摘要:【目的】檢測(cè)質(zhì)粒CRISPR/Cas9系統(tǒng)在馬口魚精原干細(xì)胞(ObSSCs)和斑馬魚胚胎中的基因編輯效果,為開展基因編輯的SSCs移植提供技術(shù)支撐,進(jìn)而推動(dòng)養(yǎng)殖魚類基因編輯育種工作的快速發(fā)展。【方法】將靶向紅色熒光蛋白(RFP)的gRNA整合至可用于體內(nèi)外基因編輯的整合質(zhì)粒pCas9-zU6sgRNA(帶有支架序列的向?qū)NA,由來(lái)自斑馬魚的U6啟動(dòng)子驅(qū)動(dòng))和報(bào)告質(zhì)粒pCVpf-gRNA(向?qū)NA)中,然后分別轉(zhuǎn)染ObSSCs和顯微注射斑馬魚胚胎,通過(guò)熒光顯微鏡觀察和PCR檢測(cè)質(zhì)粒CRISPR/Cas9系統(tǒng)在ObSSCs及斑馬魚胚胎中的基因編輯效果。【結(jié)果】以整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA共轉(zhuǎn)染正常ObSSCs及pCVpr質(zhì)粒轉(zhuǎn)染ObSSCs,在ObSSCs中能觀察到綠色熒光,且在表達(dá)綠色熒光蛋白(GFP)的ObSSCs中觀察到紅色熒光信號(hào)明顯減弱,而不轉(zhuǎn)染質(zhì)粒的ObSSCs未觀察到綠色熒光信號(hào);隨著整合質(zhì)粒pCas9-zU6sgRNA轉(zhuǎn)染劑量由340 ng增加到410 ng,其基因編輯效率由0.10%增加到0.63%;此外,質(zhì)粒CRISPR/Cas9系統(tǒng)在基因組中的編輯效率與在外源質(zhì)粒中的編輯效率基本一致。為進(jìn)一步檢測(cè)質(zhì)粒CRISPR/Cas9系統(tǒng)在體內(nèi)的編輯效率,以整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA共注射斑馬魚胚胎,24 h后能觀察到綠色熒光信號(hào),而空白對(duì)照組和陰性對(duì)照組斑馬魚胚胎均未觀察到綠色熒光信號(hào)。對(duì)ObSSCs和斑馬魚的基因編輯效果進(jìn)行PCR驗(yàn)證,發(fā)現(xiàn)試驗(yàn)組均能檢測(cè)到修復(fù)的GFP片段,而空白對(duì)照組未檢測(cè)到修復(fù)的GFP片段。此外,整合質(zhì)粒pCas9-zU6sgRNA在斑馬魚胚胎中的基因編輯效率顯著高于ObSSCs(100% vs 0.63%)(Plt;0.05)?!窘Y(jié)論】由整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA構(gòu)成的質(zhì)粒CRISPR/Cas9系統(tǒng)能在ObSSCs中直觀評(píng)估基因編輯效率,且質(zhì)粒CRISPR/Cas9系統(tǒng)在同為鯉科魚類斑馬魚胚胎中的基因編輯效率高達(dá)100%。因此,質(zhì)粒
CRISPR/Cas9系統(tǒng)可用于馬口魚和斑馬魚的sgRNA篩選,為創(chuàng)制養(yǎng)殖魚類新品種(系)提供新思路。
關(guān)鍵詞:馬口魚;精原干細(xì)胞(SSCs);基因編輯;質(zhì)粒CRISPR/Cas9系統(tǒng);斑馬魚
中圖分類號(hào):S917.4文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-1191(2024)11-3381-11
Applications of plasmid CRISPR/Cas9 system in gene editing ofOpsariichthys bidens spermatogonial stem cell line
GU Kai-yan1,2, XU Hai-jing1,2, TAO Xin-ran1,2, WU Can1,2, WEI Jing3,GUI Lang1,2*, LI Ming-you1,2*
(1Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs( Shanghai Ocean Univer‐sity), Shanghai 201306, China; 2Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources
(Shanghai Ocean University), Shanghai 201306, China; 3Integrative Science Center of Germplasm Creation in Western China Science City/Key Laboratory of Freshwater Fish Resources and Reproductive Development/School of Life Sciences, Southwest University, Chongqing 400715, China)
