo-li, ZHANG Zhen-hua
(Jiangsu Coastal Areas Institute of Agricultural Sciences, Yancheng 224002, China)
Abstract: As a new environmental pollutant, microplastics are abundant in water ecosystems and bring great harm to aquatic life. In order to comprehensively understand the current situation of microplastic pollution and enhancing peoples awareness of microplastic pollution control, this paper reviewed the source, distribution? migration characteristic and ecological hazard in water environment. Microplastics have a wide range of sources. According to the perspective of microplastic properties, they are mainly derived from primary microplastics and secondary microplastics. Based on analysis of source contribution, the 80% of the microplastics come from human activities and 20% from marine activities. Fiber and debris are the main forms of microplastics in water environment. The main types of microplastics in freshwater are polyethylene (PE) and polypropylene (PP), but PE, PP and polystyrene (PS) in seawater. The contents and distributions of microplastics in water environment are mainly affected by population densities, geographical locations, hydrological conditions and meteorological environments. The microplastics are distributed on the surface of water system and sediment. The main transport route of microplastics is from freshwater system into seawater. Microplastics enter aquatic organisms directly or indirectly, resulting in physiological health damage on population, individual, tissue, organ, cell and molecular levels. In conclusion, microplastics in water ecosystems could bring different degrees of risk to the environment and the health of animals, and further threaten human health through the food chain. In the future, the study on microplastic pollution in water environment will focus on traceability, distribution identification and scientific monitoring. This review provides a systematic reference and research ideas for the pollution prevention of microplastics in water environment.
Key words: microplastic;water environment;source;migration;ecological damage
塑料制品用途廣泛,目前全球的塑料制品產(chǎn)業(yè)規(guī)模持續(xù)增長[1-3]。據(jù)統(tǒng)計(jì),當(dāng)前全球每年的塑料產(chǎn)量約為3.48×108t,預(yù)計(jì)到2050年,全球每年的塑料產(chǎn)量將達(dá)到3.3×1010t[4]。塑料垃圾會(huì)在機(jī)械破碎、水侵蝕、紫外線降解、生物降解和光降解等作用下逐漸解離成破碎片狀,變成微塑料[5-6]。
微塑料是指直徑小于5 mm的塑料碎片[7-9]。隨著環(huán)境安全檢測技術(shù)的持續(xù)進(jìn)步,人們相繼在海洋[10]、大氣[11]、湖泊[12]、河口[13]等處發(fā)現(xiàn)了微塑料。由于微塑料具有浮力和難降解性,其廣泛分布在從北極到南極的全球海洋、海岸線、海灘、海底沉積物和地表水中,并通過水動(dòng)力和洋流漂浮在偏遠(yuǎn)地區(qū)[14-15]。鑒于塑料制品的大量生產(chǎn)和使用,塑料廢棄物會(huì)不可避免地進(jìn)入水環(huán)境中。據(jù)估算,全球海洋表面漂浮的塑料垃圾已超過2.50×105t[16],成為海洋和淡水生態(tài)系統(tǒng)中普遍存在的環(huán)境污染物,對水生生態(tài)系統(tǒng)構(gòu)成了巨大威脅[17]。目前微塑料污染問題及其對水體環(huán)境的潛在風(fēng)險(xiǎn)已引起了研究人員的廣泛關(guān)注。
