摘 要:目的 通過(guò)對(duì)TCGA和GEO數(shù)據(jù)庫(kù)中肝細(xì)胞肝癌(hepatocellular carcinoma,HCC)的數(shù)據(jù)挖掘,探討V-maf鳥(niǎo)類肌筋膜纖維肉瘤癌基因同源物G(V-maf avian musculoaoneurotic fibroscarcoma oncogene homolog G,MAFG)基因在HCC中的表達(dá)及臨床意義。方法 通過(guò)TCGA和GEO數(shù)據(jù)庫(kù)分析MAFG在HCC組織及癌旁組織的表達(dá)差異,通過(guò)HPA數(shù)據(jù)庫(kù)分析MAFG表達(dá)水平與患者預(yù)后的關(guān)系。采用實(shí)時(shí)定量聚合酶鏈反應(yīng)(real-time quantitative polymerase chain reaction,RT-qPCR)法檢測(cè)HCC組織中MAFG的表達(dá)水平。利用TCGA R軟件,對(duì)交集差異基因進(jìn)行基因本體論(gene ontology,GO)功能注釋和京都基因與基因百科全書(shū)(kyoto encyclopedia of genes and genomes,KEGG)通路富集分析。結(jié)果 TCGA和GEO數(shù)據(jù)集分析均發(fā)現(xiàn)MAFG在HCC組織中呈顯著高表達(dá)(Plt;0.05)。RT-qPCR驗(yàn)證結(jié)果顯示,與癌旁組織相比,MAFG在HCC組織中表達(dá)顯著增高(Plt;0.05)。MAFG高表達(dá)組HCC患者5年內(nèi)的生存率要低于MAFG低表達(dá)的患者。MAFG可能通過(guò)細(xì)胞分化、細(xì)胞遷移、炎性反應(yīng)等生物學(xué)過(guò)程以及代謝通路、P53信號(hào)通路等信號(hào)通路進(jìn)一步影響HCC發(fā)生、發(fā)展及預(yù)后。結(jié)論 MAFG在HCC組織中呈高表達(dá),其高表達(dá)預(yù)示HCC患者預(yù)后不佳,可為日后HCC的診斷和治療提供新思路。
關(guān)鍵詞:肝細(xì)胞肝癌;MAFG基因;TCGA數(shù)據(jù)庫(kù);GEO數(shù)據(jù)庫(kù)
中圖分類號(hào):R735.7
文獻(xiàn)標(biāo)志碼:A
收稿日期:2023-12-07
基金項(xiàng)目:湖南省自然科學(xué)基金(2023JJ50277);邵陽(yáng)市科技創(chuàng)新指導(dǎo)性項(xiàng)目(2022NS4068)
作者簡(jiǎn)介:劉彧伶,女,助教,碩士,從事腫瘤藥理科研和藥理學(xué)教學(xué)研究;E-mail:1441075913@qq.com
Expression of MAFG in hepatocellular carcinoma and its clinical
significance via TCGA and GEO databases
LIU Yuling, LIANG Tingzhang
(School of Pharmacy, Shaoyang University, Shaoyang 422000, China)
Abstract: Objective To evaluate the clinical significance of MAFG expression in hepatocellular carcinoma (HCC) samples through data mining from TCGA and GEO database. Methods The differences in MAFG gene expression and clinicopathological features between tumor and adjacent tissues were analyzed via GEO and TCGA database, and the relationship between MAFG expression levels and patient prognosis was analyzed through the Human Protein Atlas (HPA) database. Meanwhile, the RT-qPCR method was used to detect the expression of MAFG in HCC tissues. The TCGA R software was employed to conduct gene ontology (GO) functional annotation and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Results MAFG expression was significantly higher (Plt;0.05) in HCC samples in TCGA and GEO database. Results verified by RT-qPCR showed that MAFG expression was higher (Plt;0.05)" in HCC tissues than in adjacent tissues. Survival analysis further showed that the survival time of HCC patients with high expression of MAFG was significantly shorter than that of patients with low expression. It is indicated that MAFG may further influence the occurrence, development, and prognosis by biological processes such as cell division, cell migration, inflammatory response, protein homodimerization activity, and signaling pathways such as metabolic pathway, drug metabolism-cytochrome P450, P53 signaling pathway, and chemical carcinogenesis. Conclusion MAFG was highly expressed in HCC tissues, indicating poor prognosis for HCC patients, which provides new ideas for the diagnosis and treatment of HCC in the future.