Abstract:【Objective】To test the gene editing effects of a plasmid CRISPR/Cas9 gene editing system in Opsariich‐thys bidens spermatogonial stem cells( ObSSCs) and zebrafish embryos, which could provide technical support for con‐ducting the transplantation of gene-edited SSCs and in turn, promote the rapid development of gene-edited breeding tech‐nology in farmed fish. 【Method】The gRNA targeting the red fluorescence protein fusion gene (RFP) was incorporated into the integrated plasmid pCas9-zU6sgRNA( a guide RNA with scaffold sequence, driven by the U6 promoter from ze‐brafish) and the reporter plasmid pCVpf-gRNA( guide RNA) for in vitro and in vivo gene editing, followed by transfec‐tion of ObSSCs and microinjection of zebrafish embryos. The gene editing effects of the plasmid CRISPR/Cas9 system in ObSSCs and zebrafish embryos were detected by fluorescence microscopy and PCR. 【Result】The integrated plasmid pCas9-zU6sgRNA and the reporter plasmid pCVpf-gRNA were co-transfected into ObSSCs and ObSSCs: pCVpr. Green fluorescence signals were observed in ObSSCs. A clear decrease in the red fluorescence signal was observed in cells ex‐pressing green fluorescence protein( GFP). No green fluorescence signal was observed in the non-transfected ObSSCs. As the dose of integrated plasmid pCas9-zU6sgRNA increased from 340 ng to 410 ng, the gene editing efficiency improved from 0.10% to 0.63%. The editing efficiency of the plasmid CRISPR/Cas9 system in genomes and exogenous plasmids was similar. To further test the editing efficiency of the plasmid CRISPR/Cas9 system in vivo, the integrated plasmid pCas9-zU6sgRNA and the reporter plasmid pCVpf-gRNA were co-injected into zebrafish embryos. Green fluorescence signals were observed after 24 h, while no green fluorescence signal was observed in the blank and negative control groups of zebrafish embryos. The gene editing effect in ObSSCs and zebrafish was detected by PCR. GFP fragments re‐paired were detected in all experimental groups but not in the blank control group. Compared to ObSSCs, the gene editing efficiency of the integrated plasmid pCas9-zU6sgRNA in zebrafish was significantly higher( 100% vs 0.63%)(Plt;0.05). 