閆開成 陳麗 劉曉麗 梁文馨 蔡蕓
摘要:抗菌藥物的不合理使用,導(dǎo)致耐藥菌感染成為影響人類健康的一大危機,雖然近些年研發(fā)了一些新型抗菌藥物,但耐藥趨勢并未逆轉(zhuǎn),目前急需替代療法來應(yīng)對這一危機。低頻超聲作為一個安全且有應(yīng)用前景的物理方法,在抗感染領(lǐng)域的應(yīng)用越來越被受到重視,與抗菌藥物聯(lián)合應(yīng)用能產(chǎn)生協(xié)同殺菌作用,殺菌機制包括熱效應(yīng)、機械效應(yīng)和空化效應(yīng)。本文綜述了體內(nèi)外低頻超聲聯(lián)合抗菌藥物在抗浮游菌和生物被膜、促進植入物藥物釋放和臨床應(yīng)用的特點,旨在對低頻超聲進一步研究和未來在抗感染領(lǐng)域的應(yīng)用提供指導(dǎo)。
關(guān)鍵詞:低頻超聲;抗感染;空化效應(yīng);浮游菌;生物被膜;植入物
中圖分類號:R978.1 ?文獻標(biāo)志碼:A
Application status of low-frequency ultrasound in the field of anti-infection
Yan Kaicheng1,2, Chen Li3, Liu Xiaoli4, Liang Wenxin2, and Cai Yun2
(1 Medical School of Chinese PLA, Beijing 100853; 2 Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853; 3 Department of Information, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853; 4 Department of Dermatology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853)
Abstract The irrational use of antibiotics has led to the infection of drug-resistant bacteria, which has become a major crisis affecting human health. Although some new antibiotics have been developed in recent years, the trend of drug resistance has not reversed. At present, there is an urgent need for alternative therapy to deal with this crisis. As a safe and promising physical method, low-frequency ultrasound has attracted more and more attention in the field of anti-infection. Combined with antibiotics, it can produce synergistic bactericidal effects. The bactericidal mechanism includes thermal effects, mechanical effects and cavitation effects. This review summarizes the characteristics of low-frequency ultrasound combined with antibiotics in anti-planktonic bacteria and biofilm, promoting implant drug release and clinical application in vivo and in vitro, in order to provide guidance for the further research of low-frequency ultrasound and its application in the field of anti-infection in the future.
