摘要:膿毒癥是一種由感染引起的器官功能障礙綜合征,具有高發(fā)病率、高致死率的特點,發(fā)病機制復(fù)雜,可觸發(fā)連鎖的免疫反應(yīng),且暫無特效藥物。其治療多采用抗生素、血流動力學(xué)管理、機械通氣等西醫(yī)支持治療,但隨著免疫連鎖反應(yīng)的出現(xiàn),患者對繼發(fā)感染的易感性顯著增加,極易發(fā)展為膿毒癥休克,預(yù)后較差。國際共識提出,在膿毒癥確診后的48 h內(nèi)啟動對患者免疫功能的動態(tài)監(jiān)測可有效減緩膿毒癥進程。大量研究指出,巨噬細(xì)胞作為先天免疫系統(tǒng)抵御病原體的第一道防線,可通過調(diào)控巨噬細(xì)胞極化與細(xì)胞因子的激活比例,在多種免疫系統(tǒng)疾病的治療中發(fā)揮重要作用。而線粒體自噬作為近年來的研究熱點,越來越多的證據(jù)表明,其在炎癥信號傳導(dǎo)的調(diào)節(jié)中起著關(guān)鍵作用。一方面,在炎癥風(fēng)暴期,促進線粒體自噬可減輕膿毒癥難以控制的感染和過度炎癥;另一方面,在免疫抑制期,抑制線粒體自噬可提高機體免疫力,促進清除細(xì)菌并提高患者存活率。中醫(yī)作為祖國傳統(tǒng)醫(yī)學(xué),其“治未病”的思想傳承與現(xiàn)行膿毒癥專家共識中“預(yù)防與阻斷”的理念不謀而合。中藥飲片提取物、中藥復(fù)方及針灸等中醫(yī)藥治療手段,從清熱解毒、活血化瘀、扶正固本、通里攻下的治法入手,雙向調(diào)節(jié)線粒體自噬相關(guān)蛋白磷酸酶及張力蛋白同源基因誘導(dǎo)激酶1、帕金森-E3泛素連接酶、輕鏈3、p62等的水平,動態(tài)調(diào)節(jié)巨噬細(xì)胞M1與M2的比例,達(dá)到預(yù)防、阻斷甚至逆轉(zhuǎn)膿毒癥病情進展的效果,為膿毒癥治療提供一個未病先防、既病防變的新思路。
關(guān)鍵詞:膿毒癥;線粒體自噬;巨噬細(xì)胞極化;免疫調(diào)節(jié);中醫(yī)藥
中圖分類號: R278;R392;R-1" 文獻(xiàn)標(biāo)識碼: A" 文章編號:1000-503X(2024)05-0720-12
DOI:10.3881/j.issn.1000-503X.15849
Role of Mitophagy Affecting Macrophage Polarization in Immunomodulationin Sepsis and Traditional Chinese Medicine Intervention:A Review
QI Luyao XING Jixiang OUYANG Bingqing LI Yunfeng LEI Ming1
1Intensive Care Unit,Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine,Shanghai 200137,China
2Graduate School,Tianjin University of Traditional Chinese Medicine,Tianjin 301617,China
Corresponding author:LEI Ming Tel:13764950647,E-mail:leiming6891@163.com
ABSTRACT:Sepsis,a syndrome characterized by organ dysfunction caused by infection,exhibits high incidence and mortality.The pathogenesis of sepsis is complex and involves a cascade of immune reactions,with no specific drugs currently available.Sepsis is mainly treated with Western medical supportive therapies such as antibiotics,hemodynamic management,and mechanical ventilation.However,the occurrence of immune cascades significantly increases patients’ vulnerability to secondary infections,leading to septic shock and unfavorable prognoses.International consensus indicates that initiating dynamic monitoring of patients’ immune function within 48 h post-sepsis diagnosis can effectively decelerate sepsis progression.Extensive studies have indicated that macrophages,serving as the first line of defense in the innate immune system against pathogens,play a vital role in treating immune system disorders by regulating macrophage polarization and the ratio of cytokines activated.Mitophagy,a hot topic in recent years,has increasingly been shown to play a crucial role in regulating inflammatory signal transduction.Promoting mitophagy during the stage of cytokine storm can mitigate uncontrolled infection and excessive inflammation in sepsis,and inhibiting mitophagy during immunosuppression can enhance host immunity,facilitate bacterial clearance,and improve the survival rate of patients.The idea of treating disease before its onset in traditional Chinese medicine (TCM) coincides with the current consensus among sepsis experts on prevention and interception.The TCM therapies such as extracts of Chinese medicine decoction pieces,TCM compound prescriptions,and acupuncture and moxibustion have the effects of clearing heat and detoxifying,activating blood and resolving stasis,reinforcing healthy qi and consolidating root,and purging.These approaches dynamically regulate the levels of mitophagy-related proteins,such as phosphatase and tension homology-induced putative kinase" Parkin-E3 ubiquitin protein ligase,light chain" and p6 while maintaining a suitable ratio between M1 and M2 macrophages.Consequently,they effectively prevent,halt,or even reverse the progression of sepsis,offering a novel perspective on sepsis management by emphasizing prevention before disease onset and controlling development of existing disease.