【Conclusion】The gene editing efficiency of the plasmid CRISPR/Cas9 system, consisting of the integrating plasmid pCas9-zU6sgRNA and the reporter plasmid pCVpf-gRNA, can be visually assessed in ObSSCs, which is up to 100% in zebrafish embryos of the same Cyprinidae family of fish. Consequently, the plasmid CRISPR/Cas9 system can be used to screen sgRNAs in Opsariichthys bidens and zebrafish, and provide a new way for the creation of new varieties of farmed
fish.
Key words: Opsariichthys bidens; spermatogonial stem cells( SSCs); gene editing; plasmid CRISPR/Cas9 system; Danio rerio
Foundation items: National Key Research and Development Program of China(2022YFD2401600); National Natu‐ral Science Foundation of China(32373130)
0 引言
【研究意義】精原干細(xì)胞(Spermatogonial stem cells,SSCs)是雄性體內(nèi)唯一能將遺傳信息傳遞給下一代的成體干細(xì)胞(Nagano and Yeh,2013;Valli et al.,2014),通過(guò)自我更新維持?jǐn)?shù)量充足、分化成熟的功能性精子(de Kretser et al.,1998)。CRISPR/Cas9基因編輯技術(shù)已廣泛應(yīng)用于養(yǎng)殖魚類的遺傳改良,有效推進(jìn)了魚類新品種(系)的創(chuàng)制進(jìn)程(Cui et al.,2017;Dong et al.,2023;Gan et al.,2023;Kuang et al.,2023)。然而,受限于魚類漫長(zhǎng)的發(fā)育周期,如青魚(Mylopharyngodon piceus)性成熟需要6~7年,草魚(Ctenopharyngodon idella)性成熟需要4年(Gur et al.,2000;歐琳,2021),導(dǎo)致直接利用CRISPR/Cas9系統(tǒng)進(jìn)行養(yǎng)殖魚類品種改良仍費(fèi)時(shí)費(fèi)力。借助質(zhì)粒CRISPR/Cas9系統(tǒng)對(duì)SSCs進(jìn)行基因編輯,能跨越魚類漫長(zhǎng)的發(fā)育周期,對(duì)促進(jìn)基因編輯創(chuàng)制養(yǎng)殖魚類新品種(系)具有重要意義?!厩叭搜芯窟M(jìn)展】SSCs由原始生殖細(xì)胞分化而來(lái)(徐紅艷等,2010;張國(guó)棟,2018),其中精子的發(fā)生是將遺傳信息穩(wěn)定傳遞給下一代的重要過(guò)程(Han et al.,2019;劉源壹等,2023)。目前,魚類SSCs的研究進(jìn)展相對(duì)較緩慢(陳秋宇和安立龍,2015),獲取能長(zhǎng)期穩(wěn)定培養(yǎng)的養(yǎng)殖魚類SSCs依然極具挑戰(zhàn)性。在青鳉(Oryzias latipes)中,首次建立了能長(zhǎng)期穩(wěn)定培養(yǎng)的精原干細(xì)胞系SG3,且該細(xì)胞系在體外誘導(dǎo)后可完成減數(shù)分裂并產(chǎn)生精子(Hong et al.,2004)。隨后,諸多學(xué)者開始在其他魚類上進(jìn)行探索,但發(fā)現(xiàn)其他魚類培養(yǎng)的SSCs體外維系時(shí)間很難超過(guò)1個(gè)月,包括斑馬魚(Danio rerio)(Kawasaki et al.,2012)、羅非魚(Oreochromis niloti‐cus)(dos Santos Nassif Lacerda et al.,2014)、牙鲆(Paralichthys olivaceus)(Zhou et al.,2021)、黃鱔(Monopterus albus)(Sun et al.,2022)及中華烏塘鱧(Bostrychus sinensis)(Zhang et al.,2022b)等。