雖然目前關(guān)于水環(huán)境中微塑料的研究較多,但仍缺乏對相應(yīng)研究成果的系統(tǒng)整理,不利于研究人員從整體上把握微塑料研究的現(xiàn)狀與趨勢。因此,本文擬通過對全球水環(huán)境中微塑料污染的研究現(xiàn)狀進(jìn)行分析總結(jié),分析水環(huán)境中微塑料污染的來源、時(shí)空分布特征以及水環(huán)境中微塑料污染的潛在生態(tài)危害,并為微塑料污染防治的研究思路提出相應(yīng)建議,以期為相關(guān)研究人員提供參考。
1 水環(huán)境中微塑料的來源
水環(huán)境中的微塑料可分為初生微塑料、次生微塑料兩大類。初生微塑料主要從陸地直接排放到自然水體中。塑料工業(yè)中使用的樹脂顆粒以及用于生產(chǎn)衛(wèi)生用品、個(gè)人護(hù)理品(化妝品、防曬霜、磨砂膏和清潔劑)、驅(qū)蚊劑、合成基鉆井液和噴氣介質(zhì)的塑料前體都屬于初生微塑料[18]。其中,生產(chǎn)個(gè)人護(hù)理品使用的塑料微珠直徑約為5 mm[19],通過廢水和工業(yè)泄露排入自然水體中,并最終隨著河流匯入海洋環(huán)境中[20]。
次生塑料是由較大的塑料物品破碎形成的。一方面,塑料在紫外線的光氧化作用下,會(huì)發(fā)生化學(xué)鍵的斷裂,從而降低塑料的拉伸強(qiáng)度,引起塑料崩解[7]。另一方面,塑料制品在使用或風(fēng)化過程中產(chǎn)生的機(jī)械應(yīng)力、光化學(xué)作用和化學(xué)作用均可導(dǎo)致塑料脆化成小碎片[21]。在降解速度方面,在野外直接暴露于地表的塑料,由于直接接觸光和氧氣,使其降解速度較快,同時(shí),陽光也可以使溫度升高,從而進(jìn)一步加快塑料的降解過程。而在海洋中,隨著深度的增加,塑料的降解速度逐漸降低,在海底的降解速度幾乎為零[7]。在水環(huán)境中,塑料與天然沉積物之間的相互作用(如河流的湍流沖擊和海浪的驅(qū)動(dòng))產(chǎn)生的機(jī)械應(yīng)力是形成次生塑料的重要原因[22]。此外,人造草皮和人工操場的磨損、汽車剎車和輪胎磨損、油漆和瀝青等也會(huì)產(chǎn)生次生微塑料[23],這些微塑料會(huì)通過風(fēng)、雨水和河流由陸地進(jìn)入水系統(tǒng),最終匯入海洋。大多數(shù)通過初生或次生過程形成的微塑料在環(huán)境中還會(huì)繼續(xù)降解,甚至達(dá)到納米級(jí)(<1 μm),或者在未知時(shí)間尺度上持續(xù)降解,直至聚合物完全降解成二氧化碳、水和生物質(zhì)[24]。
相關(guān)統(tǒng)計(jì)結(jié)果表明,人類的陸地活動(dòng)貢獻(xiàn)了80%的環(huán)境塑料來源,而海洋活動(dòng)的貢獻(xiàn)比例為20%[25]。在不同地點(diǎn)發(fā)現(xiàn)的微塑料類型與周圍人類活動(dòng)之間存在較強(qiáng)的空間相關(guān)性[26]。因此,根據(jù)聚合物類型及其濃度亦可對微塑料進(jìn)行溯源。例如,在北美五大湖地區(qū)發(fā)現(xiàn)的微塑料的大小、形狀、顏色和元素組成與洗面奶中的微塑料相似,而污水處理廠中發(fā)現(xiàn)的塑料顆粒的顏色、形狀和大小與牙膏配方中的塑料微粒具有較高的相似度[27]。以上研究結(jié)果表明,在淡水環(huán)境中,個(gè)人護(hù)理品中含有的塑料微??赡苁侵饕奈⑺芰衔廴緛碓?。Lechner等[26]發(fā)現(xiàn),多瑙河中的微塑料可能來源于該流域內(nèi)德國的幾十個(gè)塑料生產(chǎn)基地和數(shù)量不詳?shù)募庸す?。Eriksen等[28]則在美國休倫湖工業(yè)區(qū)附近的伊利湖中發(fā)現(xiàn)了工業(yè)樹脂顆粒和微球。相反,在人類活動(dòng)較少的偏遠(yuǎn)山區(qū)和湖泊中則幾乎沒有發(fā)現(xiàn)原生微塑料污染,但在那里也發(fā)現(xiàn)了大量次生塑料污染[29]。
2 水環(huán)境中微塑料的分布特征
2.1 微塑料在淡水環(huán)境中的分布特征
聚乙烯(PE)、聚丙烯(PP)是淡水中主要的微塑料類型,二者被人們廣泛使用,且密度小于水,更易被檢測。由于污染源、地理位置和水動(dòng)力條件的差異,淡水中微塑料的類型與海洋中的不同[13]。在中國太湖水域和黃河水域,水體中的微塑料以纖維為主,比例在60%以上[30-31];而在珠江水域,水體中主要的微塑料類型為碎片[32]。在蒙古偏遠(yuǎn)地區(qū)的庫蘇古爾湖中,碎片、纖維占微塑料總量的60%[29]。在一些河流中,球形微塑料占主導(dǎo)地位,如在萊茵河中,球形顆粒占微塑料總量的58.4%,粒徑為300~1 000 μm[33]。在20世紀(jì)70年代,研究者就已發(fā)現(xiàn)淡水中的球形微塑料顆粒顯示出與海洋中球形微塑料顆粒相似的特征,但淡水中球形顆粒的粒徑明顯小于后者[34]。在日本近海岸的淡水環(huán)境中,90%以上的球形微珠由PE組成[35]。
目前,在世界各地的淡水生態(tài)系統(tǒng)中均檢測到了微塑料。在歐洲,英國泰馬河中的微塑料平均含量為1 m30.028 particles[36]。在亞洲,中國長沙市內(nèi)的8個(gè)湖泊中的微塑料含量為1 m32 425~7 050 particles[37]。中國湖北洪湖、洞庭湖、廣東珠江、韓國洛東江的微塑料含量分別為1 m3900~2 800 n、1 250~4 650 n、379~7 924 items、293~4 760 particles,而韓國洛東江和越南西貢河中的微塑料含量為1 m31.72×105~4.19×105particles[38-41]。淡水環(huán)境中的微塑料含量和分布主要受到區(qū)域人口密度、地理位置、水文條件和氣象環(huán)境等因素的影響。Wang等[42]研究武漢市不同湖區(qū)的微塑料含量發(fā)現(xiàn),位于人口密集的市中心的北湖和鯇子湖中的微塑料含量較高,分別為1 m38 925 items、8 550 items。類似的,德國萊茵河在魯爾工業(yè)區(qū)段的微塑料含量較高,甚至達(dá)到峰值(1 km23.90×107particles)[33]。Fan等[43]發(fā)現(xiàn),珠江水域中微塑料的分布與當(dāng)?shù)厝丝诿芏燃吧a(chǎn)總值呈現(xiàn)明顯的正相關(guān)關(guān)系。Xiong等[44]發(fā)現(xiàn),長江水域中的微塑料含量與水流流速呈負(fù)相關(guān)。Fischer等[45]認(rèn)為,博爾塞納湖、丘西湖中微塑料的特征主要受到水循環(huán)的影響。位于瑞士的Vuachere河、Venoge河中的微塑料含量在雨后顯著增加,而處于城市地區(qū)的蘇黎世湖、康斯坦斯湖水體經(jīng)過強(qiáng)風(fēng)造成的垂直混合后,湖中的微塑料含量反而降低,說明氣象條件也是影響淡水環(huán)境中微塑料分布的重要因素[46]。