Key words: hepatocellular carcinoma (HCC); MAFG gene; TCGA database; GEO database
劉彧伶,粱廷璋:基于TCGA和GEO數(shù)據(jù)庫(kù)分析MAFG在肝癌中的表達(dá)及臨床意義
肝癌是常見(jiàn)的惡性腫瘤,主要分為肝細(xì)胞肝癌(hepatocellular carcinoma,HCC)、肝內(nèi)膽管細(xì)胞肝癌(intrahepatic cholangiocarcinoma,ICC)以及混合型肝癌。其中HCC約占原發(fā)性肝癌的90%,是全球癌癥死亡的第三大常見(jiàn)原因[1-2]。HCC的治療策略取決于疾病的發(fā)展階段和患者的總體健康狀況。在早期,當(dāng)腫瘤局限于肝臟并且患者肝功能良好時(shí),手術(shù)切除、肝臟移植或射頻消融等局部療法可能是有效的治療選擇。在晚期,當(dāng)腫瘤已經(jīng)擴(kuò)散到肝外或者患者肝功能嚴(yán)重受損時(shí),全身性療法(如化療、靶向治療或免疫治療)可能是更合適的治療選擇[3]。然而,盡管有這些治療方法,HCC依然存在發(fā)現(xiàn)晚、預(yù)后差、病死率高等特點(diǎn)[4]。因此,尋求HCC的治療靶點(diǎn),從分子水平探究HCC的發(fā)病機(jī)制,可能為HCC的診斷、治療提供新的解決思路。
V-maf鳥(niǎo)類肌筋膜纖維肉瘤癌基因同源物G(V-maf avian musculoaoneurotic fibroscarcoma oncogene homolog G,MAFG)是小Maf家族的一員,該家族在調(diào)節(jié)氧化還原反應(yīng)和細(xì)胞周期中起至關(guān)重要的作用。MAFG主要在細(xì)胞核內(nèi)表達(dá)[5-7],是一種分子量約18 kD的小分子轉(zhuǎn)錄因子,約含160個(gè)氨基酸,MAFG在某些癌癥中呈現(xiàn)異常高甲基化,并且在相鄰的癌旁組織中的表達(dá)明顯低于原發(fā)癌組織,例如:MAFG在惡性黑色素瘤[8]、頭頸癌[9]、慢性粒細(xì)胞白血?。?0]、結(jié)直腸癌[11]、肺癌[12]和前列腺癌[13]中表達(dá)上調(diào)。因此,本研究基于癌癥基因組圖譜(The Cancer Genome Atlas,TCGA)數(shù)據(jù)庫(kù)、高通量基因表達(dá)數(shù)據(jù)庫(kù)(Gene Expression Omnibus,GEO)和蛋白圖譜數(shù)據(jù)庫(kù)(The Human Protein Atlas,HPA),分析MAFG在HCC組織中的表達(dá)情況以及在HCC中的發(fā)生、發(fā)展和預(yù)后價(jià)值,為HCC的治療策略提供新思路。
1 材料與方法
1.1 TCGA數(shù)據(jù)庫(kù)分析
從TCGA數(shù)據(jù)庫(kù)(http://ualcan.path.uab.edu/analysis.html)獲取50例肝癌旁組織及371例HCC組織的MAFG mRNA表達(dá)水平。
1.2 GEO數(shù)據(jù)庫(kù)分析
從GEO數(shù)據(jù)庫(kù)(https://www.ncbi.nlm.nih.gov/geo)中以HCC為關(guān)鍵詞進(jìn)行檢索,下載基因表達(dá)譜公共數(shù)據(jù)集GSE14520、GSE102079、GSE87630、GSE54236、GSE25097,檢索MAFG基因的表達(dá)信息。
1.3 HPA數(shù)據(jù)庫(kù)分析
HPA數(shù)據(jù)庫(kù)(https://ualcan.path.uab.edu/cgi-bin/ualcan-res.pl)基本涵蓋了人體中主要組織和器官的蛋白質(zhì)分布。本研究利用該數(shù)據(jù)庫(kù)提供的免疫組織化學(xué)信息,在蛋白質(zhì)水平比較MAFG在HCC組織及癌旁組織中的表達(dá)差異。
1.4 實(shí)時(shí)熒光定量pcr檢測(cè)