本研究團(tuán)隊(duì)通過(guò)無(wú)滋養(yǎng)層細(xì)胞培養(yǎng)技術(shù)突破了養(yǎng)殖魚類SSCs無(wú)法長(zhǎng)期培養(yǎng)的瓶頸,在馬口魚(Opsariichthys bidens)上建立了首個(gè)能體外長(zhǎng)期穩(wěn)定培養(yǎng)的馬口魚SSCs(ObSSCs),可在體外培養(yǎng)條件下誘導(dǎo)產(chǎn)生游動(dòng)的精子(Chen et al.,2022)。此外,參照青鳉精原干細(xì)胞系SG3的方法,Zhong等(2022)、Gu等(2023)成功建立了能長(zhǎng)期培養(yǎng)的石斑魚(Epinephelus coioi‐des)SSCs和長(zhǎng)江刀鱭(Coilia nasus)SSCs。Zhang等(2023)研究證實(shí),通過(guò)質(zhì)粒CRISPR/Cas9系統(tǒng)能簡(jiǎn)便、高效地基因編輯長(zhǎng)期穩(wěn)定培養(yǎng)的青鳉精原干細(xì)胞系SG3??梢?,以質(zhì)粒CRISPR/Cas9系統(tǒng)創(chuàng)制新品種(系)可不受魚類繁殖周期的限制。【本研究切入點(diǎn)】基于長(zhǎng)期穩(wěn)定培養(yǎng)的魚類SSCs研究體外分化產(chǎn)生基因編輯的功能性配子,能有效促進(jìn)以基因編輯技術(shù)創(chuàng)制養(yǎng)殖魚類新品種(系)技術(shù)的發(fā)展,但至今未見質(zhì)粒CRISPR/Cas9系統(tǒng)應(yīng)用于養(yǎng)殖魚類SSCs的研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】基于前期成功建立的ObSSCs,結(jié)合無(wú)縫克隆及細(xì)胞轉(zhuǎn)染,篩選富集基因編輯的ObSSCs,為開展基因編輯的SSCs移植提供技術(shù)支撐,進(jìn)而推動(dòng)養(yǎng)殖魚類基因編輯育種工作的快速發(fā)展。
1 材料與方法
1. 1 試驗(yàn)材料
ObSSCs及穩(wěn)定表達(dá)紅色熒光蛋白(RFP)的ObSSCs均由水產(chǎn)遺傳資源發(fā)掘與利用教育部重點(diǎn)實(shí)驗(yàn)室提供。參照Chen等(2022)的研究方法,解剖并切碎7尾6月齡雄性馬口魚(體長(zhǎng)約10 cm)的睪丸組織,采用胰蛋白酶和膠原酶消化分離睪丸組織以獲得單個(gè)睪丸細(xì)胞,適當(dāng)培養(yǎng)獲得穩(wěn)定的ObSSCs,在2年的培養(yǎng)過(guò)程中傳代超過(guò)100代;將pCVpr質(zhì)粒轉(zhuǎn)染至ObSSCs中(Zhao et al.,2012),通過(guò)藥物篩選出表達(dá)RFP的單細(xì)胞,轉(zhuǎn)移至96孔細(xì)胞培養(yǎng)板中培養(yǎng),以獲得穩(wěn)定表達(dá)RFP的單克隆ObSSCs。模式生物斑馬魚野生型AB品系暫養(yǎng)于28.5 ℃水循環(huán)系統(tǒng)中,光照周期為14 h光照/10 h黑暗,早晚投喂豐年蝦,使用配種缸對(duì)親魚進(jìn)行配對(duì)并收集胚胎。試驗(yàn)過(guò)程嚴(yán)格按照《世界醫(yī)學(xué)協(xié)會(huì)赫爾辛基宣言》進(jìn)行操作,且經(jīng)上海海洋大學(xué)動(dòng)物保育與使用委員會(huì)批準(zhǔn),批準(zhǔn)號(hào)SHOU-2023-031。
1. 2 試驗(yàn)方法
1. 2. 1 設(shè)計(jì)靶向RFP的gRNA 根據(jù)pCVpr質(zhì)粒的RFP序列設(shè)計(jì)gRNA靶向序列(Zhao et al.,2012),使用Centre for Organismal Studles網(wǎng)站(http://crispr.cos.uni-heidelberg.de/index.html)設(shè)計(jì)gRNA,物種選擇與馬口魚同為理科的斑馬魚,根據(jù)評(píng)分篩選合適的CRISPR/Cas9靶位點(diǎn);構(gòu)建馬口魚基因組本地?cái)?shù)據(jù)庫(kù)(Xu et al.,2022),通過(guò)BLAST比對(duì)分析,篩選出最佳的CRISPR/Cas9靶向序列g(shù)RNA。
1. 2. 2 構(gòu)建靶向RFP的CRISPR/Cas9系統(tǒng)質(zhì)粒