Key words Low-frequency ultrasound; Anti-infection; Cavitation effect; Planktonic bacteria; Biofilm; Implants
1 ? ?背景
細菌感染仍然是人類社會面臨的主要挑戰(zhàn)之一,而抗菌藥物依舊是目前治療相關(guān)感染的最有效方法。但是在過去的幾十年中,由于不謹慎地使用抗菌藥物導(dǎo)致細菌耐藥性的流行急劇增加,耐藥菌感染仍然是人類健康的嚴(yán)重威脅[1]。在這種情況下,抗菌藥物聯(lián)合應(yīng)用已成為治療耐藥菌感染的一種選擇,因為它具有廣泛的覆蓋范圍和協(xié)同效應(yīng),但也提高了藥物不良反應(yīng)風(fēng)險,最終導(dǎo)致治療失敗、抗菌藥物使用量增加以及可能加速多重耐藥菌產(chǎn)生[2]。生物被膜是指細菌黏附于接觸表面或形成聚集體,并顯示出對抗菌藥物和宿主防御的極端耐受性,抗菌藥物消除細菌生物被膜所需的藥量是根除浮游菌所需用量的500~5000倍,這遠遠超出了人體的承受能力[3]。因此,抗菌藥物治療通常無法完全根除生物膜,導(dǎo)致復(fù)發(fā)性生物被膜相關(guān)感染[4]。為了應(yīng)對這些挑戰(zhàn),有必要尋求一種輔助方法來協(xié)助去除細菌生物被膜和緩解細菌耐藥趨勢。
物理方法是疾病治療的一個重要輔助手段,其中低頻超聲(low frequency ultrasound,LFU)作為一個安全且有應(yīng)用前景的物理方法,已經(jīng)在臨床研究和診斷中應(yīng)用了很多年。LFU指頻率范圍在20 kHz~1 MHz,具有長波長的聲波,這種聲波在各種組織中具有很強的穿透力,可以引起熱效應(yīng)、機械效應(yīng)和空化效應(yīng)[5]。關(guān)于超聲治療的最早報道可以追溯到19世紀(jì)50年代,氫化可的松軟膏聯(lián)合超聲“按摩”治療手指關(guān)節(jié)炎和手滑囊炎,與單純注射氫化可的松相比療效更佳,在后來的研究中也得到了類似的結(jié)果,證實了超聲可以增強藥物的皮膚滲透性[6-7]。隨著對這些作用機制的深入研究,LFU在治療中的潛力逐漸顯現(xiàn)。針對多種臨床疾病進行了充分研究,包括促進組織再生、疼痛管理、神經(jīng)調(diào)節(jié)、抗感染和抗癌癥治療[8]。
LFU在抗感染領(lǐng)域的應(yīng)用也越來越受到重視,多項研究表明,LFU與抗菌藥物聯(lián)合應(yīng)用能產(chǎn)生協(xié)同殺菌作用,可以提高抗菌藥物對浮游細菌、細菌生物被膜、真菌和其他生物體的殺菌作用[9]。因此,根據(jù)現(xiàn)有的體內(nèi)和體外的研究數(shù)據(jù),綜述LFU的作用機制及應(yīng)用效果,旨在評估LFU協(xié)同抗菌藥物在抗感染領(lǐng)域的應(yīng)用現(xiàn)狀,為未來的臨床實踐提供指導(dǎo)。
2 LFU的生物學(xué)機制
2.1 熱效應(yīng)
一般認為,LFU的抗菌效果取決于其生物學(xué)影響,包括熱效應(yīng)和非熱效應(yīng)。LFU的熱效應(yīng)也稱為熱療效應(yīng),當(dāng)超聲波穿過組織時,組織顆粒介質(zhì)界面會產(chǎn)生摩擦,介質(zhì)吸收這些能量并將其轉(zhuǎn)化為熱能,引起生物體的某些變化[10]。LFU的熱效應(yīng)與超聲參數(shù)和組織密度有關(guān),超聲的受阻和衰減度決定了組織中產(chǎn)生的熱量水平,這些熱量隨后對機體的血管舒張、氧合功能和營養(yǎng)交換等生理現(xiàn)象發(fā)揮作用。當(dāng)LFU強度<0.1 W/cm2主要表現(xiàn)為多普勒效應(yīng),而0.1和1 W/cm2之間的強度用于診斷成像[11]。當(dāng)超聲強度>10 W/cm2會產(chǎn)生大量熱量,高強度聚焦超聲是一種新的無創(chuàng)治療技術(shù),可以瞬間將靶組織加熱到60℃,導(dǎo)致蛋白質(zhì)變性或凝固性壞死,因此,高強度聚焦超聲主要用于抗癌和消融[12]。相比之下,低頻低強度超聲(0.02至1 W/cm2)隨著時間的推移產(chǎn)生的熱量相對較少[13],具體取決于頻率、波長和治療持續(xù)時間,許多研究已經(jīng)驗證了低強度脈沖超聲和低強度連續(xù)超聲在組織再生、疼痛緩解、血栓形成、抗微生物、骨折愈合和骨關(guān)節(jié)炎等疾病治療中的潛在有效性,可見LFU在低強度下對抗炎、抗菌、修復(fù)和再生等有積極療效。