Key words:sepsis;mitophagy;polarization of macrophages;immunomodulation;traditional Chinese medicine
Acta Acad Med Sin,2024,46(5):720-731
膿毒癥是一種宿主對感染的反應(yīng)失調(diào),引起危及生命的器官功能障礙綜合征,發(fā)病機制極其復(fù)雜,包括炎癥反應(yīng)失衡、免疫功能障礙、線粒體損傷、凝血障礙、神經(jīng)內(nèi)分泌傳導(dǎo)異常、自噬等病理生理過程,涉及體內(nèi)多個器官功能的變化[1]。機體在此期間會觸發(fā)復(fù)雜的免疫反應(yīng),由免疫亢進的細(xì)胞因子風(fēng)暴到后期免疫抑制、免疫缺陷[2],若管控不佳,極易合并循環(huán)和細(xì)胞代謝紊亂,發(fā)展為膿毒癥休克,顯著增加患者死亡率[3]。2020年發(fā)表的研究顯示,因膿毒癥致死的病例約占全球死亡人數(shù)的19.7%[4]。我國膿毒癥的住院年標(biāo)準(zhǔn)化發(fā)病率也呈逐年遞增態(tài)勢,國民和財政負(fù)擔(dān)進一步增加[5]。最新膿毒癥免疫檢測與治療專家共識推薦,在膿毒癥確診48 h內(nèi)即開始對患者免疫功能進行動態(tài)監(jiān)測,早期識別免疫功能紊亂,對免疫狀態(tài)盡早評估、管控,可有效減緩膿毒癥進程,改善患者預(yù)后[6]。近年來針對膿毒癥的研究也越來越多地關(guān)注其免疫功能障礙的調(diào)節(jié)[7]。但西醫(yī)對于膿毒癥免疫功能障礙并沒有很好的解決辦法,指南中提及到的胸腺法新與免疫球蛋白都僅僅是弱推薦或不推薦[6]。中醫(yī)藥作為祖國傳統(tǒng)醫(yī)學(xué),其“治未病”的理論基礎(chǔ)與我國現(xiàn)行的膿毒癥專家共識中“預(yù)防與阻斷”[8]的理念不謀而合。因此,探索行之有效的中醫(yī)藥干預(yù)措施,及早調(diào)節(jié)膿毒癥患者的免疫功能,使其在免疫抑制發(fā)生之前即被有效阻斷,是全球范圍內(nèi)亟待解決的公共衛(wèi)生問題。
1 線粒體自噬與巨噬細(xì)胞極化概況
1.1 線粒體自噬
線粒體是活細(xì)胞有氧呼吸的主要場所,線粒體功能正常是維持機體代謝能量供應(yīng)的基礎(chǔ),是免疫信號傳導(dǎo)不可或缺的一部分,而其自噬的穩(wěn)態(tài)則是維持線粒體功能正常的基石[9]。線粒體自噬是指在活性氧(reactive oxygen species,ROS)應(yīng)激、營養(yǎng)缺乏、細(xì)胞衰老等外界刺激的作用下[10],誘導(dǎo)膜內(nèi)吞噬泡的分離、封閉和溶酶體途徑降解的選擇性自噬過程,可清除受損或多余的線粒體,維持線粒體數(shù)目和質(zhì)量的平衡,是線粒體質(zhì)量控制的重要一環(huán),與神經(jīng)退行性病變、癌癥、心血管疾病等多種疾病的發(fā)生發(fā)展密切相關(guān)[11]。有文獻(xiàn)證實,線粒體自噬是一種具有雙重作用的過程,其機制復(fù)雜,既存在潛在的益處,也伴隨一定的風(fēng)險,因此,未來的研究應(yīng)著重于如何最大化其正面效應(yīng)[12]。Bcl-2/腺病毒E1B-19 kDa相互作用蛋白3(Bcl-2/adenovirus E1B-19 kDa interacting protein" BNIP3)及其類似物(BNIP3-like protein X,NIX)和含F(xiàn)UN14結(jié)構(gòu)域蛋白1(functional domain containing protein" FUNDC1)是介導(dǎo)哺乳動物生理和病理條件下線粒體自噬最主要的兩組受體,磷酸酶及張力蛋白同源基因誘導(dǎo)激酶1(phosphate and tension homology induced putative kinase" PINK1)/帕金森-E3泛素連接酶(Parkin-E3 ubiquitin protein ligase,PARKIN)是目前公認(rèn)的介導(dǎo)線粒體自噬體形成、自噬銜接子募集、TANK結(jié)合激酶1驅(qū)動自噬受體磷酸化等過程的相關(guān)通路[13](圖1)。
1.2 巨噬細(xì)胞極化
巨噬細(xì)胞作為先天免疫系統(tǒng)抵御病原體暴露的第一道防線,能通過吞噬作用發(fā)揮關(guān)鍵的宿主防御機制,募集其他免疫細(xì)胞到感染部位,激活血清補體系統(tǒng)和適應(yīng)性免疫反應(yīng),吞噬和消滅外來病原體,從而發(fā)揮免疫調(diào)控的作用[14-15]。有觀點認(rèn)為,未極化的巨噬細(xì)胞(M0型)極化后主要表現(xiàn)為介導(dǎo)促炎反應(yīng)的經(jīng)典活化巨噬細(xì)胞(M1型)和介導(dǎo)抗炎反應(yīng)的替代活化巨噬細(xì)胞(M2型),其中,M1型巨噬細(xì)胞主要受脂多糖(lipopolysaccharide,LPS)誘導(dǎo),分泌腫瘤壞死因子(tumor necrosis factor,TNF)-α、白細(xì)胞介素(interleukin,IL)-1β、IL-6、IL-8、IL-12等細(xì)胞因子,以CD80、CD86、誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)為主要表面標(biāo)志物,引起炎癥反應(yīng),吞噬和殺滅病原體;M2型巨噬細(xì)胞主要受IL-4等誘導(dǎo),分泌IL-10、轉(zhuǎn)化生長因子(transforming growth factor,TGF)-β、血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)等細(xì)胞因子,以CD206、CD163、精氨酸酶(arginase,Arg)-1為主要表面標(biāo)志物,減輕炎癥反應(yīng),促進組織修復(fù)和再生[16](圖2)。研究表明巨噬細(xì)胞可分為3種功能亞群:宿主防御巨噬細(xì)胞(類似M1型)、傷口愈合巨噬細(xì)胞(類似M2型)和免疫調(diào)節(jié)巨噬細(xì)胞(由調(diào)節(jié)性T細(xì)胞、記憶性CD4+ T細(xì)胞等細(xì)胞分泌的因子介導(dǎo),主要表現(xiàn)為免疫調(diào)節(jié)、免疫耐受和免疫抑制),同一巨噬細(xì)胞可能存在兩種亞群特征,且不同功能亞群之間可以相互轉(zhuǎn)化,巨噬細(xì)胞極化狀態(tài)的轉(zhuǎn)變在病原體感染、腫瘤、自身免疫性疾病等多種疾病的免疫應(yīng)答中具有重要作用[17]。目前個性化巨噬細(xì)胞靶向策略在疾病治療中的研究較多[18]。
2 線粒體自噬調(diào)控巨噬細(xì)胞極化在膿毒癥中的作用
2.1 巨噬細(xì)胞極化在膿毒癥中的作用
巨噬細(xì)胞作為先天免疫系統(tǒng)的哨兵細(xì)胞,起源于造血干細(xì)胞,由單核細(xì)胞進入受損組織后轉(zhuǎn)變而成,隨外周血分布于肝臟、心臟、肺臟、脾臟、腎臟、腦、皮膚和血管內(nèi)皮等各個靶器官,負(fù)責(zé)IL-1β、IL-6、IL-8、IL-12、IL-18、IL-33、TNF-α、粒細(xì)胞-巨噬細(xì)胞集落刺激因子、巨噬細(xì)胞遷移抑制因子、單核細(xì)胞趨化蛋白-1(monocyte chemoattractant protein- MCP-1)、IL-1ra、TGF-β、前列腺素E2等多種細(xì)胞炎癥因子[19]及干擾素、補體等活性物質(zhì)的釋放,其活化失調(diào)可直接影響膿毒癥的結(jié)局[20-21]。