收集南華大學(xué)附屬第一醫(yī)院2019年10月接受肝切除患者的HCC組織及癌旁組織,標(biāo)本留取符合倫理。引物序列MAFG上游序列5’-TGTGTTTTGTATGTTGGGATTGG-3’,下游序列5’-CATGGCCCTGGTACAAAAGG-3’,GAPD上游序列5’-TGCACCACCACTGCTTAGC-3’,下游序列5’-GGCATGGACTGTGGTCATGAG-3’。
1.5 The Kaplan-Meier plotter生存分析
為了進(jìn)一步驗(yàn)證MAFG對(duì)HCC患者生存預(yù)后的價(jià)值,采用The Kaplan-Meier plotter生存分析數(shù)據(jù)庫(kù)(http://kmplot.com/analysis/index.php?p=serviceamp;cancer=liver_rnaseq)分析MAFG與HCC病例預(yù)后的關(guān)系,得到的數(shù)據(jù)即為總生存期(overall survival,OS)的Kaplan-Meier生存曲線。篩選的條件:Cancer欄選擇Liver cancer,Gene欄選擇MAFG,Survival欄選擇OS。
1.6 GO功能注釋和KEGG基因富集分析
GO功能注釋分為生物學(xué)過(guò)程(biological process, BP)、 細(xì)胞成分(cellular component, CC)、分子功能(molecular function, MF)3個(gè)部分,將TCGA數(shù)據(jù)庫(kù)里的HCC組織與正常組織中的差異基因1,HCC組織中MAFG高表達(dá)與低表達(dá)所得的差異基因2進(jìn)行比較,得出交集差異基因,對(duì)交集差異基因進(jìn)行GO功能注釋和KEGG通路分析。
1.7 統(tǒng)計(jì)學(xué)處理
統(tǒng)計(jì)學(xué)分析采用GraphPad Prism 7處理數(shù)據(jù)。生存曲線使用Kaplan-Meier方法生成,Plt;0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 MAFG在肝癌和癌旁組織表達(dá)差異及臨床相關(guān)性
TCGA數(shù)據(jù)庫(kù)中顯示MAFG在HCC組織中的表達(dá)顯著高于癌旁組織,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.01)。5個(gè)GEO數(shù)據(jù)集(GSE14520、GSE102079、GSE87630、GSE54236、GSE25097)分析結(jié)果表明MAFG在HCC組織中的表達(dá)均顯著高于癌旁組織(圖1)。進(jìn)一步在HPA數(shù)據(jù)庫(kù)中分析MAFG蛋白在HCC組織及正常肝組織中的表達(dá)差異,結(jié)果顯示,在正常肝組織中未觀察到MAFG染色陽(yáng)性,但在HCC組織可見(jiàn)MAFG有不同程度的染色陽(yáng)性(圖2)。
2.2 人臨床標(biāo)本中肝癌和癌旁組織MAFG的表達(dá)差異
RT-qPCR結(jié)果顯示,與癌旁組織相比,MAFG在HCC組織中的mRNA表達(dá)顯著增高(Plt;0.05)(圖3)。
2.3 MAFG與HCC患者預(yù)后的關(guān)系
MAFG表達(dá)水平對(duì)HCC患者預(yù)后有顯著影響,與MAFG低表達(dá)組相比,高表達(dá)MAFG的HCC患者總生存時(shí)間明顯減少(圖4)。The Kaplan-Meier plotter在線生存分析數(shù)據(jù)庫(kù)進(jìn)一步驗(yàn)證,高表達(dá)MAFG的HCC患者的總體生存期(overall survival, OS)明顯低于低表達(dá)MAFG的患者,差異有統(tǒng)計(jì)學(xué)意義。結(jié)果與TCGA數(shù)據(jù)庫(kù)分析結(jié)果一致。
2.4 基因富集分析預(yù)測(cè)MAFG功能