2.2 機械效應(yīng)
機械效應(yīng)是超聲波的最基本的效應(yīng),當(dāng)超聲波在體液介質(zhì)中產(chǎn)生駐波時,懸浮在介質(zhì)中的微粒在機械力的作用下凝聚,發(fā)生位移,這些作用力包括空化效應(yīng)、微束流和輻射力。而LFU最重要的生理效應(yīng)是產(chǎn)生空化效應(yīng),當(dāng)超聲波在機體傳播時,使組織中的液體形成微小氣泡核(空化核),這些空化核閉合時會發(fā)生一系列動態(tài)過程,包括振蕩、膨脹、收縮和崩潰。當(dāng)聲壓達到一定數(shù)值時,氣泡迅速膨脹,然后突然關(guān)閉,隨后的沖擊波可以誘導(dǎo)周圍空化核的形成以及細胞膜和質(zhì)膜的破裂。LFU的這種空化和微流特性歸因于慣性流體中微泡的連續(xù)壓縮和折射循環(huán),引發(fā)細胞膜和質(zhì)膜的局部擴展松動,從而增加營養(yǎng)物質(zhì)的交換或促進藥物輸送[14]。
空化效應(yīng)通常分為穩(wěn)定型和慣性型,在低強度下,空化核圍繞平衡半徑周期性振蕩,產(chǎn)生輻射壓力和微束,微束可以在氣泡表面附近產(chǎn)生高剪切力,然后氣泡變形和破裂,影響相鄰的組織結(jié)構(gòu)并使周圍的細胞或血管壁破裂。隨著頻率的降低,共振氣泡的大小和因振蕩而被迫移動的液體體積也會增加,這表明微束在低頻下可能具有更重要的作用[15]。當(dāng)強度增加時,空化氣泡在負壓下迅速膨脹,在正壓下急劇收縮內(nèi)爆,稱為慣性空化。在此過程中,氣泡振蕩比較劇烈,從劇烈膨脹到急劇塌陷再到瞬間破裂,慣性空化對超聲強度呈總體依賴性,超聲強度必須高于閾值強度,并且超聲頻率越高,慣性空化的閾值強度越大。Tezel等[16]發(fā)現(xiàn)慣性空化增強通常與空化的能量密度相關(guān),而與強度和頻率無關(guān)。這些數(shù)據(jù)表明慣性空化在低頻超聲中起著重要作用。
LFU的生理效應(yīng)受多因素影響,其效應(yīng)機制也是多樣復(fù)雜的,生物學(xué)效應(yīng)可能主要歸因于機械振動,因為一般在低強度下對組織和細胞水平上的熱效應(yīng)很小[17]。在過去的幾十年中,LFU應(yīng)用取得了重大進展,隨著對超聲生物效應(yīng)的了解不斷增加,已經(jīng)確定機械效應(yīng)可以增強超聲化學(xué)效應(yīng),在促進藥物滲透中,LFU介導(dǎo)的微束流和內(nèi)吞作用可能具有協(xié)同作用;在抗腫瘤和抗感染的治療中,LFU的熱效應(yīng)和空化效應(yīng)也是相輔相成的;多數(shù)研究發(fā)現(xiàn)LFU的空化作用在多種治療作用中具有主導(dǎo)作用[18]。
3 LFU的協(xié)同抗菌效應(yīng)
3.1 對浮游菌的作用
LFU對浮游菌作用效果的相關(guān)文獻大多是體外研究,盡管有些研究表明單獨使用LFU可以降低細菌的數(shù)量[19-20],但這樣的殺菌效果并不明顯,設(shè)定的強度也較高,容易產(chǎn)生熱損傷。本課題組胡杏等[21]通過體內(nèi)小鼠肺炎模型,考察了LFU對小鼠肺炎克雷伯菌肺炎的作用效果,設(shè)定頻率為29.36 kHz,強度為0.25~0.3 W/cm2,發(fā)現(xiàn)對小鼠活體肺組織中發(fā)光肺炎克雷伯菌熒光強度無影響。因此,LFU在抗感染領(lǐng)域的應(yīng)用主要表現(xiàn)為和抗菌藥物的協(xié)同作用,Pitt等[22]首次證實了LFU聯(lián)合慶大霉素對銅綠假單胞菌、大腸埃希菌和葡萄球菌的協(xié)同抗菌作用,吸引了很多學(xué)者對LFU在抗感染方面的探索。LFU對浮游菌的聯(lián)合作用主要是在體外孔板中進行,容易操作和孵育,作用時間短且不易生成生物被膜(表1)。