膿毒癥早期,機體內(nèi)的γ-干擾素(interferon-γ,IFN-γ)和LPS等促炎因子誘導(dǎo)巨噬細(xì)胞向M1型極化,釋放大量炎癥因子,如IL-1、TNF-α、IL-6、ROS、iNOS等,引起全身嚴(yán)重的炎癥因子風(fēng)暴,損傷膿毒癥靶器官,造成連鎖的臟器功能障礙[22]。研究發(fā)現(xiàn),膿毒癥巨噬細(xì)胞受到刺激時,細(xì)胞因子基質(zhì)金屬蛋白酶-9的表達(dá)水平顯著增加,與疾病嚴(yán)重程度呈正相關(guān)[23];巨噬細(xì)胞產(chǎn)生的TNF-α和IL-1β可在膿毒癥期間激活中性粒細(xì)胞,其中,多形核中性粒細(xì)胞可分泌外泌體miR-30d-5p,通過激活核因子κB(nuclear factor-κB,NF-κB)信號通路誘導(dǎo)細(xì)胞焦亡,發(fā)生組織病理性改變,促進膿毒癥相關(guān)急性肺損傷[24]。此外,巨噬細(xì)胞表面的Toll樣受體4(Toll-like receptor 4,TLR4)可通過介導(dǎo)NF-κB和絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信號通路調(diào)節(jié)巨噬細(xì)胞從M1型向M2型的極化,維持組織中的線粒體動力學(xué)平衡,減少氧化應(yīng)激和細(xì)胞凋亡,減輕膿毒癥誘導(dǎo)的心肌損傷[25]。在治療方面,前期研究顯示,靶向巨噬細(xì)胞遞送miR-21使其重編程(減少M1型且激活M2型),減輕巨噬細(xì)胞表型的炎癥調(diào)節(jié),可逆轉(zhuǎn)心肌重塑,防止血管缺血再灌注損傷[26];通過Krüppel樣轉(zhuǎn)錄因子14抑制己糖激酶2調(diào)節(jié)巨噬細(xì)胞糖酵解,也可顯著降低小鼠體內(nèi)的炎癥水平,提高膿毒癥小鼠的存活率[27]。
相反,膿毒癥晚期,M1型巨噬細(xì)胞分泌減少,M2型巨噬細(xì)胞分泌過剩,或M1、M2型巨噬細(xì)胞分泌均受抑制,誘導(dǎo)宿主進入免疫抑制狀態(tài),此時,機體對機會性和院內(nèi)繼發(fā)感染的易感性顯著增加[28]。采用盲腸結(jié)扎穿孔術(shù)構(gòu)建的膿毒癥小鼠模型從劇烈炎癥到免疫抑制的轉(zhuǎn)折點出現(xiàn)在結(jié)扎后24 h內(nèi)[29-30]。臨床觀察發(fā)現(xiàn),與未出現(xiàn)免疫麻痹的患兒相比,存在免疫麻痹的膿毒癥患兒外周血單核細(xì)胞線粒體呼吸更低,且表現(xiàn)出更高水平的全身炎癥反應(yīng)[31]。在一項雙盲、隨機對照的臨床研究中,因肺部感染、菌血癥或急性膽管炎引起膿毒癥的240例患者接受了血清鐵蛋白和人類白細(xì)胞抗原-DR(human leukocyte antigen-DR,HLA-DR)/CD14的檢測,結(jié)果發(fā)現(xiàn),與未出現(xiàn)免疫麻痹的患者相比,出現(xiàn)免疫麻痹患者的死亡率更高[32]。
2.2 線粒體自噬調(diào)控巨噬細(xì)胞極化的作用
線粒體作為巨噬細(xì)胞極化能量的主要提供者,在其功能正常時,產(chǎn)生細(xì)胞代謝所需的ATP;當(dāng)其被損傷破壞時,產(chǎn)生ROS,啟動線粒體自噬。線粒體自噬本是一種自身保護措施,細(xì)胞可以通過清除受損線粒體,阻止蛋白堆積,抑制ROS生成,維持線粒體的數(shù)量和質(zhì)量穩(wěn)態(tài),維持細(xì)胞的正常生理功能[33]。然而,當(dāng)線粒體自噬程度過高時,會導(dǎo)致線粒體消除過多,引起線粒體缺乏和機體行為障礙,如表現(xiàn)出焦慮樣和抑郁樣行為等[34]。線粒體的自噬作用在巨噬細(xì)胞極化調(diào)控機制方面的研究較多[35-36]。越來越多的證據(jù)表明,線粒體自噬在炎癥信號傳導(dǎo)的調(diào)節(jié)中起著關(guān)鍵作用,有望作為膿毒癥感染先天免疫的治療靶點[37]。
有研究表明,內(nèi)體銜接蛋白APPL1缺失抑制線粒體自噬,會導(dǎo)致受損線粒體累積,產(chǎn)生ROS和氧化的細(xì)胞膜線粒體脫氧核糖核酸,引發(fā)巨噬細(xì)胞中核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(nucleotide-binding oligomerization domain-like receptor protein" NLRP3)炎性小體的過度激活,使全身性半胱氨酸天冬氨酸特異性蛋白酶(cysteinyl aspartate specific protease,Caspase)-1活性增強,IL-1β產(chǎn)生和分泌增加,是內(nèi)毒素誘導(dǎo)產(chǎn)生膿毒癥細(xì)胞炎癥因子風(fēng)暴的重要機制[35]。在LPS誘導(dǎo)的膿毒癥小鼠模型中,自噬關(guān)鍵調(diào)控蛋白復(fù)合物Beclin-1特異性過表達(dá),可通過抑制線粒體損傷相關(guān)分子模式的釋放和激活PINK1/PARKIN信號通路促進線粒體自噬,減輕LPS誘導(dǎo)的M1型巨噬細(xì)胞極化引起的難以控制的感染和過度炎癥,改善膿毒癥小鼠的心肌纖維化及心臟功能,而抑制線粒體自噬則會產(chǎn)生相反的效果[38-39]。泛素特異性蛋白酶19可以通過增加自噬通量和減少線粒體ROS的產(chǎn)生來抑制NLRP3炎癥小體活化,進而促進M2型巨噬細(xì)胞極化,是炎癥干預(yù)的潛在治療靶點[40]。
另有研究表明,抑制線粒體自噬是一種有助于激活髓系細(xì)胞并改善膿毒癥預(yù)后的生理機制,采用PINK1缺失的骨髓或藥物抑制線粒體自噬促進巨噬細(xì)胞活化,有利于清除細(xì)菌并提高存活率;若改用促進線粒體自噬的線粒體解偶聯(lián)劑,則會逆轉(zhuǎn)LPS/IFN-γ介導(dǎo)的巨噬細(xì)胞活化,導(dǎo)致免疫麻痹,使細(xì)菌清除能力受損,存活率降低[36]。
由此可見,調(diào)控線粒體自噬與巨噬細(xì)胞極化的關(guān)系對膿毒癥治療至關(guān)重要,但西醫(yī)在介入時機上存在爭議,因這兩者之間可能存在動態(tài)的正負(fù)雙向調(diào)控。而中醫(yī)藥的“治未病”理念與“雙向調(diào)控”的作用機制在此時顯得尤為關(guān)鍵。
3 中醫(yī)藥調(diào)控線粒體自噬影響巨噬細(xì)胞極化在膿毒癥免疫調(diào)節(jié)中的應(yīng)用
傳統(tǒng)中醫(yī)古籍中并未見對膿毒癥病名的描述,但其癥狀可歸為“外感熱病”“傷寒”“溫病”的范疇,且膿毒癥免疫力低下通常與脾氣不足有關(guān),脾胃功能障礙,水谷精微不能輸布,加之先天不足,氣血失調(diào),“邪之所湊,其氣必虛”。近現(xiàn)代中醫(yī)學(xué)家認(rèn)為“毒”“瘀”“虛”是膿毒癥進展的三部曲,正氣虧虛一直貫穿疾病始終,毒熱熾盛證、瘀血阻滯證、急性虛證與腑氣不通證及其各自治法為代表的“四證四法”理論是膿毒癥中醫(yī)辨證治療的基本理論體系[41-42]。中醫(yī)藥在疾病發(fā)展的不同階段,均能起到“防、控、治、康”四大作用[43-44],且中藥及針灸在疾病治療中常能“損其有余、補其不足”,在疾病變化過程中起到雙向調(diào)控的作用[45],既能清熱解毒糾正炎癥反應(yīng)[46],又能補益正氣緩解免疫抑制[47]。
3.1 中藥飲片提取物
隨著中醫(yī)藥研究的深入,中藥分離、提取技術(shù)得到了長足發(fā)展,實現(xiàn)了有效、無毒、一致、穩(wěn)定的中藥單體成分的制備和分析,研究者對中藥飲片成分中各種提取物的關(guān)注日漸提高[48]。
在促進線粒體自噬和巨噬細(xì)胞向M2型極化發(fā)揮抗炎功能方面,雷公藤內(nèi)酯通過自噬與凋亡的相互作用,增加酸性空泡、輕鏈3(light chain" LC3)和自噬相關(guān)基因(autophagy-related gene,ATG)蛋白的表達(dá),刺激ROS產(chǎn)生,激活Caspase酶家族與細(xì)胞程序性死亡(特別是凋亡),提高線粒體膜電位(mitochondrial membrane potential,MMP),增強T細(xì)胞、B細(xì)胞、單核細(xì)胞和巨噬細(xì)胞群的吞噬作用,發(fā)揮抗炎、抗增殖、促凋亡和增強免疫的功能[49]。槲皮素作為一種天然多酚類黃酮,可通過促進線粒體自噬抑制過量ROS介導(dǎo)的小膠質(zhì)細(xì)胞NLRP3炎癥小體活化,預(yù)防神經(jīng)元損傷[50];同樣,黃芩苷可以顯著下調(diào)LC3 Ⅱ/Ⅰ、p62和外膜轉(zhuǎn)位酶20的水平,上調(diào)NIX、腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)和過氧化物酶體增殖物激活受體γ共激活因子-1α(peroxisome proliferator-activated receptor gamma coactivator 1-alpha,PGC-1α)的水平,改善海馬神經(jīng)元線粒體自噬,減輕小鼠抑郁樣行為[51]。人參根提取物通過蛋白激酶B(protein kinase B,Akt)-哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信號通路誘導(dǎo)自噬,緩解過度氧化、線粒體功能障礙和炎癥,增強Beclin-1、LC3 Ⅱ和ATG7蛋白的表達(dá),顯著抑制LPS誘導(dǎo)結(jié)腸炎的損傷程度,發(fā)揮與NF-κB和氨基末端激酶抑制劑類似的作用[52]。