在整合質(zhì)粒pCas9-zU6sgRNA中,CMV啟動(dòng)子驅(qū)動(dòng)Cas9表達(dá),來(lái)自斑馬魚的U6啟動(dòng)子驅(qū)動(dòng)sgRNA(帶有支架序列的向?qū)NA)表達(dá),SV40啟動(dòng)子驅(qū)動(dòng)新霉素抗性基因(篩選富集基因編輯的細(xì)胞)表達(dá)(Zhang et al.,2023)。以整合質(zhì)粒pCas9-zU6sgNtsf1為骨架,通過(guò)無(wú)縫克隆試劑盒(ABclonal MultiF Seamless Assembly,RK21020)將針對(duì)RFP的gRNA(向?qū)NA)序列連接至整合質(zhì)粒中pCas9-zU6sgNtsf1(圖1)。同時(shí),以pCVpf為質(zhì)粒骨架(Zhang et al.,2023)構(gòu)建含針對(duì)RFP的gRNA靶序列報(bào)告質(zhì)粒pCVpf-gRNA,用于監(jiān)測(cè)整合質(zhì)粒pCas9-zU6sgRNA的基因編輯效果(圖1)。在質(zhì)粒CRISPR/Cas9系統(tǒng)介導(dǎo)的基因組切割修復(fù)過(guò)程中,報(bào)告質(zhì)粒pCVpf-gRNA通過(guò)同源重組修復(fù)綠色熒光蛋白(GFP)全編碼序列,恢復(fù)GFP表達(dá),而達(dá)到監(jiān)測(cè)整合質(zhì)粒pCas9-
zU6sgRNA基因編輯的效果。
以pCas9-zU6sgRNA/pCVpf為模板,采用含gRNA的引物(表1)對(duì)編碼U6/PuroR序列和scaffoldSal/GFP序列的目的片段進(jìn)行PCR擴(kuò)增。PCR反應(yīng)體系20.0 μL:DNA模板1.0 μL,上、下游引物(10 nmol/L)各0.5 μL,2×Taq酶混合液/高保真酶10.0 μL,去離子水8.0 μL。擴(kuò)增程序:95 ℃預(yù)變性20 s;95 ℃ 30 s,60 ℃ 30 s,72 ℃ 80 s,進(jìn)行35個(gè)循環(huán);72 ℃延伸7 min。PCR擴(kuò)增產(chǎn)物通過(guò)1%或2%瓊脂糖凝膠電泳進(jìn)行檢測(cè)(Chen et al.,2021)。
1. 2. 3 細(xì)胞培養(yǎng) 將ObSSCs凍存管取出,37 ℃水浴鍋處理2 min使細(xì)胞迅速解凍,800×g離心4 min后以ESM4培養(yǎng)基重懸細(xì)胞,然后接種至由0.1%明膠包被的24孔細(xì)胞培養(yǎng)板中,置于28 ℃培養(yǎng)箱培養(yǎng),每隔2 d傳代1次(Chen et al.,2022)。參照Kan等(2022)、Gu等(2023)的方法配制ESM4培養(yǎng)基,其主要成分:DMEM 500.0 mL(pH 7.8),青鳉胚胎提取物(MEE)0.5 mL[MEE提取參照Hong等(1996,2004)的方法制備],100 ng/mL堿性成纖維細(xì)胞生長(zhǎng)因子(bFGF)10 μL,澳洲胎牛血清(FBS)75.0 mL,2 μmol/L亞硒酸鈉0.5 mL,海鱸血清5.0 mL,50 mmol/L 2-巰基乙醇2.0 mL,青鏈霉素混合液5.0 mL,L-谷氨酰胺5.0 mL,丙酮酸鈉5.0 mL,非必需氨基酸5.0 mL。ESM4培養(yǎng)基經(jīng)0.22 μm過(guò)濾器過(guò)濾后使用。
1. 2. 4 細(xì)胞轉(zhuǎn)染 通過(guò)TransIT-X2轉(zhuǎn)染試劑(美國(guó)Mirus Bio公司)將不同配比(340∶160或410∶190,ng/ng)的整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA共轉(zhuǎn)染ObSSCs(整合質(zhì)粒和報(bào)告質(zhì)粒的摩爾比為1∶1),轉(zhuǎn)染24~72 h后,在Nikon ECLIPSE Ti倒置顯微鏡(10×、20×和40×放大倍數(shù))下進(jìn)行觀察。使用含1 mg/mL G418的ESM4培養(yǎng)基再培養(yǎng)7 d,富集成功轉(zhuǎn)染的ObSSCs,在28 ℃下以胰蛋白酶-EDTA(美國(guó)Gibco公司)進(jìn)行消化,經(jīng)磷酸鹽緩沖液(PBS)洗滌后收集ObSSCs(Gu et al.,2023),然后提取ObSSCs基因組DNA進(jìn)行PCR鑒定。由于以整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA共轉(zhuǎn)染正常ObSSCs,僅能檢測(cè)sgRNA在外源質(zhì)粒中的基因編輯效果。為進(jìn)一步確認(rèn)該系統(tǒng)在基因組中的編輯效率,還將整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA共轉(zhuǎn)染基因組中整合了pCVpr序列的ObSSCs(Chen et al.,2022),轉(zhuǎn)染與檢測(cè)操作過(guò)程與正常ObSSCs一致。
1. 2. 5 顯微注射 以整合質(zhì)粒pCas9-zU6sgRNA(100 pg)與報(bào)告質(zhì)粒pCVpf-gRNA(50 pg)同時(shí)顯微注射斑馬魚1-細(xì)胞期胚胎卵黃(Porazinski et al.,2010;Shankaran et al.,2017),注射24 h后,在尼康A(chǔ)Z100M體視顯微鏡(10×和20×放大倍數(shù))下連續(xù)觀察胚胎綠色熒光信號(hào)。