Runyan等[23]使用70 kHz的LFU在不同強度下聯(lián)合頭孢硝噻吩作用于銅綠假單胞菌,在0.5~4.7 W/cm2范圍內(nèi),殺菌效果隨著超聲強度增強而增高,進一步研究發(fā)現(xiàn)LFU作用于銅綠假單胞菌時,會增大細菌的孔膜,可以使大分子的β-內(nèi)酰胺酶從細胞中排出,而小分子頭孢硝噻吩更容易進入細菌內(nèi),從而殺死細菌。其他研究也證實了LFU增強了一些抗菌藥物對某些特定細菌的活性,特別是氨基糖苷類對革蘭陰性菌的活性,Zhu等[28]運用LFU介導(dǎo)的微泡法進一步增強了慶大霉素對大腸埃希菌的抗菌活性,透射電鏡下顯示細菌細胞膜比單用藥物組破壞更嚴(yán)重。此外,Liu等[26]發(fā)現(xiàn)LFU聯(lián)合左氧氟沙星或環(huán)丙沙星可增強其殺死大腸埃希菌的有效性,LFU可以激活氟喹諾酮類藥物產(chǎn)生活性氧,主要包括超氧自由基陰離子和羥基自由基。研究發(fā)現(xiàn)一些革蘭陽性菌也容易受到LFU的作用,使得病原菌對抗菌藥物更敏感,甚至能降低耐藥性,Ayan等[24]發(fā)現(xiàn)LFU可以增強金黃色葡萄球菌對青霉素、替考拉寧、紅霉素等多種抗生素的敏感性,對細菌的形態(tài)學(xué)和遺傳學(xué)都產(chǎn)生了改變。LFU聯(lián)合苯唑西林不僅減少了耐甲氧西林金黃色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)的菌落數(shù),使得細胞壁破裂,并且改變MRSA的菌落特征,包括對甲氧西林的耐藥性[25]。
除了常規(guī)抗菌藥物,LFU還可以增強新型抗菌物質(zhì)對病原菌殺傷能力,比如金屬氧化物納米顆粒、生物聚合物和綠原酸[27,29-30]。
3.2 對生物被膜的作用
與浮游菌相比,生物被膜內(nèi)的細菌對多種抗菌藥物表現(xiàn)為耐藥,耐藥性的增加是由于細菌代謝特征和基因表達的變化。除了表型變化外,生物被膜本身可能會結(jié)合或減緩抗菌藥物的運輸,從而保護內(nèi)部的細菌免于接觸致死水平的抗菌藥物。大多細菌在繁殖過程中都會產(chǎn)生生物被膜,金黃色葡萄球菌、銅綠假單胞菌、大腸埃希菌產(chǎn)生的生物被膜更常見、耐藥性更強。很多研究報道了LFU在體外和體內(nèi)可有效增強某些抗菌藥物殺滅細菌生物膜的作用,體內(nèi)模型大多為兔子和大小鼠皮下植入物模型(表2)。
Rediske等[32]報道LFU作用于家兔皮下的載有大腸埃希菌的聚乙烯圓盤,皮下在超聲作用前注射慶大霉素,治療24 h后分別測量圓盤載菌量,研究分為8個組別,分別設(shè)置了陰性對照組、陽性對照組、單用藥物組、單用LFU組以及不同強度的LFU組。在24.48 kHz頻率下,單用強度0.1 W/cm2
的LFU未見殺菌效果,而與單用藥物組相比,LFU聯(lián)合慶大霉素在0.1 W/cm2時,細菌活力未見明顯降低;在0.3 W/cm2時,細菌平均活力從2.94降低到
0.99 lgCFU/cm2;在0.6 W/cm2時,細菌平均活力從2.93降低到1.69 lgCFU/cm2,結(jié)果顯示在強度為0.3 W/cm2時聯(lián)合慶大霉素有更好的殺菌效果,這也提示并不是超聲強度越高越好,在實際應(yīng)用中需要探索合適的作用強度,才可能產(chǎn)生更好地殺菌效果。同樣,Carmen等[34]研究了LFU聯(lián)合慶大霉素在不同強度下作用于體外大腸埃希菌和銅綠假單胞菌被膜,隨著作用強度的增加LFU顯著增加了慶大霉素穿過生物膜的量,使得慶大霉素在生物被膜下處于較高濃度。對于金黃色葡萄球菌和表皮葡萄球菌生物被膜的治療主要是協(xié)同萬古霉素,LFU增強了萬古霉素在體內(nèi)外對葡萄球菌生物膜的抑菌作用,特別是對于MRSA[42],這種聯(lián)合作用更具殺菌效果,且對動物無明顯危害,其他研究也顯示多次LFU聯(lián)合抗菌藥物組合對細菌生物膜的協(xié)同作用優(yōu)于單次LFU[46]。另外,人β-防御素3抗菌肽對于葡萄球菌具有殺菌效果,LFU可以通過同時促進細菌相關(guān)基因表達來增強人β-防御素3活性,從而抑制葡萄球菌耐藥基因的表達,在80 kHz時體內(nèi)外都有明顯的協(xié)同殺菌作用[37-38]。LFU協(xié)同殺死有生物被膜的細菌,一是可能增加了細胞的通透性,提高了抗菌物質(zhì)通過生物膜的效率;二是LFU作用后的局部溫度升高和細胞內(nèi)活性氧的產(chǎn)生增多。
3.3 促進植入物抗菌藥物釋放