淡水環(huán)境中的沉積物也含有大量微塑料,它們作為研究微塑料污染的環(huán)境介質(zhì)已被研究者廣泛研究。結(jié)果表明,在瑞士的6個(gè)湖泊(日內(nèi)瓦湖、康斯坦斯湖、馬焦雷湖、蘇黎世湖、納沙泰爾湖和布里恩茨湖)的沉積物中,有不同類別和形狀的微塑料,含量為1 m220~7 200 particles[46]。在德國萊茵河沉積物中,微塑料含量為1 kg 228~3 763 particles,聚合物主要是PE、PP和聚苯乙烯(PS)顆粒,這3類聚合物的檢出率達(dá)75%以上[47]。微塑料在淡水沉積物中具有空間分布變化特征。意大利丘西湖東部沉積物中的微塑料含量顯著高于西部(1 kg 266 particles與205 particles)[45]。萊茵河干流和支流交匯處的沉積物中的微塑料含量高于交匯前的沉積物,可能由于受到匯集前后水流流速的影響,沉積物中微塑料的活化/固定效應(yīng)有所不同[47]。Sarkar等[48]發(fā)現(xiàn),印度恒河沉積物中的微塑料含量與沉積物的磷酸鹽含量、電導(dǎo)率呈顯著相關(guān)關(guān)系,表明沉積物自身的理化特性也會(huì)影響其環(huán)境中的微塑料含量。綜上,淡水系統(tǒng)作為微塑料進(jìn)入海洋的運(yùn)輸路線,其水體中微塑料的分布仍需加以研究。
2.2 微塑料在海洋環(huán)境中的分布特征
纖維、碎片是海洋中最常見的微塑料類型,約占微塑料總量的80%,遠(yuǎn)高于球狀微塑料[49-50]。在地中海海水中,碎片微塑料含量為87.7%~93.2%,而球狀微塑料含量僅為2.0%[51]。纖維、碎片在海洋中的比例隨空間變化而變化;在北極,纖維的含量最多(95.0%),其次是碎片(4.9%)[52];在地中海海洋,碎片的比例高達(dá)93.2%[53]。通過鑒定聚合物類型可識(shí)別微塑料的來源,發(fā)現(xiàn)PE、PP和PS是全球地表水中最常報(bào)道的塑料碎片。Hidalgo-Ruz等[9]發(fā)現(xiàn),在海洋微塑料中,PE、PP和PS類型占主導(dǎo)地位,這一結(jié)果與全球塑料生產(chǎn)類型基本一致。據(jù)統(tǒng)計(jì),全球62%的塑料制品生產(chǎn)原料來自PE、PP[54]。此外,在近海水域,聚對苯二甲酸乙二酯(PET)、合成橡膠、聚硬脂酸乙烯酯(PVS)、乙烯-醋酸乙烯酯(EVA)、環(huán)氧樹脂、石蠟和聚己內(nèi)酯(PCL)等的微塑料也已被發(fā)現(xiàn)[53]。人造絲(一種半合成纖維材料)、聚酯纖維(polyester)和尼龍(nylon)等半合成材料的微塑料可通過污水進(jìn)入海洋環(huán)境,在海洋微塑料中占據(jù)不小的比例[50, 55]。
大多數(shù)塑料的密度低于海水,因而能在海水表面漂浮,使得海洋中的微塑料垃圾在海洋洋流的作用下實(shí)現(xiàn)遠(yuǎn)距離遷移。如西北太平洋海面的微塑料含量隨著洋流的變化而變化,為1 km2640~42 000 items[55],而阿拉伯灣海面的塑料含量則為1 km24.38×104~1.46×106items[56]。由于大量接收來自周圍陸地上的塑料垃圾,半封閉的地中海中也含有微塑料。Song等[57]對韓國沿海區(qū)域的海水進(jìn)行取樣發(fā)現(xiàn),微塑料在城市沿海地區(qū)的平均含量高達(dá)1 m31 051 particles,而農(nóng)村沿海地區(qū)的微塑料含量只有1 m3560 particles。Lacerda等[58]在極地區(qū)域的表層水樣中也發(fā)現(xiàn)了微塑料,其中在挪威斯瓦爾巴群島南部、西南部測得的微塑料含量分別為1 m30~1.31 item、0~11.50 item。在格陵蘭島東北部海域,其微塑料含量達(dá)1 m31~3 item[59]。而在南極周圍海域,微塑料含量達(dá)到了1 km2755~3 524 item[58]。
研究發(fā)現(xiàn),海底沉積物中也含有大量微塑料,微塑料含量在海洋沉積物中主要受洋流速度、海底沉積物深度和距海岸線的距離等因素影響。Zhang等[60]檢測發(fā)現(xiàn),微塑料在中國黃海及東海沉積物中的平均含量(干質(zhì)量)分別為1 kg 155 items、142 items,而遠(yuǎn)離海岸水域沉積物中微塑料含量(1 kg 60~90 items)遠(yuǎn)低于近岸海域沉積物中微塑料含量(1 kg 210~240 items)。在一項(xiàng)對白令海北部、楚科奇海的海底沉積物微塑料的監(jiān)測中發(fā)現(xiàn),微塑料的最高含量為1 kg 68.9 items[61]。Li等[62]發(fā)現(xiàn),廣西茅尾海入河口沉積物中的微塑料含量(1 kg 1 780~2 310 items)遠(yuǎn)高于河口區(qū)(1 kg 520~940 items),認(rèn)為入口區(qū)較低的水流速度有利于微塑料向水底沉積。Wang等[63]研究發(fā)現(xiàn),在黃海南部水域,在0~20.0 m、20.1~40.0 m、40.1~60.0 m、60.1~80.0 m沉積物中的微塑料含量分別為1 kg 1 765.0 items、2 135.0 items、2 346.7 items、2 771.3 items,表明該水域沉積物中微塑料的含量與深度呈顯著正相關(guān)。微塑料在全球水域的分布情況見表1。