GO功能注釋分析中,BP基因富集功能包括炎性反應(yīng)(inflammatory reponse)、信號(hào)傳導(dǎo)(signal transduction)、細(xì)胞分化(cell division)、細(xì)胞遷移(cell migtarion)、蛋白質(zhì)磷酸化(protein phosphorylation)等。CC富集功能包括谷氨酸能突觸(glutamatergic synapse)、高爾基體(golgi apparatus)、線粒體(mitochondrion)、染色質(zhì)(chromatin)等。MF富集功能包括蛋白質(zhì)同源二聚體(protein homodimerization activity)、相同蛋白質(zhì)結(jié)合(identical protein binding)、特異性DNA結(jié)合(sequence-specific DNA)(圖5)。
通過(guò)KEGG分析發(fā)現(xiàn)HCC中與MAFG表達(dá)相關(guān)基因主要富集在以下通路:代謝通路(metabolic pathway)、藥物代謝酶P450(Drug metabolism-cytochrome P450)、P53信號(hào)通路(P53 signaling pathway)、化學(xué)致癌(chemical carcinogenesis)等18條途徑(圖6)。
3 討論
大約90%的HCC病例都從肝硬化演變而來(lái)的,它的發(fā)生、發(fā)展是一個(gè)多步驟、多因素和多基因的復(fù)雜過(guò)程,比如酗酒、自身免疫介導(dǎo)的肝炎、乙型和丙型肝炎感染、接觸致癌物、原發(fā)性膽汁性肝硬化、非酒精性脂肪肝疾病以及暴露于黃曲霉素和其他肝毒性化學(xué)物質(zhì)[14],此外,多種基因突變和表達(dá)異常在HCC的發(fā)生和發(fā)展中也起著關(guān)鍵的作用。
MAFG是一種雙向轉(zhuǎn)錄因子[15],因?yàn)閟Maf缺乏v-Maf所必需的氨基末端結(jié)構(gòu)域,所以當(dāng)MAFG與其家族成員MAFF和MAFK等同源蛋白質(zhì)形成二聚體時(shí)是以阻遏蛋白的形式存在[16-17],但與具有不同亞基的P45等形成異源二聚時(shí)卻是以激活蛋白的形式存在[18-19]。MAFG通過(guò)影響細(xì)胞周期和細(xì)胞凋亡的相關(guān)基因的表達(dá),來(lái)調(diào)節(jié)肝癌細(xì)胞的生長(zhǎng)。此外,MAFG還通過(guò)影響細(xì)胞黏附和細(xì)胞骨架的相關(guān)基因的表達(dá),來(lái)調(diào)節(jié)肝癌細(xì)胞的遷移[20]。MAFG高表達(dá)水平與腫瘤進(jìn)展和生存時(shí)間縮短相關(guān)[21]。這些研究結(jié)果均提供了MAFG在HCC中的潛在作用機(jī)制的線索,為開(kāi)發(fā)新的HCC治療策略提供了新的思路。
為了進(jìn)一步探討MAFG在HCC中發(fā)揮作用的機(jī)制,通過(guò)GO富集分析發(fā)現(xiàn),這些差異表達(dá)基因主要集中在細(xì)胞分化、細(xì)胞遷移、炎性反應(yīng)、信號(hào)轉(zhuǎn)導(dǎo)、蛋白質(zhì)磷酸化谷氨酸能突觸、蛋白質(zhì)同源二聚體、相同蛋白質(zhì)結(jié)合。研究發(fā)現(xiàn),MAFG-IncRNA軸將全身營(yíng)養(yǎng)豐富度與肝臟葡萄糖代謝相聯(lián)系,MAFG過(guò)表達(dá)除了抑制LincIRS2等關(guān)鍵調(diào)控基因外,還會(huì)誘導(dǎo)肝臟炎癥[22]。此外,WHEELEK等[23]研究發(fā)現(xiàn)在腦脊髓炎和多發(fā)性硬化中由募集到中樞神經(jīng)系統(tǒng)中的炎性T細(xì)胞產(chǎn)生的粒細(xì)胞-巨噬細(xì)胞塵落刺激因子(granulocyte-macrophage colong-stimulating factor,GM-CSF)放大了星形膠質(zhì)細(xì)胞中MAFG/MAT2α驅(qū)動(dòng)的促炎基因組呈現(xiàn),認(rèn)為MAFG可驅(qū)動(dòng)星形膠質(zhì)細(xì)胞促進(jìn)中樞系統(tǒng)炎癥。KEGG分析也提示差異表達(dá)基因主要涉及代謝通路、藥物代謝酶P450、P53信號(hào)通路、化學(xué)致癌作用。