在抑制線粒體自噬維持M1型巨噬細(xì)胞分泌增強機體免疫力方面,有研究指出,C21甾體苷是大戟的主要活性成分,通過誘導(dǎo)線粒體功能障礙和ROS積累,啟動線粒體自噬依賴性細(xì)胞凋亡,抑制ATP1A1-Akt/細(xì)胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)信號通路,調(diào)節(jié)炎性細(xì)胞因子的釋放,促進M2型巨噬細(xì)胞極化,增強吞噬作用,殺滅病原體,在病毒感染、癌癥、白血病、驚厥等方面療效顯著[53-54]。此外,隱丹參酮作為丹參的主要脂溶性提取物,其抗腫瘤、抗氧化、抗炎、抗菌等活性同樣不容小覷[55],可作為抗腫瘤免疫調(diào)節(jié)劑,通過細(xì)胞凋亡信號調(diào)節(jié)激酶1(apoptosis signal-regulated kinase" ASK1)途徑抑制線粒體氧化磷酸化和融合,抑制M2型巨噬細(xì)胞分化,同時觸發(fā)ASK1的TNF受體相關(guān)因子6的自泛素化依賴性激活,促進ASK1的泛素化和降解,有助于將腫瘤相關(guān)巨噬細(xì)胞向M1型轉(zhuǎn)變,導(dǎo)致腫瘤消退[47]。
在線粒體自噬與巨噬細(xì)胞極化的雙向調(diào)控方面,諸多中藥提取物也展示出較好的效果。芍藥苷作為水溶性單萜甙,具有濃度和功能依賴性的雙向免疫調(diào)節(jié)作用,一方面,通過提高MMP和減少ROS積累,修復(fù)受損線粒體;另一方面,通過上調(diào)PINK1、PARKIN、BNIP3、p62和Krüppel樣轉(zhuǎn)錄因子4的表達(dá),抑制M1型巨噬細(xì)胞標(biāo)志物(CD68、iNOS、IL-6、IL-1β、TNF-α、MCP-1等)的浸潤,增加M2型巨噬細(xì)胞標(biāo)志物(CD206、Arg1、FIZZ1、IL-10和Ym-1等)的比例,保護腎臟組織免受炎癥損傷[46]。葛根素對線粒體自噬亦可以起到雙向調(diào)控作用,一方面,通過調(diào)節(jié)動態(tài)相關(guān)蛋白1(dynamin-related protein" Drp1)和絲裂霉素 逆轉(zhuǎn)LPS導(dǎo)致的線粒體酶活性、一磷酸腺苷、二磷酸腺苷和ATP水平的降低,介導(dǎo)p62、LC3B、PINK1和PARKIN促進H9C2細(xì)胞的線粒體自噬,防止膿毒癥對心血管系統(tǒng)產(chǎn)生不利影響[56];同時,其通過激活PI3K-Akt-mTOR信號通路,逆轉(zhuǎn)MMP水平和ATP含量,抑制FUNDC1介導(dǎo)的線粒體自噬,與線粒體分裂抑制劑Mdivi作用類似,可保護細(xì)胞免受氧化損傷[57]。
另外,近年研究發(fā)現(xiàn)青蒿葉提取物[58]、絞股藍(lán)苷[59]、三七皂苷R1[60]、漆黃素[61]、偽麻黃堿及大黃素[62]等眾多中藥提取物均可通過調(diào)控自噬途徑顯著改善線粒體代謝功能,調(diào)節(jié)巨噬細(xì)胞極化狀態(tài),清除細(xì)胞毒性物質(zhì),緩解膿毒癥引起的炎癥反應(yīng)和免疫抑制,保護神經(jīng)、血管內(nèi)皮和組織,有效拮抗膿毒癥的免疫失調(diào),抑制膿毒癥對臟器的損傷。
3.2 中藥復(fù)方
中藥復(fù)方以“君臣佐使”為主要配伍原則,根據(jù)患者的個體病情,從整體視角出發(fā)達(dá)到同病異治、異病同治的效果[63]。
針對膿毒癥毒熱熾盛證,葛根芩連湯(葛根、黃芩、黃連、甘草)可發(fā)揮其作為外感表證未解、熱陷陽明經(jīng)典方的作用,解表清里、抗炎抑菌、降糖降脂、抗氧化等[64];Wang等[65]觀察到非酒精性脂肪肝小鼠在服用葛根芩連湯后,線粒體自噬蛋白(如PINK、PARKIN、LC3B、p62、BNIP3、FUNDC1、Beclin-1、抑制素2和線粒體融合蛋白1等)的表達(dá)顯著增加,而磷酸化Drp1的表達(dá)顯著降低;此外,巨噬細(xì)胞浸潤標(biāo)志物(F4/80、CD11b)和M1型巨噬細(xì)胞極化標(biāo)志物(CD11c、CCR7)的表達(dá)減少,M2型巨噬細(xì)胞極化標(biāo)志物(CD163、CD206)的表達(dá)增加,且M2/M1的比值增高,促炎細(xì)胞因子和NLRP3炎癥小體顯著減少。若合并陽明腑實,涼膈散(大黃、連翹、黃芩、薄荷、梔子、樸硝、甘草)則是最佳選擇,其尤擅清上、中焦之郁熱,瀉火解毒通便,能通過下調(diào)炎癥趨化通路相關(guān)的特征基因糖原合成酶激酶(glycogen synthase kinase,GSK)-3β mRNA的表達(dá),促進GSK-3β磷酸化失活,誘導(dǎo)M1型巨噬細(xì)胞極化為M2型,減輕中性粒細(xì)胞浸潤和機體的炎癥損傷,是治療膿毒癥的一種有前途的候選藥物[66]。
大明膠囊(大黃、決明子、丹參、陳皮、人參、茯苓)和桃紅四物湯(桃仁、紅花、熟地、當(dāng)歸、川芎、芍藥)常用于應(yīng)對膿毒癥瘀血阻滯證。大明膠囊具有清熱降濁、活血化瘀之功效,可增加線粒體自噬受體核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體X1的表達(dá),降低線粒體和溶酶體共定位以及MMP,增加線粒體ROS的積累,激活沉寂信息調(diào)節(jié)因子/AMPK信號通路,抑制心肌細(xì)胞的炎癥反應(yīng)和氧化應(yīng)激,減少心肌細(xì)胞凋亡,改善心臟功能[67]。桃紅四物湯則可通過增強線粒體自噬和抑制NLRP3炎癥小體的活化,保護PC12細(xì)胞免受氧糖剝奪再灌注損傷,提高細(xì)胞的存活率[68]。
對于膿毒癥后期免疫抑制引起的急性虛證,補陽還五湯(黃芪、當(dāng)歸、赤芍、川芎、桃仁、紅花、地龍)具有補氣、活血、通絡(luò)之功效,采用高劑量(20 mg/kg)可以通過抑制CD45免疫細(xì)胞浸潤,顯著減少心肌細(xì)胞凋亡,緩解炎癥微環(huán)境,提高膿毒癥小鼠的存活率;其關(guān)鍵分子芍藥甙和毛蕊異黃酮苷可抑制NF-κB信號通路,上調(diào)TGF-β通路,抑制局部巨噬細(xì)胞聚集與免疫細(xì)胞浸潤,促進M2型巨噬細(xì)胞極化,緩解膿毒癥心肌損傷[69]。與之相輔相成,益氣健脾方(黃芪、太子參、當(dāng)歸、女貞子、茯苓、白術(shù)、陳皮、黃芩、甘草)專注補脾益氣、滋養(yǎng)氣血,可改善急慢性肝衰竭大鼠模型外周血淋巴細(xì)胞數(shù)量和CD8+ T淋巴細(xì)胞比例,增加促炎因子(IL-2、IFN-λ和TNF-α),減少抗炎因子(IL-10和TGF-β1),改善CD8+ T淋巴細(xì)胞的新陳代謝和線粒體平衡,通過促進自噬緩解淋巴細(xì)胞免疫功能障礙,促進PGC-1α、核呼吸轉(zhuǎn)錄因子1和線粒體轉(zhuǎn)錄因子A的表達(dá),調(diào)節(jié)自噬和線粒體生物發(fā)生之間的關(guān)系,改善免疫抑制,促進免疫應(yīng)答平衡[70]。