臨床植入物的的使用越來越廣范,心腦血管和骨科每年有大量的手術(shù)都涉及醫(yī)療器械植入人體,這就導(dǎo)致這些“外來品”容易造成局部或全身感染,并且細菌在植入物表面更易形成生物被膜。近年來,人們致力于通過制備生物相容性材料來抑制細菌及生物被膜的形成,以防止或減少生物被膜的感染。其中一種策略是在器械或材料中加入抗菌藥物,通過藥物緩慢釋放來預(yù)防植入部位的細菌感染以及生物被膜的形成,當(dāng)感染發(fā)生時,LFU可促進這些預(yù)制抗菌藥物的加速釋放而起到積極的效果[47]。目前相關(guān)研究主要集中在體內(nèi)外模擬預(yù)制骨水泥抗菌藥物的釋放,而主要的病原菌和臨床感染相似,以常見的金黃色葡萄球菌為主(表3)。
Cai等[51]模擬髖關(guān)節(jié)置換術(shù)預(yù)制萬古霉素丙烯酸骨水泥,置入家兔髖關(guān)節(jié)部位,然后人為造成金黃色葡萄球菌急性感染,加用LFU后測量髖部抽取物的細菌載量,LFU組0~12 h的髖部抽吸物菌量減少了1.62 lg CFU/mL,LFU組12~24 h的髖部抽吸物菌量減少了2.77 lg CFU/mL。LFU增強骨水泥抗菌效果可能歸因于促進釋放的藥物濃度始終高于最低抑菌濃度,以及超聲引起的相關(guān)生物聲學(xué)效應(yīng)。在預(yù)防植入物葡萄球菌引發(fā)的感染主要以預(yù)制萬古霉素和慶大霉素骨水泥為主[50,55],而對于革蘭陰性菌大腸埃希菌和銅綠假單胞菌的植入物感染,LFU主要聯(lián)合環(huán)丙沙星或慶大霉素[48-49],LFU可促進相應(yīng)抗菌藥物的釋放,使得水凝膠上的生物膜累積量顯著減少。LFU的這種可靶向或控制藥物釋放能力,使得在感染發(fā)生時能夠使預(yù)制骨水泥大量釋放抗菌藥物,局部藥物濃度高于最低抑菌濃度,有效殺滅感染菌,此外,LFU可以更有效地讓藥物透過深層組織,發(fā)揮更大療效。
3.4 臨床應(yīng)用
LFU作為一種新型的物理輔助抗感染手段,目前研究大多處于體外和動物實驗階段,臨床研究主要集中在表皮清創(chuàng)術(shù)后的康復(fù)和慢性傷口愈合,具有減少抗菌藥物的使用時間、降低感染復(fù)發(fā)率和促進組織再生等功效。相關(guān)研究主要以臨床病例回顧性為主,主要針對葡萄球菌,抗菌藥物全身使用,部分是局部協(xié)同用藥,LFU局部治療時間一般較長,3個月左右(表4)。
Tewarie等[59]回顧性對比了胸骨切開術(shù)后心臟手術(shù)患者胸骨皮膚瘺使用超聲輔助治療的效果,設(shè)定超聲頻率為25 kHz,強度35~40 W/cm2 ,LFU輔助傷口組18人,常規(guī)治療組19人,61%為革蘭陽性菌,16.5%為革蘭陰性菌,10.5%白色念珠菌,結(jié)果顯示LFU輔助治療組傷口愈合時間和患者住院時間明顯縮短,抗菌藥物使用時間減少,感染復(fù)發(fā)率降低。LFU輔助傷口清創(chuàng)系統(tǒng)是一種能夠破壞細菌生物被膜、優(yōu)先清除壞死組織、減少細菌數(shù)量、減少出血量和相對無痛的清創(chuàng)方式。在胸骨深部感染及下肢血管移植術(shù)后感染,LFU輔助清除促進了表面和深部壞死物質(zhì)的分離和脫落,而不損害周圍正常的組織[56-57]。除了外科手術(shù)的優(yōu)勢外,LFU輔助技術(shù)在傷口清創(chuàng)和促進愈合等方面,將通過縮短住院時間和降低抗微生物治療的時間來節(jié)約成本,提高療效。
4 總結(jié)
根據(jù)近20年的體外和體內(nèi)研究數(shù)據(jù),可以得出LFU在對浮游菌和細菌生物被膜的聯(lián)合治療中起到了很好的輔助作用。對于含藥植入物,LFU可以促進抗菌藥物的釋放,達到最佳療效,但也有報道顯示,經(jīng)LFU處理會降低負載萬古霉素的丙烯酸骨水泥的界面剪切強度和穩(wěn)定性[60]。另外,LFU與抗菌藥物聯(lián)合治療的臨床應(yīng)用可能還有很長的路要走,因為臨床應(yīng)用除了考察其有效性外,安全性是放在首位的,目前雖然對LFU的作用機制有一定了解,但作用頻率、強度及應(yīng)用時間在體外研究中尚存在很大差異,能夠使用于臨床的參數(shù)還需要進一步評估。人們對一種新生事物的研究總會經(jīng)歷一個漫長的過程,從理論到實踐都是必經(jīng)之路,從目前來看,LFU這一物理抗感染手段在未來應(yīng)對細菌耐藥及抗生物被膜是很有前景的。
參 考 文 獻
Kong Q, Yang Y. Recent advances in antibacterial agents[J]. Bioorg Med Chem Lett, 2021, 35(6): 127-134.