由TP53基因編碼的P53是重要的腫瘤抑制因子,P53作為轉(zhuǎn)錄因子,可以上調(diào)P21、bax和noxa等下游基因。因此,當(dāng)P53被激活時(shí),它會(huì)誘導(dǎo)細(xì)胞周期停滯、衰老和DNA修復(fù),以防止癌癥的發(fā)生[24-25]。但MAKINO等[26]發(fā)現(xiàn)肝細(xì)胞中P53的缺失會(huì)增加HCC的發(fā)生,但P53的結(jié)構(gòu)性激活也通過(guò)增加肝細(xì)胞凋亡、衰老相關(guān)分泌表型和祖細(xì)胞激活來(lái)加速非細(xì)胞自主性肝腫瘤的發(fā)生。由此,MAFG很有可能通過(guò)上述基因、通路影響HCC的發(fā)生。
綜上所述,MAFG基因可能是HCC中一個(gè)潛在的致癌基因。MAFG在HCC中的表達(dá)與腫瘤的發(fā)生、發(fā)展以及患者的預(yù)后關(guān)系密切,有望成為一種新的腫瘤標(biāo)志物。因此,有必要對(duì)MAFG在HCC中的作用機(jī)制以及功能進(jìn)行實(shí)驗(yàn)研究,為全面掌握MAFG在腫瘤中的作用以及HCC的預(yù)防診治提供更多依據(jù)。
參考文獻(xiàn):
[1]LI G F, ZHAO L M. Sorafenib-loaded hydroxyethyl starch-TG100-115 micelles for the treatment of liver cancer based on synergistic treatment[J]. Drug Deliv ERY, 2019, 26(1): 756-764.
[2]WANG J L, LI H M, XIA C C, et al. Downregulation of CENPK suppresses hepatocellular carcinoma malignant progression through regulating YAP1[J]. Oncotargets and Therapy, 2019, 12: 869-882.
[3]VILLANUEVA A. Hepatocellular carcinoma[J]. The New England Journal of Medicine, 2019, 380(15): 1450-1462.
[4]AHMED O, LIU L S, GAYED A, et al. The changing face of hepatocellular carcinoma: forecasting prevalence of nonalcoholic steatohepatitis and hepatitis C cirrhosis[J]. Journal of Clinical and Experimental Hepatology, 2019, 9(1): 50-55.
[5]SUN C C, ZHOU Q, HU W, et al. Transcriptional E2F1/2/5/8 as potential targets and transcriptional E2F3/6/7 as new biomarkers for the prognosis of human lung carcinoma[J]. Aging, 2018, 10(5): 973-987.
[6]HOLLERN D P, SWIATNICKI M R, RENNHACK J P, et al. E2F1 drives breast cancer metastasis by regulating the target gene FGF13 and altering cell migration[J]. Scientific Reports, 2019, 9(1): 10718.
[7]TABBAL H, SEPTIER A, MATHIEU M, et al. EZH2 cooperates with E2F1 to stimulate expression of genes involved in adrenocortical carcinoma aggressiveness[J]. British Journal of Cancer, 2019, 121(5): 384-394.