腑氣不通證常伴隨其余三證出現(xiàn),大承氣湯(大黃、枳實、厚樸、芒硝)可作為首選[41],其主要成分木犀草素、蘆薈大黃素、柚皮素等[71],通過促進維生素D受體表達(dá),減輕LPS誘導(dǎo)的膿毒癥相關(guān)急性肺損傷小鼠肺組織或肺泡巨噬細(xì)胞的焦亡與NLRP3炎癥小體的激活,提高ATG16L1、Beclin1等自噬蛋白的表達(dá),增強其自噬反應(yīng),降低肺泡巨噬細(xì)胞的炎癥水平[72]。對于腸源性膿毒癥小鼠多器官功能損傷,大承氣湯可通過抑制全身炎癥與凋亡、下調(diào)TLR4/髓樣分化因子88(myeloid differentiation factor 88,MyD88)信號通路等,明顯降低小鼠膿毒癥評分與TNF-α、IL-6的水平[73],提高7 d生存率[74]。
3.3 針灸
針灸以其“簡、便、廉、驗”的特點,廣泛應(yīng)用于多種疾病的治療,包括改善血液循環(huán)、促進新陳代謝、調(diào)節(jié)免疫功能和緩解疼痛等[75-77]。其經(jīng)絡(luò)理論的科學(xué)性不斷得到證實[78],穴位的選擇性、區(qū)域特異性、神經(jīng)解剖學(xué)基礎(chǔ)、刺激強度和針刺深度等成為研究熱點[79]。研究表明,電針刺激(electrical stimulation,ES)通過體細(xì)胞和強度依賴性方式驅(qū)動交感神經(jīng)通路,低強度ES在后肢區(qū)域激活迷走神經(jīng)-腎上腺軸,產(chǎn)生依賴于神經(jīng)肽Y+腎上腺嗜鉻細(xì)胞的抗炎作用;高強度ES在腹部通過脊髓交感軸激活神經(jīng)肽Y+脾臟去甲腎上腺素能神經(jīng)元,參與前饋調(diào)節(jié)環(huán)路,產(chǎn)生抗炎或促炎效應(yīng)[80]。
在膿毒癥免疫調(diào)節(jié)方面,三陰交和吲哚美辛聯(lián)合治療可降低LPS暴露大鼠的炎癥細(xì)胞浸潤、血管通透性和髓過氧化物酶活性[81]。本課題組前期研究也發(fā)現(xiàn),包括足三里、天樞、上巨虛穴在內(nèi)的“腸三針”可通過調(diào)控瞬時受體電位香草酸亞型1/降鈣素基因相關(guān)肽信號通路,顯著增加膿毒癥大鼠腸道菌群多樣性及有益菌群含量,減少腸道細(xì)菌移位,降低炎癥反應(yīng)[82]。足三里是提高膿毒癥免疫功能的經(jīng)驗效穴,具有抗炎、增強免疫、抗氧化、加速胃腸道疾病恢復(fù)等作用,能顯著降低TLR4和NF-κB的表達(dá),上調(diào)CD3+、CD4+和CD8+淋巴細(xì)胞的浸潤,恢復(fù)CD4+/CD8+比值,通過迷走神經(jīng)激活控制全身炎癥,對膿毒癥心臟、肺臟、腎臟、顱腦等臟器損傷有明顯療效,顯著提高膿毒癥動物生存率[83]。合谷穴電針預(yù)處理通過激活中樞神經(jīng)系統(tǒng)中的毒蕈堿型受體,顯著減弱致死性膿毒癥大鼠的全身炎癥反應(yīng),將存活率從20%提升至80%,有望成為膿毒癥或與過度炎癥相關(guān)圍手術(shù)期疾病的預(yù)防性治療手段[84]。天樞穴在改善膿毒癥患者胃腸功能方面效果顯著[85],而腸道免疫屏障在調(diào)節(jié)先天性和適應(yīng)性免疫反應(yīng)中發(fā)揮著關(guān)鍵作用[86],由此推測,天樞穴的整體免疫調(diào)節(jié)作用可能是通過改善胃腸功能從而增強腸道免疫屏障實現(xiàn)的。膈俞穴能通過ES抑制TLR4/MyD88信號通路,減輕與免疫炎癥相關(guān)的認(rèn)知障礙[87]。ES還能提高膿毒癥患者單核細(xì)胞HLA-DR和T細(xì)胞亞群(CD3+、CD4+、CD8+、CD4+/CD8+)的水平[88],并產(chǎn)生鎮(zhèn)痛作用,其鎮(zhèn)痛機制可能與中性粒細(xì)胞募集釋放β內(nèi)啡肽[89],或與脂肪素/脂肪素受體2介導(dǎo)的AMPK通路抑制脊髓中脂肪素受體干擾RNA的表達(dá)有關(guān)[90]。此外,ES對焦慮[91]和抑郁[92]情緒有良好的靶向作用,對多發(fā)性硬化癥[93]、免疫性腸炎[94]等自身免疫性疾病也有顯著療效,可減少復(fù)發(fā)、調(diào)節(jié)免疫屏障、改善生活質(zhì)量。
在線粒體自噬方面,電針顯著增加腦缺血再灌注患者的MMP和ATP,改善線粒體功能,減少神經(jīng)元損傷,通過PINK1/PARKIN介導(dǎo)的線粒體自噬清除硝基或氧化應(yīng)激誘導(dǎo)的線粒體功能損傷,減少受損線粒體的積累,保護神經(jīng)元免受腦缺血再灌注損傷[95]。電針能通過增加精神分裂癥相關(guān)基因1的表達(dá),促進線粒體自噬,增強β淀粉樣蛋白的清除率,減輕海馬神經(jīng)元細(xì)胞的細(xì)胞毒性,改善糖尿病大鼠的學(xué)習(xí)和記憶功能[96]。電針預(yù)處理還能通過抑制mTORC1/Unc-51樣激酶1/FUNDC1信號通路介導(dǎo)的細(xì)胞凋亡和線粒體自噬,保護心肌免受心肌缺血再灌注損傷,降低室性心律失常評分和肌酸激酶同工酶MB型、乳酸脫氫酶和心肌特異性肌鈣蛋白T的水平[97]。
4 總結(jié)及展望
巨噬細(xì)胞極化是巨噬細(xì)胞在不同刺激因素下發(fā)生的形態(tài)與功能的改變,M1型巨噬細(xì)胞分泌TNF-α、IL-6等炎性因子,增強吞噬作用與抗菌活性;M2型巨噬細(xì)胞分泌IL-10、TGF-β等抗炎因子,介導(dǎo)機體細(xì)胞修復(fù)與組織重塑。線粒體自噬作為巨噬細(xì)胞極化的重要影響因素,其調(diào)控失常可能是膿毒癥的潛在誘因。針對線粒體自噬失常的干預(yù)具有治療潛力[98],激活或抑制線粒體自噬對巨噬細(xì)胞極化的正負(fù)雙向調(diào)節(jié)在膿毒癥治療的不同階段均能起到積極作用。
中醫(yī)藥治療手段,如中藥單體、復(fù)方及針灸,基于補虛瀉實、清熱溫寒、標(biāo)本兼治的原則,通過清熱解毒、活血化瘀、扶正固本、通里攻下等方法,達(dá)到扶正祛邪、調(diào)和陰陽、疏通經(jīng)絡(luò)、調(diào)理臟腑的作用。這些方法通過調(diào)節(jié)MMP與線粒體自噬相關(guān)蛋白(如PINK1、PARKIN、LC3、p62)的水平,調(diào)控巨噬細(xì)胞的吞噬作用,動態(tài)平衡M1與M2的比例,影響細(xì)胞因子和細(xì)胞標(biāo)志物的表達(dá),緩解過度氧化、炎癥和器官功能障礙。在膿毒癥前期,中醫(yī)藥可抑制細(xì)胞炎癥風(fēng)暴;在膿毒癥后期,可提高機體免疫力,這種雙向調(diào)控機制使人體機能處于動態(tài)平衡狀態(tài),防止病情從毒熱熾盛證向瘀血阻滯及急性虛證轉(zhuǎn)化,提前阻斷膿毒癥的進展,提供了一個未病先防、既病防變的新思路。
然而,目前針對中醫(yī)藥防治膿毒癥免疫功能紊亂的臨床及基礎(chǔ)研究較少,存在一定的局限性,如臨床指標(biāo)多局限于某一時間點的變化、缺乏對中醫(yī)藥免疫調(diào)節(jié)的動態(tài)監(jiān)測、臨床檢測手段難以觀測線粒體層面指標(biāo)的波動。未來研究需加快中醫(yī)藥在調(diào)控線粒體自噬影響巨噬細(xì)胞極化進而調(diào)節(jié)膿毒癥免疫功能方面的臨床與基礎(chǔ)研究進度,開展網(wǎng)絡(luò)大數(shù)據(jù)與中醫(yī)經(jīng)典結(jié)合的數(shù)據(jù)挖掘,探索有效的治療手段。同時,結(jié)合大樣本、多中心的臨床動態(tài)監(jiān)測隨訪和體內(nèi)外基礎(chǔ)實驗,探索更多樣化、精準(zhǔn)化的信號通路及其上下游分子機制。此外,需與單細(xì)胞測序、多組學(xué)分析等新技術(shù)相結(jié)合,實現(xiàn)中醫(yī)藥手段臨床治療機制的可視化,為膿毒癥治療提供新的視角和科學(xué)依據(jù)。
利益沖突 所有作者聲明無利益沖突
作者貢獻(xiàn)聲明 齊璐瑤:負(fù)責(zé)論文的選題、設(shè)計、寫作及質(zhì)量控制;邢基祥:負(fù)責(zé)論文初稿圖片的繪制、并協(xié)助稿件的修改;歐陽冰清、李蕓峰:查閱并整理相關(guān)文獻(xiàn);雷鳴:負(fù)責(zé)解答學(xué)術(shù)問題、協(xié)助稿件的返修、確保最終版本的質(zhì)量、并同意対研究工作誠信負(fù)責(zé)
參 考 文 獻(xiàn)
[1]Huang M,Cai S,Su J.The pathogenesis of sepsis and potential therapeutic targets[J].Int J Mol Sci,2019,20(21):5376.DOI:10.3390/ijms20215376.