Wang Y, Li H, Xie X, et al. In vitro and in vivo assessment of the antibacterial activity of colistin alone and in combination with other antibiotics against Acinetobacter baumannii and Escherichia coli[J]. J Glob Antimicrob Resist, 2020, 20(3): 351-359.
Maszewska A, Moryl M, Wu J, et al. Amikacin and bacteriophage treatment modulates outer membrane proteins composition in Proteus mirabilis biofilm[J]. Sci Rep, 2021, 11(1): 1522-1529.
Tzeng A, Tzeng T H, Vasdev S, et al. Treating periprosthetic joint infections as biofilms: Key diagnosis and management strategies[J]. Diagn Microbiol Infect Dis, 2015, 81(3): 192-200.
Schoellhammer C M, Srinivasan S, Barman R, et al. Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs[J]. J Control Release, 2015, 202(37): 93-100.
Fellinger K S J. Klinik and therapies des chromi-schen gelenkreumatismus[J]. Vienna: Maudrich Verlag, 1954, 6(5): 549-552.
Santoianni P, Nino M, Calabro G. Intradermal drug delivery by low-frequency sonophoresis(25 kHz)[J]. Dermatol Online J, 2004, 10(2): 24-29.
Uddin S M Z, Komatsu D E, Motyka T, et al. Low-intensity continuous ultrasound therapies-a systematic review of current state-of-the-art and future perspectives[J]. J Clin Med, 2021, 10(12): 325-334.
Xie S, Li G, Hou Y, et al. A synergistic bactericidal effect of low-frequency and low-intensity ultrasound combined with levofloxacin-loaded PLGA nanoparticles on M. smegmatis in macrophages[J]. J Nanobiotechnology, 2020, 18(1): 107-112.
Jiang B L, Gao X, Xiong J, et al. Experimental study on synergistic effect of HIFU treatment of tumors using Bifidobacterium bound with cationic phase-change nanoparticles[J]. Eur Rev Med Pharmacol Sci, 2020, 24(10): 5714-5725.
Kingwill A, Barker G, Wong A. Point-of-care ultrasound: its growing application in hospital medicine[J]. Br J Hosp Med(Lond), 2017, 78(9): 492-496.
Quadri S A, Waqas M, Khan I, et al. High-intensity focused ultrasound: Past, present, and future in neurosurgery[J]. Neurosurg Focus, 2018, 44(2): 16-25.
Jiang X, Savchenko O, Li Y, et al. A review of low-intensity pulsed ultrasound for therapeutic applications[J]. IEEE Trans Biomed Eng, 2019, 66(10): 2704-2718.
Uddin S M Z, Komatsu D E. Therapeutic potential low-intensity pulsed ultrasound for osteoarthritis: Pre-clinical and clinical perspectives[J]. Ultrasound Med Biol, 2020, 46(4): 909-920.
Bader K B, Gruber M J, Holland C K. Shaken and stirred: Mechanisms of ultrasound-enhanced thrombolysis[J]. Ultrasound Med Biol, 2015, 41(1): 187-196.
Tezel A, Sens A, Mitragotri S. Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy[J]. J Pharm Sci, 2002, 91(2): 444-453.
De Lucas B, Perez L M, Bernal A, et al. Ultrasound therapy: Experiences and perspectives for regenerative medicine[J]. Genes(Basel), 2020, 11(9): 356-367.
Petit B, Bohren Y, Gaud E, et al. Sonothrombolysis: The contribution of stable and inertial cavitation to clot lysis[J]. Ultrasound Med Biol, 2015, 41(5): 1402-1410.
Gao S, Lewis G D, Ashokkumar M, et al. Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria[J]. Ultrason Sonochem, 2014, 21(1): 446-453.
Al Bsoul A, Magnin J P, Commenges-Bernole N, et al. Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain(6PY1)[J]. Ultrason Sonochem, 2010, 17(1): 106-110.
Hu X, Cai Y, Wang Y, et al. Imaging of bioluminescent Klebsiella pneumoniae induced pulmonary infection in an immunosuppressed mouse model[J]. J Int Med Res, 2020, 48(10): 1-13.