總體看出,水環(huán)境中微塑料類型的變化、分布特征可為微塑料溯源提供有用信息,有助于改善人們當(dāng)前的塑料垃圾管理策略。
3 微塑料在水環(huán)境中的遷移特征
在水環(huán)境中,水域面積、深度、風(fēng)向、水流速度和微塑料顆粒密度是決定微塑料遷移的重要因素[45]。大多數(shù)微塑料的密度低于淡水、海水的密度,因此微塑料往往浮于水面,沿著河流匯入海洋[7](圖1)。Besseling等[64]研究了從毫米至納米尺寸的球形顆粒(100 nm~10 mm)在淡水環(huán)境中的遷移形式,發(fā)現(xiàn)納米塑料、微塑料的99%保留率距離(99% retentiondistance,RD99)分別為200 km、900 km,表明中等大小的微塑料向下游遷移的速度最快。通常情況下,微塑料尺寸越大,越容易在水體最上層漂移,此時(shí),這種微塑料受地表水風(fēng)浪引起漂移的影響較小,更有可能被帶到近海[65]。此外,上層水體中的湍流會(huì)垂直混合漂浮狀態(tài)的微塑料,使得微塑料在水柱中進(jìn)行垂直遷移。Rezania等[66]發(fā)現(xiàn),上升速度較低的微塑料更易受到垂直遷移的影響。由于對微塑料垂直遷移的研究高度依賴于觀測情況,使得多級(jí)塑料樣品技術(shù)的分辨率較低,微塑料的垂直遷移研究仍有待完善。
在海洋中,生物淤積會(huì)明顯影響微塑料的浮力(圖1)。生物淤積會(huì)增加微塑料的密度,形成中性浮力或負(fù)浮力,導(dǎo)致微塑料持續(xù)沉降。Kooi等[67]預(yù)測,在生物淤積作用下,海洋中微塑料的垂直遷移與其大小有關(guān),從而導(dǎo)致中間深度海水中的微塑料含量達(dá)到最大值,這一現(xiàn)象還會(huì)導(dǎo)致海面微塑料含量降低,從而使微塑料不會(huì)很快堆積在海床上。由于浮游動(dòng)物有晝夜垂直遷移的生物習(xí)性,這大大增加了其與不同垂直深度微塑料接觸的概率。浮游動(dòng)物在選擇性攝食過程中有可能會(huì)攝取附著有機(jī)物的微塑料,但不會(huì)消耗微塑料,在一定程度上起到了去污作用。
微塑料被水生生物攝食也是其在水環(huán)境中遷移的方式之一。有研究發(fā)現(xiàn),尺寸較小的微塑料可被橈足類水生生物攝食,首先聚集于水生生物前中腸內(nèi),最終以密集堆積的糞便顆粒形式排出體外[8]。Vroom等[68]發(fā)現(xiàn),1種橈足類動(dòng)物(Calanus finmarchicus)腸道內(nèi)的PS形成了聚集體,這個(gè)聚集體占整個(gè)腸道體積的30%~90%,含微塑料的糞便顆粒被排出體外,加上水生動(dòng)物的晝夜垂直遷移,微塑料會(huì)被運(yùn)到更深的水域。糞便顆粒是其他海洋生物的食物來源,對懸浮有機(jī)物的垂直通量產(chǎn)生影響。但是糞便顆粒的微塑料密度較低、下沉慢,有可能對深海碳固存產(chǎn)生不利影響[69]。
4 微塑料對水生動(dòng)物的危害
自從人們發(fā)現(xiàn)微塑料在水環(huán)境中普遍存在以來,微塑料對水生動(dòng)物的影響也逐漸引起全球研究人員的關(guān)注[75-77]。目前的研究結(jié)果表明,微塑料通過動(dòng)物的攝食影響浮游動(dòng)物、魚類的生理健康,并通過食物鏈傳播的方式威脅海龜、海鳥、鯨目動(dòng)物和人類的健康。
目前已經(jīng)發(fā)表的關(guān)于全球海洋中各種海洋生物攝入微塑料的研究結(jié)果表明,微塑料的攝入可在種群、個(gè)體、組織、器官、細(xì)胞和分子水平上影響水生生物的生理健康[78]。在個(gè)體和種群水平上,微塑料對生物體的健康產(chǎn)生有害影響,它們可能導(dǎo)致生物生殖健康水平下降,喂養(yǎng)能力受損,并最終導(dǎo)致生物死亡[79]。在組織和器官水平上,微塑料的攝入會(huì)導(dǎo)致發(fā)育中的斑馬魚(Danio rerio)肝臟產(chǎn)生病理應(yīng)激和組織損傷[80]。在細(xì)胞和分子水平上,攝入微塑料可導(dǎo)致氧化應(yīng)激、能量代謝下降、免疫受損、神經(jīng)傳遞功能障礙甚至基因毒性等[81-83]。本項(xiàng)目組利用RNA-seq研究微塑料對斑馬魚腸道的影響時(shí)也發(fā)現(xiàn),暴露于不同大小的微塑料環(huán)境中后,包括精氨酸和脯氨酸代謝、心肌收縮、心肌細(xì)胞腎上腺素能信號(hào)系統(tǒng)、氧化磷酸化和核糖體等KEGG通路差異表達(dá)基因顯著富集,表明用微塑料處理后,斑馬魚存在潛在的健康風(fēng)險(xiǎn)。另有研究發(fā)現(xiàn),海魚(Oryzias latipes)攝取并富集微塑料上吸附的有毒化學(xué)物質(zhì)后,會(huì)導(dǎo)致病理、氧化應(yīng)激及肝臟炎癥[84]。蠕蟲攝入微塑料后,其免疫細(xì)胞的吞噬活性下降[85],并引起免疫功能紊亂。目前,大多數(shù)關(guān)于微塑料影響的報(bào)道都集中在海洋環(huán)境、海洋生物上,關(guān)于微塑料對淡水生物的影響仍缺乏研究[86]。然而,淡水、陸地生物圈中都普遍存在著微塑料,有必要進(jìn)一步研究微塑料對淡水生物的影響[87]。
由于微塑料的體積小,可以通過直接攝食、過濾攝食、懸浮攝食和食物鏈傳播等方式被各種類型的生物攝入[88-89],如浮游動(dòng)物[90-92]、海鳥[93]、鯨目動(dòng)物[94]等。攝入微塑料會(huì)影響動(dòng)物的生長發(fā)育、種群增長、免疫和激素系統(tǒng)、代謝和行為等,甚至?xí)?dǎo)致死亡[95]。據(jù)報(bào)道,攝入微塑料會(huì)在發(fā)育的斑馬魚肝臟中造成病理應(yīng)激和組織損傷[96]。在營養(yǎng)轉(zhuǎn)移過程中,微塑料可以改變攝食[97]和游泳行為[98]。微塑料具有較高的穩(wěn)定性,難以被生物體消化或降解,首先會(huì)在水生生物腸道內(nèi)積累,造成物理損傷[99-100]。目前,腸道損傷已被發(fā)現(xiàn)是微塑料對許多生物體造成傷害的主要影響[101],同時(shí)腸道損傷會(huì)進(jìn)一步削弱生物的攝食活動(dòng),導(dǎo)致群體、個(gè)體、組織、器官水平上的生理健康狀況惡化[102]。