[2]Zhang H,Jie Z,Gao P,et al.Editorial:immune regulation in sepsis[J].Front Immunol,202 14:1298777.DOI:10.3389/fimmu.2023.1298777.
[3]Singer M,Deutschman CS,Seymour CW,et al.The third international consensus definitions for sepsis and septic shock (sepsis-3)[J].JAMA,2016,315(8):801-810.DOI:10.1001/jama.2016.0287.
[4]Rudd KE,Johnson SC,Agesa KM,et al.Global,regional,and national sepsis incidence and mortality,1990-2017:analysis for the global burden of disease study[J].Lancet,2020,395(10219):200-211.DOI:10.1016/S0140-6736(19)32989-7.
[5]Weng L,Xu Y,Yin P,et al.National incidence and mortality of hospitalized sepsis in China[J].Crit Care,202 27(1):84.DOI:10.1186/s13054-023-04385-x.
[6]Pei F,Yao RQ,Ren C,et al.Expert consensus on the monitoring and treatment of sepsis-induced immunosuppression[J].Mil Med Res,202 9(1):74.DOI:10.1186/s40779-022-00430-y.
[7]Gotts JE,Matthay MA.Sepsis:pathophysiology and clinical management[J].BMJ,2016,353:i1585.DOI:10.1136/bmj.i1585.
[8]中國醫(yī)療保健國際交流促進會急診醫(yī)學(xué)分會,中華醫(yī)學(xué)會急診醫(yī)學(xué)分會,中國醫(yī)師協(xié)會急診醫(yī)師分會,等.中國膿毒癥早期預(yù)防與阻斷急診專家共識[J].中華急診醫(yī)學(xué)雜志,2020,29(7):885-895.DOI:10.3760/cma.j.issn.1671-0282.2020.07.001.
[9]Harrington JS,Ryter SW,Plataki M,et al.Mitochondria in health,disease,and aging[J].Physiol Rev,202 103(4):2349-2422.DOI:10.1152/physrev.00058.2021.
[10]Cho DH,Kim JK,Jo EK.Mitophagy and innate immunity in infection[J].Mol Cells,2020,43(1):10-22.DOI:10.14348/molcells.2020.2329.
[11]Doblado L,Lueck C,Rey C,et al.Mitophagy in human diseases[J].Int J Mol Sci,202 2(8):3903.DOI:10.3390/ijms22083903.
[12]Zhang L,Dai L,Li D.Mitophagy in neurological disorders[J].J Neuroinflammation,202 18(1):297.DOI:10.1186/s12974-021-02334-5.
[13]Onishi M,Yamano K,Sato M,et al.Molecular mechanisms and physiological functions of mitophagy[J].EMBO J,202 40(3):e104705.DOI:10.15252/embj.2020104705.
[14]Underhill DM,Gordon S,Imhof BA,et al.lie Metchnikoff (1845-1916):celebrating 100 years of cellular immunology and beyond[J].Nat Rev Immunol,2016,16(10):651-656.DOI:10.1038/nri.2016.89.
[15]Dunkelberger JR,Song WC.Complement and its role in innate and adaptive immune responses[J].Cell Res,2010,20(1):34-50.DOI:10.1038/cr.2009.139.
[16]Shivshankar P,Halade GV,Calhoun C,et al.Caveolin-1 deletion exacerbates cardiac interstitial fibrosis by promoting M2 macrophage activation in mice after myocardial infarction[J].J Mol Cell Cardiol,2014,76:84-93.DOI:10.1016/j.yjmcc.2014.07.020.
[17]Mosser DM,Edwards JP.Exploring the full spectrum of macrophage activation[J].Nat Rev Immunol,2008,8(12):958-969.DOI:10.1038/nri2448.
[18]Kielbassa K,Vegna S,Ramirez C,et al.Understanding the origin and diversity of macrophages to tailor their targeting in solid cancers[J].Front Immunol,2019,10:2215.DOI:10.3389/fimmu.2019.02215.
[19]Conway-Morris A,Wilson J,Shankar-Hari M.Immune activation in sepsis[J].Crit Care Clin,2018,34(1):29-42.DOI:10.1016/j.ccc.2017.08.002.
[20]Murray PJ.Macrophage polarization[J].Annu Rev Physiol,2017,79:541-566.DOI:10.1146/annurev-physiol-022516-034339.
[21]Kumar V.Targeting macrophage immunometabolism:dawn in the darkness of sepsis[J].Int Immunopharmacol,2018,58:173-185.DOI:10.1016/j.intimp.2018.03.005.
[22]Li Z,F(xiàn)eng Y,Zhang S,et al.A multifunctional nanoparticle mitigating cytokine storm by scavenging multiple inflammatory mediators of sepsis[J].ACS Nano,202 17(9):8551-8563.DOI:10.1021/acsnano.3c00906.
[23]Ariyoshi W,Okinaga T,Chaweewannakorn W,et al.Mechanisms involved in enhancement of matrix metalloproteinase-9 expression in macrophages by interleukin-33[J].J Cell Physiol,2017,232(12):3481-3495.DOI:10.1002/jcp.25809.
[24]Jiao Y,Zhang T,Zhang C,et al.Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury[J].Crit Care,202 5(1):356.DOI:10.1186/s13054-021-03775-3.
[25]Chen XS,Wang SH,Liu CY,et al.Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling[J].Pharmacol Res,202 185:106473.DOI:10.1016/j.phrs.2022.106473.
[26]Tan H,Song Y,Chen J,et al.Platelet-like fusogenic liposome-mediated targeting delivery of miR-21 improves myocardial remodeling by reprogramming macrophages post myocardial ischemia-reperfusion injury[J].Adv Sci (Weinh),202 8(15):e2100787.DOI:10.1002/advs.202100787.
[27]Yuan Y,F(xiàn)an G,Liu Y,et al.The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis[J].Cell Mol Immunol,202 19(4):504-515.DOI:10.1038/s41423-021-00806-5.
[28]Williams DL,Li C,Sherwood ER.Loss of monocyte metabolic plasticity in endotoxin tolerance:a model for understanding sepsis-induced immune paralysis[J].J Leukoc Biol,2019,106(1):7-9.DOI:10.1002/JLB.4CE0319-100R.
[29]Fink MP.Animal models of sepsis and its complications[J].Kidney Int,2008,74(8):991-993.DOI:10.1038/ki.2008.442.
[30]Deng D,Li X,Liu C,et al.Systematic investigation on the turning point of over-inflammation to immunosuppression in CLP mice model and their characteristics[J].Int Immunopharmacol,2017,42:49-58.DOI:10.1016/j.intimp.2016.11.011.
[31]Weiss SL,Zhang D,Bush J,et al.Mitochondrial dysfunction is associated with an immune paralysis phenotype in pediatric sepsis[J].Shock,2020,54(3):285-293.DOI:10.1097/SHK.0000000000001486.
[32]Leventogiannis K,Kyriazopoulou E,Antonakos N,et al.Toward personalized immunotherapy in sepsis:the PROVIDE randomized clinical trial[J].Cell Rep Med,202 3(11):100817.DOI:10.1016/j.xcrm.2022.100817.
[33]Yao RQ,Ren C,Xia ZF,et al.Organelle-specific autophagy in inflammatory diseases:a potential therapeutic target underlying the quality control of multiple organelles[J].Autophagy,202 17(2):385-401.DOI:10.1080/15548627.2020.1725377.
[34]Duan K,Gu Q,Petralia RS,et al.Mitophagy in the basolateral amygdala mediates increased anxiety induced by aversive social experience[J].Neuron,202 109(23):3793-3809.DOI:10.1016/j.neuron.2021.09.008.
[35]Wu KKL,Long K,Lin H,et al.The APPL1-Rab5 axis restricts NLRP3 inflammasome activation through early endosomal-dependent mitophagy in macrophages[J].Nat Commun,202 12(1):6637.DOI:10.1038/s41467-021-26987-1.
[36]Patoli D,Mignotte F,Deckert V,et al.Inhibition of mitophagy drives macrophage activation and antibacterial defense during sepsis[J].J Clin Invest,2020,130(11):5858-5874.DOI:10.1172/JCI130996.