Pitt W G, Mcbride M O, Lunceford J K, et al. Ultrasonic enhancement of antibiotic action on Gram-negative bacteria[J]. Antimicrob Agents Chemother, 1994, 38(11): 2577-2582.
Runyan C M, Carmen J C, Beckstead B L, et al. Low-frequency ultrasound increases outer membrane permeability of Pseudomonas aeruginosa[J]. J Gen Appl Microbiol, 2006, 52(5): 295-301.
Ayan I, Aslan G, Comelekoglu U, et al. The effect of low-intensity pulsed sound waves delivered by the Exogen device on Staphylococcus aureus morphology and genetics[J]. Acta Orthop Traumatol Turc, 2008, 42(4): 272-277.
Conner-Kerr T, Alston G, Stovall A, et al. The effects of low-frequency ultrasound(35 kHz) on methicillin-resistant Staphylococcus aureus(MRSA) in vitro[J]. Ostomy Wound Manage, 2010, 56(5): 32-43.
Liu B, Wang D J, Liu B M, et al. The influence of ultrasound on the fluoroquinolones antibacterial activity[J]. Ultrason Sonochem, 2011, 18(5): 1052-1056.
Seil J T, Webster T J. Antibacterial effect of zinc oxide nanoparticles combined with ultrasound[J]. Nanotechnology, 2012, 23(49): 495-502.
Zhu H X, Cai X Z, Shi Z L, et al. Microbubble-mediated ultrasound enhances the lethal effect of gentamicin on planktonic Escherichia coli[J]. Biomed Res Int, 2014, 14(6): 142-151.
Guo M, Zhang L, He Q, et al. Synergistic antibacterial effects of ultrasound and thyme essential oils nanoemulsion against Escherichia coli O157:H7[J]. Ultrason Sonochem, 2020, 66(5): 104-113.
Sun J, Wang D, Sun Z, et al. The combination of ultrasound and chlorogenic acid to inactivate Staphylococcus aureus under planktonic, biofilm, and food systems[J]. Ultrason Sonochem, 2021, 80(6): 105-111.
Sun J, Huang L, Sun Z, et al. Combination of ultrasound and chlorogenic acid for inactivation of planktonic and biofilm cells of Pseudomonas fluorescens[J]. Food Res Int, 2022, 155(9): 111-118.
Rediske A M, Roeder B L, Nelson J L, et al. Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo[J]. Antimicrob Agents Chemother, 2000, 44(3): 771-772.
Carmen J C, Roeder B L, Nelson J L, et al. Ultrasonically enhanced vancomycin activity against Staphylococcus epidermidis biofilms in vivo[J]. J Biomater Appl, 2004, 18(4): 237-245.
Carmen J C, Nelson J L, Beckstead B L, et al. Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli[J]. J Infect Chemother, 2004, 10(4): 193-199.
Carmen J C, Roeder B L, Nelson J L, et al. Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics[J]. Am J Infect Control, 2005, 33(2): 78-82.
Seth A K, Nguyen K T, Geringer M R, et al. Noncontact, low-frequency ultrasound as an effective therapy against Pseudomonas aeruginosa-infected biofilm wounds[J]. Wound Repair Regen, 2013, 21(2): 266-274.
Zhu C, He N, Cheng T, et al. Ultrasound-targeted microbubble destruction enhances human beta-defensin 3 activity against antibiotic-resistant Staphylococcus biofilms[J]. Inflammation, 2013, 36(5): 983-996.
Li S, Zhu C, Fang S, et al. Ultrasound microbubbles enhance human beta-defensin 3 against biofilms[J]. J Surg Res, 2015, 199(2): 458-469.
Liu X, Yin H, Weng C X, et al. Low-frequency ultrasound enhances antimicrobial activity of colistin-vancomycin combination against pan-resistant biofilm of Acinetobacter baumannii[J]. Ultrasound Med Biol, 2016, 42(8): 1968-1975.
Dong Y, Xu Y, Li P, et al. Antibiofilm effect of ultrasound combined with microbubbles against Staphylococcus epidermidis biofilm[J]. Int J Med Microbiol, 2017, 307(6): 321-328.
Dong Y, Li J, Li P, et al. Ultrasound microbubbles enhance the activity of vancomycin against Staphylococcus epidermidis biofilms in vivo[J]. J Ultrasound Med, 2018, 37(6): 1379-1387.
Wang J, Wen K, Liu X, et al. Multiple low frequency ultrasound enhances bactericidal activity of vancomycin against methicillin-resistant Staphylococcus aureus biofilms[J]. Biomed Res Int, 2018, 18(6): 602-609.