本項(xiàng)目組利用RNA-seq研究微塑料對斑馬魚腸道的影響時(shí)也發(fā)現(xiàn),暴露于不同大小微塑料環(huán)境中后,包括精氨酸和脯氨酸代謝、心肌收縮、心肌細(xì)胞腎上腺素能信號(hào)、氧化磷酸化和核糖體等KEGG通路顯著富集,相關(guān)基因顯著上調(diào)表達(dá),表明微塑料處理后斑馬魚存在潛在的健康風(fēng)險(xiǎn)[103]。其次,微塑料會(huì)沿著食物鏈從低營養(yǎng)水平的生物體轉(zhuǎn)移到高營養(yǎng)水平的動(dòng)物中[34],這種遷移方式會(huì)對人類健康產(chǎn)生威脅[90]。已有試驗(yàn)結(jié)果表明,微塑料可以在橈足類或多毛綱動(dòng)物體內(nèi)積累,也可以從貽貝轉(zhuǎn)移到螃蟹中[104]。此外,微塑料還被證明可以通過其表面的有機(jī)污染物吸附功能,改變共暴露污染物的環(huán)境行為[105]。
5 結(jié)論與展望
水環(huán)境中的微塑料來源廣泛,人類陸地活動(dòng)是水環(huán)境中微塑料的主要來源,約占總量的80%以上;碎片、纖維是水環(huán)境中最常見的微塑料形態(tài),其中淡水中主要的微塑料類型是PE、PP,海洋中的主要微塑料類型則是PE、PP和PS。水環(huán)境中的微塑料含量、分布主要受到區(qū)域人口密度、地理位置、水文條件和氣象環(huán)境等因素影響。微塑料在水系統(tǒng)表面、沉積物中均有分布,淡水系統(tǒng)是微塑料進(jìn)入海洋的主要運(yùn)輸路線;微塑料在海洋沉積物中的含量主要受洋流速度、海底沉積物深度和距海岸線的距離等因素影響。在水環(huán)境中,微塑料遷移主要受到水域面積、深度、風(fēng)向、水流速度、微塑料顆粒密度、生物淤積和生物攝食的影響。
水生態(tài)系統(tǒng)中的微塑料會(huì)給水生動(dòng)物帶來不同程度的健康風(fēng)險(xiǎn)。微塑料可以通過直接或間接方式進(jìn)入水生生物體內(nèi),導(dǎo)致群體、個(gè)體、組織、器官、細(xì)胞和分子水平上的生理健康損傷,并通過食物鏈傳遞的方式影響海龜、海鳥、鯨目動(dòng)物及人類健康。微塑料作為塑料中主要的新型污染物,其主要源于人類活動(dòng)產(chǎn)生的初級(jí)塑料、次級(jí)塑料,針對其污染特征開展系統(tǒng)性的治理工作已迫在眉睫。2021年9月,中華人民共和國國家發(fā)展和改革委員會(huì)、中華人民共和國生態(tài)環(huán)境部聯(lián)合印發(fā)了《“十四五”塑料污染治理行動(dòng)方案》,其中明確提出,到2025年中國將有效落實(shí)塑料污染治理機(jī)制,對塑料制品進(jìn)行全鏈條(生產(chǎn)加工、流通、消費(fèi)、回收利用、末端處置)治理監(jiān)控,實(shí)現(xiàn)有效遏制微塑料污染的綠色發(fā)展。
從當(dāng)前大量關(guān)于微塑料產(chǎn)生源頭及微塑料在淡水、海洋中遷移特征的研究結(jié)果看,今后在微塑料環(huán)境治理中,需要秉承全球一體化的思路,制定科學(xué)有效的治理方案,重視陸地中微塑料的流入,防范其生態(tài)危害與食物鏈滲透風(fēng)險(xiǎn)。下一步治理水環(huán)境中微塑料污染的研究方向應(yīng)主要集中在以下幾個(gè)方面:(1)微塑料污染源的深度解析及不同類型、性質(zhì)微塑料的快速分離和鑒別技術(shù);(2)氣候變化、水動(dòng)力等因素影響下微塑料在全球遷移中的變化情況;(3)結(jié)合微塑料污染特點(diǎn),建立以科學(xué)分類、源頭治理、遷移管控為主要內(nèi)容的高效治理體系和監(jiān)督機(jī)制等。
參考文獻(xiàn):
[1] LU S, FANG J, WANG K. Plastic deformation analysis and forming quality prediction of tube NC bending[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1436-1444.
[2] CAO H, FOLAN P, POTTER D, et al. Knowledge-enriched shop floor control in end-of-life business[J]. Production Planning & Control, 2011, 22(2): 174-193.
[3] ANDRADY A L. The plastic in microplastics: a review[J]. Marine Pollution Bulletin, 2017, 119(1): 12-22.
[4] SEONGJOON J, JIN C I, HOGYUN S, et al. Structural insight into molecular mechanism of poly (Ethylene terephthalate) degradation[J]. Nature Communications, 2018, 9(1): 382.
[5] YONKOS L T, FRIEDEL E A, PEREZ-REYES A C, et al. Microplastics in four estuarine rivers in the Chesapeake Bay, U.S.A [J]. Environmental Science & Technology, 2014, 48(24):14195-14202.
[6] GAGO J, HENRY M, GALGANI F. First observation on neustonic plastics in waters off NW Spain (spring 2013 and 2014) [J]. Marine Environmental Research, 2015, 111: 27-33.
[7] ANDRADY A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605.