[8]ROTH P, WISCHHUSEN J, HAPPOLD C, et al. A specific miRNA signature in the peripheral blood of glioblastoma patients[J]. Journal of Neurochemistry, 2011, 118(3): 449-457.
[9]JUODZBALYS G, KASRADZE D,CICCI M, et al. Modern molecular biomarkers of head and neck cancer. Part I. Epigenetic diagnostics and prognostics: systematic review[J]. Cancer Biomarkers, 2016, 17(4): 487-502.
[10]HUANGR L, GU F, KIRMA N B, et al. Comprehensive methylome analysis of ovarian tumors reveals hedgehog signaling pathway regulators as prognostic DNA methylation biomarkers[J]. Epigenetics, 2013, 8(6): 624-634.
[11]SHAO L Q, HE Q R, LIU Y H, et al. UPF1 regulates the malignant biological behaviors of glioblastoma cells via enhancing the stability of Linc-00313[J]. Cell Death amp; Disease, 2019, 10(9): 629.
[12]LIU F, YUAN J H, HUANG J F, et al. Long noncoding RNA FTX inhibits hepatocellular carcinoma proliferation and metastasis by binding MCM2 and miR-374a[J]. Oncogene, 2016, 35(41): 5422-5434.
[13]YE C, QIN S F, GUO F, et al. LncRNA EIF3J-AS1 functions as an oncogene by regulating MAFG to promote prostate cancer progression[J]. Journal of Cancer, 2022, 13(1): 146-152.
[14]SANYAL A J, YOON S K, LENCIONI R. The etiology of hepatocellular carcinoma and consequences for treatment[J]. Oncologist, 2010, 15(Suppl 4): 14-22.
[15]YAMAZAKI H, KATSUOKA F, MOTOHASHI H, et al. Embryonic lethality and fetal liver apoptosis in mice lacking all three small Maf proteins[J]. Molecular and Cellular Biology, 2012, 32(4): 808-816.
[16]BLANK V. Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators?[J]. Journal of Molecular Biology, 2008, 376(4): 913-925.
[17]MOTOHASHI H, O’CONNOR T, KATSUOKA F, et al. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors[J]. Gene, 2002, 294(1/2): 1-12.
[18]BLANK V, ANDREWS N C. The Maf transcription factors: regulators of differentiation[J]. Trends in Biochemical Sciences, 1997, 22(11): 437-441.
[19]MOTOHASHI H, SHAVIT J A, IGARASHI K, et al. The world according to Maf[J]. Molecular Therapy Nucleic Acids, 1997, 25(15): 2953-2959.
[20]ZHANG F, LI Y, GAN L P, et al. HBx-upregulated MAFG-AS1 promotes cell proliferation and migration of hepatoma cells by enhancing MAFG expression and stabilizing nonmuscle myosin IIA[J]. The Faseb Journal, 35(5):1-15.
[21]LIU T, YANG H P, FAN W, et al. Mechanisms of MAFG dysregulation in cholestatic liver injury and development of liver cancer[J]. Gastroenterology, 2018, 155(2): 557-571.
[22]PRADAS-JUNI M, HANSMEIER N R, LINK J C, et al. A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism[J]. Nature Communication, 2020, 11(1): 644.
[23]WHEELER M A, CLARK I C, TJON E C, et al. MAFG-driven astrocytes promote CNS inflammation[J]. Nature, 2020, 578(7796): 593-599.
[24]BODE A M, DONG Z G. Post-translational modification of p53 in tumorigenesis[J]. Nature Reviews Cancer, 2004, 4(10): 793-805.
[25]WADE M, LI Y C, WAHL G M. MDM2, MDMX and p53 in oncogenesis and cancer therapy[J]. Nature Reviews Cancer, 2013, 13(2): 83-96.
[26]MAKINO Y, HIKITA H, FUKUMOTO K, et al. Constitutive activation of the tumor suppressor p53 in hepatocytes paradoxically promotes non-cell autonomous liver carcinogenesis[J]. Cancer Research, 2022, 82(16): 2860-2873.
邵陽(yáng)學(xué)院學(xué)報(bào)(自然科學(xué)版)2024年5期