Fu Y Y, Zhang L, Yang Y, et al. Synergistic antibacterial effect of ultrasound microbubbles combined with chitosan-modified polymyxin B-loaded liposomes on biofilm-producing Acinetobacter baumannii[J]. Int J Nanomedicine, 2019, 14(8): 1805-1815.
Hou Y, Yang M, Jiang H, et al. Effects of low-intensity and low-frequency ultrasound combined with tobramycin on biofilms of extended-spectrum beta-lactamases(ESBLs) Escherichia coli[J]. FEMS Microbiol Lett, 2019, 366(3): 326-331.
Yang M, Du K, Hou Y, et al. Synergistic antifungal effect of amphotericin b-loaded poly(lactic-co-glycolic acid) nanoparticles and ultrasound against Candida albicans biofilms[J]. Antimicrob Agents Chemother, 2019, 63(4): 765-763.
Liu X, Wang J, Weng C X, et al. Low-frequency ultrasound enhances bactericidal activity of antimicrobial agents against Klebsiella pneumoniae biofilm[J]. Biomed Res Int, 2020, 2020(8): 591-626.
Delaney L J, Macdonald D, Leung J, et al. Ultrasound-triggered antibiotic release from PEEK clips to prevent spinal fusion infection: Initial evaluations[J]. Acta Biomater, 2019, 93(2): 12-24.
Norris P, Noble M, Francolini I, et al. Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention[J]. Antimicrob Agents Chemother, 2005, 49(10): 4272-4279.
Ensing G T, Roeder B L, Nelson J L, et al. Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo[J]. J Appl Microbiol, 2005, 99(3): 443-448.
Ensing G T, Neut D, Van Horn J R, et al. The combination of ultrasound with antibiotics released from bone cement decreases the viability of planktonic and biofilm bacteria: An in vitro study with clinical strains[J]. J Antimicrob Chemother, 2006, 58(6): 1287-1290.
Cai X Z, Yan S G, Wu H B, et al. Effect of delayed pulsed-wave ultrasound on local pharmacokinetics and pharmacodynamics of vancomycin-loaded acrylic bone cement in vivo[J]. Antimicrob Agents Chemother, 2007, 51(9): 3199-3204.
Yan S, Cai X, Yan W, et al. Continuous wave ultrasound enhances vancomycin release and antimicrobial efficacy of antibiotic-loaded acrylic bone cement in vitro and in vivo[J]. J Biomed Mater Res B Appl Biomater, 2007, 82(1): 57-64.
Lin T, Cai X Z, Shi M M, et al. In vitro and in vivo evaluation of vancomycin-loaded PMMA cement in combination with ultrasound and microbubbles-mediated ultrasound[J]. Biomed Res Int, 2015, 15(8): 309-315.
Shi M, Chen L, Wang Y, et al. Effect of low-frequency pulsed ultrasound on drug delivery, antibacterial efficacy, and bone cement degradation in vancomycin-loaded calcium phosphate cement[J]. Med Sci Monit, 2018, 24(8): 797-802.
Shi M, Chen L, Wang Y, et al. Low-intensity pulsed ultrasound enhances antibiotic release of gentamicin-loaded, self-setting calcium phosphate cement[J]. J Int Med Res, 2018, 46(7): 2803-2809.
Breuing K H, Bayer L, Neuwalder J, et al. Early experience using low-frequency ultrasound in chronic wounds[J]. Ann Plast Surg, 2005, 55(2): 183-187.
Carmo M, Mazzaccaro D, Barbetta I, et al. Use of ultrasound debridement as an adjunctive tool for treating infected prosthetic vascular grafts in the lower extremities[J]. Ann Vasc Surg, 2015, 29(3): 607-615.
Tewarie L, Moza A K, Zayat R, et al. Ultrasound-assisted treatment of sternocutaneous fistula in post-sternotomy cardiac surgery patients[J]. Eur J Cardiothorac Surg, 2015, 47(5): 180-187.
Tewarie L, Chernigov N, Goetzenich A, et al. The effect of ultrasound-assisted debridement combined with vacuum pump therapy in deep sternal wound infections[J]. Ann Thorac Cardiovasc Surg, 2018, 24(3): 139-146.
Zhao Q H, Zhu F B, Cai X Z, et al. Effects of low-frequency pulsed wave ultrasound on the shear properties of the interface of vancomycin-loaded acrylic bone cement-stem[J]. Zhonghua Yi Xue Za Zhi, 2017, 97(7): 545-550.