[8] MATTHEW C, PENNIE L, ELAINE F, et al. Microplastic ingestion by zooplankton[J]. Environmental Science & Technology, 2013, 47(12): 6646-6655.
[9] HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: a review of the methods used for identification and quantification[J]. Environmental Science & Technology, 2012, 46(6): 3060-3075.
[10]VENDEL A L, BESSA F, ALVES V E N, et al. Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures[J]. Marine Pollution Bulletin, 2017, 117(1/2): 448-455.
[11]WRIGHT S L, ULKE J, FONT A, et al. Atmospheric microplastic deposition in an urban environment and an evaluation of transport[J]. Environment International, 2020, 136: 105411.
[12]YUAN W K, LIU X N, WANG W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187.
[13]EERKES-MEDRANO D, THOMPSON R C, ALDRIDGE D C. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs[J]. Water Research, 2015, 75: 63-82.
[14]CLAESSENS M, MEESTER S D, LANDUYT L V, et al. Occurrence and distribution of microplastics in marine sediments along the Belgian coast[J]. Marine Pollution Bulletin, 2011, 62(10): 2199-2204.
[15]FERREIRA G V B, BARLETTA M, LIMA A R A. Use of estuarine resources by top predator fishes. How do ecological patterns affect rates of contamination by microplastics?[J]. Science of the Total Environment, 2019, 655: 292-304.
[16]ERIKSEN M, LEBRETON L C M, CARSON H S, et al. Plastic pollution in the world′s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea[J]. PLoS One, 2014, 9(12): e111913.
[17]BARNES D K A, GALGANI F, THOMPSON R C, et al. Accumulation and fragmentation of plastic debris in global environments[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526): 1985-1998.
[18]KAREN D, ANJA C. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects[J]. Environmental Sciences Europe, 2016, 28(1): 2.
[19]THOMPSON R C. Microplastics in the marine environment: sources, consequences and solutions[M]//BERGMANN M, GUTOW L, KLAGES M. Marine anthropogenic litter. Berlin: Springer International Publishing, 2015: 185-200.
[20]HU Y L, GONG M Y, WANG J Y, et al. Current research trends on microplastic pollution from wastewater systems: a critical review[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(2): 207-230.
[21]ALBERTSSON A C, ERLANDSSON B, HAKKARAINEN M, et al. Molecular weight changes and polymeric matrix changes correlated with the formation of degradation products in biodegraded polyethylene[J]. Journal of Environmental Polymer Degradation, 1998, 6(4): 187-195.
[22]IRINA E, MARGARITA B, ANDREI B, et al. Secondary microplastics generation in the sea swash zone with coarse bottom sediments: laboratory experiments[J]. Frontiers in Marine Science, 2018, 5(25): 110726.
[23]HABIB R. AL KENDI R, THIEMANN T. The effect of wastewater treatment plants on retainment of plastic microparticles to enhance water quality——a review[J]. Journal of Environmental Protection, 2021,12: 161-195.
[24]DAWSON A L, KAWAGUCHI S, KING C K, et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill[J]. Nature Communications, 2018, 9(1): 1001.
[25]JAMBECK J R, GEYER R, WILCOX C, et al. Marine pollution: plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768-771.
[26]LECHNER A, KECKEIS H, LUMESBERGER-LOISL F, et al. The danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europes second largest river[J]. Environmental Pollution, 2014, 188: 177-181.
[27]CARR S A, LIU J, TESORO A G. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water Research, 2016, 91: 174-182.
[28]ERIKSEN M, MASON S, WILSON S, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes[J]. Marine Pollution Bulletin, 2013, 77(1): 177-182.
[29]FREE C M, JENSEN O P, MASON S A, et al. High-levels of microplastic pollution in a large, remote, mountain lake[J]. Marine Pollution Bulletin, 2014, 85(1): 156-163.
[30]SU L, XUE Y G, LI L Y, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711-719.
[31]HAN M, NIU X R, TANG M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. Science of the Total Environment, 2020, 707: 135601.
[32]LAM T W L, FOK L, LIN L, et al. Spatial variation of floatable plastic debris and microplastics in the Pearl River Estuary, South China[J]. Marine Pollution Bulletin, 2020, 158: 111383.
[33]THOMAS M, ARMIN H, ULRICH W, et al. Microplastics profile along the Rhine River[J]. Scientific Reports, 2015, 5(1): 17988.
[34]CARPENTER E J, ANDERSON S J, HARVEY G R, et al. Polystyrene spherules in coastal waters[J]. Science, 1972, 178(4062): 749-750.
[35]KOSUKE T, HIDESHIGE T. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters[J]. Scientific Reports, 2016, 6(1): 34351.
[36]SADRI S S, THOMPSON R C. On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England[J]. Marine Pollution Bulletin, 2014, 81(1): 55-60.
[37]YIN L S, JIANG C B, WEN X F, et al. Microplastic pollution in surface water of Urban Lakes in Changsha, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(9): 1650.
[38]WANG W F, YUAN W K, CHEN Y L, et al. Microplastics in surface waters of Dongting Lake and Hong Lake, China[J]. Science of the Total Environment, 2018, 633: 539-545.
[39]LIN L, ZUO L Z, PENG J P, et al. Occurrence and distribution of microplastics in an urban river: a case study in the Pearl River along Guangzhou City, China[J]. Science of the Total Environment, 2018, 64: 375-381.
[40]EO S, HONG S H, SONG Y K, et al. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea[J]. Water Research, 2019, 160: 228-237.
[41]LAHENS L, STRADY E, KIEU-LE T C, et al. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity[J]. Environmental Pollution, 2018, 236: 661-671.
[42]WANG W, NDUNGU A W, LI Z, et al. Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 2017, 575: 1369-1374.
[43]FAN Y J, ZHENG K, ZHU Z W, et al. Distribution, sedimentary record, and persistence of microplastics in the Pearl River catchment, China[J]. Environmental Pollution, 2019, 251: 862-870.
[44]XIONG X, WU C X, ELSER J J, et al. Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River-From inland to the sea[J]. Science of the Total Environment, 2019, 659: 66-73.