[37]Liu F,Yang Y,Peng W,et al.Mitophagy-promoting miR-138-5p promoter demethylation inhibits pyroptosis in sepsis-associated acute lung injury[J].Inflamm Res,202 72(2):329-346.DOI:10.1007/s00011-022-01675-y.
[38]Zhong Z,Sanchez-Lopez E,Karin M.Autophagy,inflammation,and immunity:a troika governing cancer and its treatment[J].Cell,2016,166(2):288-298.DOI:10.1016/j.cell.2016.05.051.
[39]Sun Y,Yao X,Zhang QJ,et al.Beclin-1-dependent autophagy protects the heart during sepsis[J].Circulation,2018,138(20):2247-2262.DOI:10.1161/CIRCULATIONAHA.117.032821.
[40]Liu T,Wang L,Liang P,et al.USP19 suppresses inflammation and promotes M2-like macrophage polarization by manipulating NLRP3 function via autophagy[J].Cell Mol Immunol,202 18(10):2431-2442.DOI:10.1038/s41423-020-00567-7.
[41]中國中西醫(yī)結(jié)合學(xué)會急救醫(yī)學(xué)專業(yè)委員會,《中國中西醫(yī)結(jié)合急救雜志》編輯委員會.膿毒性休克中西醫(yī)結(jié)合診治專家共識[J].中華危重病急救醫(yī)學(xué),2019,31(11):1317-1323.DOI:10.3760/cma.j.issn.2095-4352.2019.11.002.
[42]劉清泉.實用中醫(yī)急診學(xué)[M].北京:中國中醫(yī)藥出版社,2020:311-321.
[43]侯昕玥.中醫(yī)適宜技術(shù)耳穴壓丸聯(lián)合撳針防控不同階段近視的療效評價研究[D].北京:中國中醫(yī)科學(xué)院,2022.
[44]胡夢玲,任小巧,范佳佳,等.基于中風(fēng)病不同階段熱毒與炎癥反應(yīng)相關(guān)性探討中醫(yī)藥防治中風(fēng)思路[J].環(huán)球中醫(yī)藥,202 14(10):1846-1849.DOI:10.3969/j.issn.1674-1749.2021.10.026.
[45]陳玄,陳娟,謝麗華,等.骨碎補-續(xù)斷藥對對成骨/破骨代謝的雙向調(diào)控作用及其對Hif1a基因的影響[J].中國骨質(zhì)疏松雜志,202 29(1):64-69.DOI:10.3969/j.issn.1006-7108.2023.01.012.
[46]Cao Y,Xiong J,Guan X,et al.Paeoniflorin suppresses kidney inflammation by regulating macrophage polarization via KLF4-mediated mitophagy[J].Phytomedicine,202 116:154901.DOI:10.1016/j.phymed.2023.154901.
[47]Yen JH,Huang WC,Lin SC,et al.Metabolic remodeling in tumor-associated macrophages contributing to antitumor activity of cryptotanshinone by regulating TRAF6-ASK1 axis[J].Mol Ther Oncolytics,202 26:158-174.DOI:10.1016/j.omto.2022.06.008.
[48]王霞蓉,王毅,程翼宇,等.中藥單體成分局部給藥及其促進吸收方法的研究進展[J].中國藥科大學(xué)學(xué)報,2016,47(3):368-376.DOI:10.11665/j.issn.1000-5048.20160321.
[49]Chan SF,Chen YY,Lin JJ,et al.Triptolide induced cell death through apoptosis and autophagy in murine leukemia WEHI-3 cells in vitro and promoting immune responses in WEHI-3 generated leukemia mice in vivo[J].Environ Toxicol,2017,32(2):550-568.DOI:10.1002/tox.22259.
[50]Han X,Xu T,F(xiàn)ang Q,et al.Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy[J].Redox Biol,202 44:102010.DOI:10.1016/j.redox.2021.102010.
[51]Jin X,Zhu L,Lu S,et al.Baicalin ameliorates CUMS-induced depression-like behaviors through activating AMPK/PGC-1α pathway and enhancing NIX-mediated mitophagy in mice[J].Eur J Pharmacol,202 938:175435.DOI:10.1016/j.ejphar.2022.175435.
[52]Yang S,Li F,Lu S,et al.Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-κB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo[J].J Ethnopharmacol,202 283:114739.DOI:10.1016/j.jep.2021.114739.
[53]林世翼,賈景明,王安華.狼毒二萜類化學(xué)成分及其藥理作用研究進展[J].中草藥,2020,51(1):256-264.DOI:10.7501/j.issn.0253-2670.2020.01.033.
[54]Feng X,Li J,Li H,et al.Bioactive C21 steroidal glycosides from euphorbia kansui promoted HepG2 cell apoptosis via the degradation of ATP1A1 and inhibited macrophage polarization under co-cultivation[J].Molecules,202 28(6):2830.DOI:10.3390/molecules28062830.
[55]曾金,張志榮,繆萍,等.隱丹參酮的藥理作用研究進展[J].中成藥,2015,37(6):1309-1313.DOI:10.3969/j.issn.1001-1528.2015.06.033.
[56]Chang X,He Y,Wang L,et al.Puerarin alleviates LPS-induced H9C2 cell injury by inducing mitochondrial autophagy[J].J Cardiovasc Pharmacol,202 80(4):600-608.DOI:10.1097/FJC.0000000000001315.
[57]Wang L,Jiang W,Wang J,et al.Puerarin inhibits FUNDC1-mediated mitochondrial autophagy and CSE-induced apoptosis of human bronchial epithelial cells by activating the PI3K/AKT/mTOR signaling pathway[J].Aging (Albany NY),202 14(3):1253-1264.DOI:10.18632/aging.203317.
[58]Wu LK,Agarwal S,Kuo CH,et al.Artemisia leaf extract protects against neuron toxicity by TRPML1 activation and promoting autophagy/mitophagy clearance in both in vitro and in vivo models of MPP+/MPTP-induced Parkinson’s disease[J].Phytomedicine,202 104:154250.DOI:10.1016/j.phymed.2022.154250.
[59]Xie W,Zhu T,Zhang S,et al.Protective effects of gypenoside ⅩⅦ against cerebral ischemia/reperfusion injury via SIRT1-FOXO3A-and Hif1a-BNIP3-mediated mitochondrial autophagy[J].J Transl Med,202 20(1):622.DOI:10.1186/s12967-022-03830-9.
[60]Zhou P,Xie W,Meng X,et al.Notoginsenoside R1 ameliorates diabetic retinopathy through PINK1-dependent activation of mitophagy[J].Cells,2019,8(3):213.DOI:10.3390/cells8030213.
[61]Ding H,Li Y,Chen S,et al.Fisetin ameliorates cognitive impairment by activating mitophagy and suppressing neuroinflammation in rats with sepsis-associated encephalopathy[J].CNS Neurosci Ther,202 28(2):247-258.DOI:10.1111/cns.13765.
[62]Wang WB,Li JT,Hui Y,et al.Combination of pseudoephedrine and emodin ameliorates LPS-induced acute lung injury by regulating macrophage M1/M2 polarization through the VIP/cAMP/PKA pathway[J].Chin Med,202 17(1):19.DOI:10.1186/s13020-021-00562-8.
[63]王小強,楊思進,白雪,等.基于玄府理論整合中藥復(fù)方加中藥單體的配伍思想[J].中醫(yī)雜志,2019,60(9):804-807.DOI:10.13288/j.11-2166/r.2019.09.020.
[64]路立峰,張媛媛,李振興,等.葛根芩連湯藥效物質(zhì)基礎(chǔ)及質(zhì)量控制研究進展[J].中成藥,202 44(10):3239-3243.DOI:10.3969/j.issn.1001-1528.2022.10.029.
[65]Wang CH,Liu HM,Chang ZY,et al.Antioxidants rich herbal formula Ger-Gen-Chyn-Lian-Tang protects lipotoxicity and ameliorates inflammation signaling through regulation of mitochondrial biogenesis and mitophagy in nonalcoholic fatty liver disease mice[J].Front Biosci (Landmark Ed),202 27(8):242.DOI:10.31083/j.fbl2708242.
[66]Yang L,Yan L,Tan W,et al.Liang-Ge-San:a classic traditional Chinese medicine formula,attenuates acute inflammation via targeting GSK3β[J].Front Pharmacol,202 14:1181319.DOI:10.3389/fphar.2023.1181319.
[67]Sun X,Han Y,Dong C,et al.Daming capsule protects against myocardial infarction by promoting mitophagy via the SIRT1/AMPK signaling pathway[J].Biomed Pharmacother,202 151:113162.DOI:10.1016/j.biopha.2022.113162.