[45]FISCHER E K, PAGLIALONGA L, CZECH E, et al. Microplastic pollution in lakes and lake shoreline sediments-A case study on Lake Bolsena and Lake Chiusi (central Italy)[J]. Environmental Pollution, 2016, 213: 648-657.
[46]FAURE F, DEMARS C, WIESER O, et al. Plastic pollution in Swiss surface waters: nature and concentrations, interaction with pollutants[J]. Environmental Chemistry, 2015, 12(5): 582-591.
[47]SASCHA K, ECKHARD W, P K T. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main Area in Germany[J]. Environmental Science & Technology, 2015, 49(10): 6070-6076.
[48]SARKAR D J, SARKAR S D, DAS B K, et al. Spatial distribution of meso and microplastics in the sediments of river Ganga at eastern India[J]. Science of the Total Environment, 2019, 694: 133712.
[49]DESFORGES J P W, GALBRAITH M, DANGERFIELD N, et al. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean[J]. Marine Pollution Bulletin, 2014, 79(1/2): 94-99.
[50]LUSHER A L, BURKE A, OCONNOR I, et al. Microplastic pollution in the Northeast Atlantic Ocean: validated and opportunistic sampling[J]. Marine Pollution Bulletin, 2014, 88(1): 325-333.
[51]C?ZAR A, ECHEVARR?A F, GONZ?LEZ-GORDILLO? J I, et al. Plastic debris in the open ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10239-10244.
[52]LUSHER A L, TIRELLI V, OCONNOR I, et al. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples[J]. Scientific Reports, 2015, 5(1): 14947.
[53]SUARIA G, AVIO C G, LATTIN G, et al. Floating microplastics in the South Adriatic Sea[M]//BAZTAN J, JORGENSEN B, PAHL S, et al. Fate and impact of microplastics in marine ecosystems. Amsterdam:Elsevier, 2017: 51-52.
[54]ANDRADY A L. Persistence of plastic litter in the oceans[M]//BERGMANN M, GUTOW L, KLAGES M. Marine anthropogenic litter. Berlin: Springer International Publishing, 2015: 57-72.
[55]OBBARD R W, SADRI S, WONG Y Q, et al. Global warming releases microplastic legacy frozen in Arctic Sea ice[J]. Earths Future, 2014, 2(6): 315-320.
[56]ABAYOMI O A, RANGE P, AL-GHOUTI M A, et al. Microplastics in coastal environments of the Arabian Gulf[J]. Marine Pollution Bulletin, 2017, 124(1): 181-188.
[57]SONG Y, HONG S H, EO S, et al. Horizontal and vertical distribution of microplastics in Korean coastal waters[J]. Environmental Science & Technology, 2018, 52(21): 12188-12197.
[58]LACERDA A L D F, RODRIGUES L D S, SEBILLE E V, et al. Plastics in sea surface waters around the Antarctic Peninsula[J]. Scientific Reports, 2019, 9(1): 1-12.
[59]MORGANA S, GHIGLIOTTI L, EST V C N, et al. Microplastics in the Arctic: a case study with sub-surface water and fish samples off Northeast Greenland[J]. Environmental Pollution, 2018, 242: 1078-1086.
[60]ZHANG C F, ZHOU H H, CUI Y Z, et al. Microplastics in offshore sediment in the Yellow Sea and East China Sea, China[J]. Environmental Pollution, 2018, 244: 827-833.
[61]MU J L, QU L, JIN F, et al. Abundance and distribution of microplastics in the surface sediments from the northern Bering and Chukchi Seas[J]. Environmental Pollution, 2018, 245: 122-130.
[62]LI R L, ZHANG L L, XUE B M, et al. Abundance and characteristics of microplastics in the mangrove sediment of the semi-enclosed Maowei Sea of the south China sea: new implications for location, rhizosphere, and sediment compositions[J]. Environmental Pollution, 2019, 244: 685-692.
[63]WANG J D, PENG J P, TAN Z, et al. Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals[J]. Chemosphere, 2017, 171: 248-258.
[64]BESSELING E, QUIK J T K, SUN M, et al. Fate of nano and microplastic in freshwater systems: a modeling study[J]. Environmental Pollution, 2017, 220: 540-548.
[65]ISOBE A, KUBO K, TAMURA Y, et al. Selective transport of microplastics and mesoplastics by drifting in coastal waters[J]. Marine Pollution Bulletin, 2014, 89(1): 324-330.
[66]REZANIA S, PARK J, DIN M F M, et al. Microplastics pollution in different aquatic environments and biota: a review of recent studies[J]. Marine Pollution Bulletin, 2018, 133: 191-208.
[67]KOOI M, VAN NES E H, SCHEFFER M, et al. Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics[J]. Environmental Science & Technology, 2017, 51(14): 7963-7971.
[68]VROOM R J E, KOELMANS A A, BESSELING E, et al. Aging of microplastics promotes their ingestion by marine zooplankton[J]. Environmental Pollution, 2017, 231(1): 987-996.
[69]COLE M, LINDEQUE P K, FILEMAN E, et al. Microplastics alter the properties and sinking rates of zooplankton faecal pellets[J]. Environmental Science & Technology, 2016, 50(6): 3239-3246.
[70]ERIKSEN M, MASON S, WILSON S, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes[J]. Marine Pollution Bulletin, 2013, 77(1): 177-182.
[71]ZHANG K, GONG W, LYU J Z, et al. Accumulation of floating microplastics behind the Three Gorges Dam[J]. Environmental Pollution, 2015, 204: 117-123.
[72]RASTA M, SATTARI M, TALESHI M S, et al. Identification and distribution of microplastics in the sediments and surface waters of Anzali Wetland in the Southwest Caspian Sea, Northern Iran[J]. Marine Pollution Bulletin, 2020, 160: 111541.
[73]FRIAS J P G L, GAGO J, OTERO V, et al. Microplastics in coastal sediments from Southern Portuguese shelf waters[J]. Marine Environmental Research, 2016, 114: 24-30.