[68]Shi Y,Liu Q,Chen W,et al.Protection of Taohong Siwu Decoction on PC12 cells injured by oxygen glucose deprivation/reperfusion via mitophagy-NLRP3 inflammasome pathway in vitro[J].J Ethnopharmacol,202 301:115784.DOI:10.1016/j.jep.2022.115784.
[69]Xiao L,Xi X,Zhao M,et al.Buyang huanwu decoction (BYHWD) alleviates sepsis-induced myocardial injury by suppressing local immune cell infiltration and skewing M2-macrophage polarization[J].Am J Transl Res,202 15(4):2389-2406.
[70]Tang L,Wang X,Zhao R,et al.Yi-Qi-Jian-Pi formula ameliorates immune function in acute-on-chronic liver failure by upregulating autophagy and mitochondrial biogenesis in CD8+ T lymphocytes[J].J Ethnopharmacol,202 308:116276.DOI:10.1016/j.jep.2023.116276.
[71]王蘊涵,杜群,李燕舞,等.大承氣湯治療急性肺損傷的主要活性成分及潛在靶點研究[J].廣州中醫(yī)藥大學(xué)學(xué)報,202 38(12):2757-2764.DOI:10.13359/j.cnki.gzxbtcm.2021.12.034.
[72]劉宇寒.大承氣湯通過VDR調(diào)節(jié)細(xì)胞焦亡與自噬減輕膿毒癥肺損傷的機制研究[D].武漢:華中科技大學(xué),2022.
[73]Karbian N,Abutbul A,El-Amore R,et al.Apoptotic cell therapy for cytokine storm associated with acute severe sepsis[J].Cell Death Dis,2020,11(7):535.DOI:10.1038/s41419-020-02748-8.
[74]鐘旋,李袁袁,林榮鋒,等.大承氣湯對腸源性膿毒癥小鼠的保護作用及機制[J].中國藥房,202 34(17):2101-2106.DOI:10.6039/j.issn.1001-0408.2023.17.10.
[75]Mao JJ,Liou KT,Baser RE,et al.Effectiveness of electroacupuncture or auricular acupuncture vs usual care for chronic musculoskeletal pain among cancer survivors:the PEACE randomized clinical trial[J].JAMA Oncol,202 7(5):720-727.DOI:10.1001/jamaoncol.2021.0310.
[76]Liu B,Wu J,Yan S,et al.Electroacupuncture vs prucalopride for severe chronic constipation:a multicenter,randomized,controlled,noninferiority trial[J].Am J Gastroenterol,202 116(5):1024-1035.DOI:10.14309/ajg.0000000000001050.
[77]Shi JT,Cao WY,Zhang XN,et al.Local analgesia of electroacupuncture is mediated by the recruitment of neutrophils and released β-endorphins[J].Pain,202 164(9):1965-1975.DOI:10.1097/j.pain.0000000000002892.
[78]Jin W,Tao Y,Wang C,et al.Infrared imageries of human body activated by tea match the hypothesis of meridian system[J].Phenomics,202 3(5):502-518.DOI:10.1007/s43657-022-00090-x.
[79]Liu S,Wang Z,Su Y,et al.A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis[J].Nature,202 598(7882):641-645.DOI:10.1038/s41586-021-04001-4.
[80]Liu S,Wang ZF,Su YS,et al.Somatotopic organization and intensity dependence in driving distinct NPY-expressing sympathetic pathways by electroacupuncture[J].Neuron,2020,108(3):436-450.e7.DOI:10.1016/j.neuron.2020.07.015.
[81]Ramires CC,Balbinot DT,Cidral-Filho FJ,et al.Acupuncture reduces peripheral and brainstem cytokines in rats subjected to lipopolysaccharide-induced inflammation[J].Acupunct Med,202 39(4):376-384.DOI:10.1177/0964528420938379.
[82]耿歡,孫芳園,盧明,等.腸三針介導(dǎo)TRPV1/CGRP信號通路對膿毒癥腸道菌群紊亂影響[J].遼寧中醫(yī)藥大學(xué)學(xué)報,202 24(4):80-83.DOI:10.13194/j.issn.1673-842x.2022.04.018.
[83]Lai F,Ren Y,Lai C,et al.Acupuncture at Zusanli (ST36) for experimental sepsis:a systematic review[J].Evid Based Complement Alternat Med,2020,2020:3620741.DOI:10.1155/2020/3620741.
[84]Song JG,Li HH,Cao YF,et al.Electroacupuncture improves survival in rats with lethal endotoxemia via the autonomic nervous system[J].Anesthesiology,201 116(2):406-414.DOI:10.1097/ALN.0b013e3182426ebd.
[85]Li P,Luo Y,Wang Q,et al.Efficacy and safety of acupuncture at Tianshu (ST25) for functional constipation:evidence from 10 randomized controlled trials[J].Evid Based Complement Alternat Med,2020,2020:2171587.DOI:10.1155/2020/2171587.
[86]Haak BW,Wiersinga WJ.The role of the gut microbiota in sepsis[J].Lancet Gastroenterol Hepatol,2017,2(2):135-143.DOI:10.1016/S2468-1253(16)30119-4.
[87]Bu Y,Li WS,Lin J,et al.Electroacupuncture attenuates immune-inflammatory response in hippocampus of rats with vascular dementia by inhibiting TLR4/MyD88 signaling pathway[J].Chin J Integr Med,202 28(2):153-161.DOI:10.1007/s11655-021-3350-5.
[88]Yang G,Hu RY,Deng AJ,et al.Effects of electro-acupuncture at Zusanli,Guanyuan for sepsis patients and its mechanism through immune regulation[J].Chin J Integr Med,2016,22(3):219-224.DOI:10.1007/s11655-016-2462-9.
[89]Pan WX,F(xiàn)an AY,Chen S,et al.Acupuncture modulates immunity in sepsis:toward a science-based protocol[J].Auton Neurosci,202 32:102793.DOI:10.1016/j.autneu.2021.102793.
[90]Ning Z,Gu P,Zhang J,et al.Adiponectin regulates electroacupuncture-produced analgesic effects in association with a crosstalk between the peripheral circulation and the spinal cord[J].Brain Behav Immun,202 99:43-52.DOI:10.1016/j.bbi.2021.09.010.
[91]Chen L,Liu Z,Zhao Z,et al.Dopamine receptor 1 on CaMKII-positive neurons within claustrum mediates adolescent cocaine exposure-induced anxiety-like behaviors and electro-acupuncture therapy[J].Theranostics,202 13(10):3149-3164.DOI:10.7150/thno.83079.
[92]Lin YW,Chou AIW,Su H,et al.Transient receptor potential V1 (TRPV1) modulates the therapeutic effects for comorbidity of pain and depression:The common molecular implication for electroacupuncture and omega-3 polyunsaturated fatty acids[J].Brain Behav Immun,2020,89:604-614.DOI:10.1016/j.bbi.2020.06.033.
[93]Khodaie F,Abbasi N,Kazemi Motlagh AH,et al.Acupuncture for multiple sclerosis:a literature review[J].Mult Scler Relat Disord,202 60:103715.DOI:10.1016/j.msard.2022.103715.
[94]Song G,F(xiàn)iocchi C,Achkar JP.Acupuncture in inflammatory bowel disease[J].Inflamm Bowel Dis,2019,25(7):1129-1139.DOI:10.1093/ibd/izy371.
[95]Wang H,Chen S,Zhang Y,et al.Electroacupuncture ameliorates neuronal injury by Pink1/Parkin-mediated mitophagy clearance in cerebral ischemia-reperfusion[J].Nitric Oxide,2019,91:23-34.DOI:10.1016/j.niox.2019.07.004.
[96]Zhang Z,Yu Q,Zhang X,et al.Electroacupuncture regulates inflammatory cytokines by activating the vagus nerve to enhance antitumor immunity in mice with breast tumors[J].Life Sci,202 72:119259.DOI:10.1016/j.lfs.2021.119259.
[97]Xiao Y,Chen W,Zhong Z,et al.Electroacupuncture preconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway[J].Biomed Pharmacother,2020,127:110148.DOI:10.1016/j.biopha.2020.110148.
[98]Georgakopoulos ND,Wells G,Campanella M.The pharmacological regulation of cellular mitophagy[J].Nat Chem Biol,2017,13(2):136-146.DOI:10.1038/nchembio.2287.
(收稿日期:2023-09-15)