[74]WRIGHT S L, THOMPSON R C, GALLOWAY T S. The physical impacts of microplastics on marine organisms: a review[J]. Environmental Pollution, 2013, 178: 483-492.
[75]HORTON A A, BARNES D K A. Microplastic pollution in a rapidly changing world: Implications for remote and vulnerable marine ecosystems[J]. Science of the Total Environment, 2020, 738: 140349.
[76]SUL J A I D, COSTA M F, FILLMANN G. Microplastics in the pelagic environment around oceanic islands of the Western Tropical Atlantic Ocean[J]. Water, Air and Soil Pollution, 2014, 225(7): 1-13.
[77]張 帆,王 壯. 微/納米塑料對淡水生物毒性、機(jī)理及其影響因素研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2021, 16(3): 95-106.
[78]GREEN D S, BOOTS B, SIGWART J, et al. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling[J]. Environmental Pollution, 2016, 208: 426-434.
[79]KACH D J, WARD J E. The role of marine aggregates in the ingestion of picoplankton size particles by suspension-feeding molluscs[J]. Marine Biology, 2008, 153(5): 797-805.
[80]PITT J A, KOZAL J S, JAYASUNDARA N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2018, 194: 185-194.
[81]ROCHMAN C M, PARNIS J M, BROWNE M A, et al. Direct and indirect effects of different types of microplastics on freshwater prey (Corbicula fluminea) and their predator (Acipenser transmontanus)[J]. PLoS One, 2017, 12(11): 0187664.
[82]楊秉倬,黃 河. 微塑料對水生生物的生態(tài)毒理效應(yīng)研究進(jìn)展[J]. 環(huán)境與發(fā)展, 2019, 31(9): 126-130.
[83]孫瑋鴻,張 嶺,譚露茜,等. 海洋生物中微塑料的賦存特征及毒性效應(yīng)研究進(jìn)展[J]. 海洋漁業(yè), 2021, 43(4): 503-512.
[84]ROCHMAN C M, HOH E, KUROBE T, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 2013, 3(1): 3263.
[85]WRIGHT S L, ROWE D, THOMPSON R C, et al. Microplastic ingestion decreases energy reserves in marine worms[J]. Current Biology, 2013, 23(23): 1031-1033.
[86]EERKES-MEDRANO D, LESLIE H A, QUINN B. Microplastics in drinking water: a review and assessment[J]. Current Opinion in Environmental Science & Health, 2019, 7: 69-75.
[87]CHRISTIAN S, NICOLE B, GEORG R, et al. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates[J]. Scientific Reports, 2017, 7(1): 17006.
[88]BAULCH S, PERRY C. Evaluating the impacts of marine debris on cetaceans[J]. Marine Pollution Bulletin, 2014, 80(1): 210-221.
[89]LEE H, SHIM W J, KWON J H. Sorption capacity of plastic debris for hydrophobic organic chemicals[J]. Science of the Total Environment, 2014, 470/471: 1545-1552.
[90]PINJA N, EEVA E R, HERMANNI K, et al. Polycyclic aromatic hydrocarbon sorption and bacterial community composition of biodegradable and conventional plastics incubated in coastal sediments[J]. The Science of the Total Environment, 2020, 755: 143088.
[91]胡嘉敏,左劍惡,李金波,等. 微塑料對鯽魚生長、肝臟損傷和腸道微生物組成的影響[J]. 環(huán)境科學(xué), 2022,43(7): 3664-3671.
[92]TOURINHO P S, SUL J A I D, FILLMANN G. Is marine debris ingestion still a problem for the coastal marine biota of southern Brazil?[J]. Marine Pollution Bulletin, 2010, 60(3): 396-401.
[93]FRANEKER J A V, BLAIZE C, DANIELSEN J, et al. Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea[J]. Environmental Pollution, 2011, 159(10): 2609-2615.
[94]BURKHARDT-HOLM P, NGUYEN A. Ingestion of microplastics by fish and other prey organisms of cetaceans, exemplified for two large baleen whale species[J]. Marine Pollution Bulletin, 2019, 144: 224-234.
[95]K?GEL T, BJOR?Y ?, TOTO B, et al. Micro and nanoplastic toxicity on aquatic life: determining factors[J]. Science of the Total Environment, 2020, 709: 136050.
[96]PITT J A, TREVISAN R, MASSARSKY A, et al. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): a case study with nanopolystyrene[J]. Science of the Total Environment, 2018, 643: 324-334.
[97]KIM S W, KIM D, CHAE Y, et al. Dietary uptake, biodistribution, and depuration of microplastics in the freshwater diving beetle Cybister japonicus: effects on predacious behavior[J]. Environmental Pollution, 2018, 242: 839-844.
[98]YANG S Y, ZHOU M, CHEN X, et al. A comparative review of microplastics in lake systems from different countries and regions[J]. Chemosphere, 2022, 286: 131806.
[99]GUVEN O, BACH L, MUNK P, et al. Microplastic does not magnify the acute effect of PAH pyrene on predatory performance of a tropical fish (Lates calcarifer)[J]. Aquatic Toxicology, 2018, 198: 287-293.
[100]LEI L L, WU S Y, LU S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2018, 619/620: 1-8.
[101]JABEEN K, SU L, LI J N, et al. Microplastics and mesoplastics in fish from coastal and fresh waters of China[J]. Environmental Pollution, 2017, 221: 141-149.
[102]YU P, LIU Z Q, WU D L, et al. Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver[J]. Aquatic Toxicology, 2018, 200: 28-36.
[103]XUE Y H, SUN Z X, FENG L S, et al. Algal density affects the influences of polyethylene microplastics on the freshwater rotifer Brachionus calyciflorus [J]. Chemosphere, 2020, 270: 128613.
[104]FARRELL P, NELSON K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177: 1-3.
[105]BARRETO C, RILLIG M C, WALDMAN W R, et al. How soil invertebrates deal with microplastic contamination[J]. Frontiers for Young Minds, 2021, 9: 625228.
(責(zé)任編輯:徐 艷)