1. 2. 6 測(cè)序分析 胚胎顯微注射24 h后,提取胚胎基因組DNA。以20.0 μL NaOH(50 mmol/L)處理胚胎20 min(95 ℃,每10 min振蕩1次),充分裂解胚胎細(xì)胞;使用2.0 μL Tris-HCl(pH 8.0)中和NaOH后,12000 r/min離心2 min,收集上清液。通過(guò)PCR檢測(cè)整合質(zhì)粒pCas9-zU6sgRNA的編輯效果:95 ℃預(yù)變性20 s;95 ℃ 30 s,60 ℃ 30 s,72 ℃ 80 s,進(jìn)行35個(gè)循環(huán);72 ℃延伸7 min。使用2%瓊脂糖凝膠電泳檢測(cè)PCR擴(kuò)增產(chǎn)物,以膠回收試劑盒(TaKaRa)回收目的片段,通過(guò)TA克隆將目的片段插入pGEM-T Easy載體,然后轉(zhuǎn)化大腸桿菌(Escherichia coli)DH5α感受態(tài)細(xì)胞,37 ℃培養(yǎng)14~16 h后挑取單菌落進(jìn)行菌落PCR鑒定。將陽(yáng)性菌液和引物GFP Xba I-R送至生工生物工程(上海)股份有限公司測(cè)序,并使用Vector NTI對(duì)測(cè)序結(jié)果進(jìn)行比對(duì)分析。
1. 3 統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用GraphPad Prism 8.0.1進(jìn)行統(tǒng)計(jì)分析并制圖。
2 結(jié)果與分析
2. 1 整合質(zhì)粒pCas9-zU6sgRNA在ObSSCs中的劑量評(píng)估及優(yōu)化
待24孔細(xì)胞培養(yǎng)板中的ObSSCs培養(yǎng)至匯合度達(dá)70%時(shí),以不同配比的整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA共轉(zhuǎn)染ObSSCs,結(jié)果顯示,轉(zhuǎn)染后的ObSSCs能正常生長(zhǎng),細(xì)胞形態(tài)、生長(zhǎng)狀態(tài)與對(duì)照組的ObSSCs無(wú)明顯差異。ObSSCs在28 ℃培養(yǎng)箱中培養(yǎng)24~72 h后觀察轉(zhuǎn)染效率,結(jié)果在熒光顯微鏡下可觀察到少量表達(dá)GFP而顯示綠色熒光的ObSSCs,對(duì)照組則未觀察到具有綠色熒光信號(hào)的ObSSCs(圖2)。此外,以不同配比的整合質(zhì)粒與報(bào)告質(zhì)粒共轉(zhuǎn)染ObSSCs,發(fā)現(xiàn)GFP陽(yáng)性細(xì)胞數(shù)量存在明顯差異(圖3),當(dāng)整合質(zhì)粒pCas9-zU6sgRNA的轉(zhuǎn)染劑量由340 ng增加到410 ng時(shí),GFP陽(yáng)性細(xì)胞百分比由0.10%顯著增加到0.63%(Plt;0.05,下同)。
2. 2 整合質(zhì)粒pCas9-zU6sgRNA體外基因敲除與同源重組修復(fù)效果
為了從基因組DNA層面評(píng)估整合質(zhì)粒pCas9-zU6sgRNA對(duì)ObSSCs的編輯效果,于轉(zhuǎn)染72 h后,使用1 mg/mL G418富集表達(dá)GFP的ObSSCs,結(jié)果顯示,表達(dá)GFP的ObSSCs數(shù)量明顯增多(圖4)。同時(shí)提取ObSSCs基因組DNA,通過(guò)PCR檢測(cè)整合質(zhì)粒pCas9-zU6sgRNA的編輯效果,結(jié)果表明,空白對(duì)照組的ObSSCs未檢測(cè)到GFP相關(guān)片段,僅轉(zhuǎn)染報(bào)告質(zhì)粒pCVpf-gRNA陰性對(duì)照組的ObSSCs檢測(cè)到未經(jīng)修復(fù)的GFP片段,在共轉(zhuǎn)染整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA的ObSSCs中GFP全編碼序列被修復(fù),GFP正常表達(dá)而檢測(cè)到對(duì)應(yīng)的目的條帶(圖5)。
2. 3 整合質(zhì)粒pCas9-zU6sgRNA在ObSSCs中的基因編輯效果
為進(jìn)一步驗(yàn)證質(zhì)粒CRISPR/Cas9系統(tǒng)在基因組中的編輯效率及其在外源質(zhì)粒中的編輯效率差異,以410 ng整合質(zhì)粒pCas9-zU6sgRNA與190 ng報(bào)告質(zhì)粒pCVpf-gRNA共轉(zhuǎn)染穩(wěn)定表達(dá)RFP的ObSSCs,轉(zhuǎn)染24~72 h后觀察到表達(dá)GFP的ObSSCs;相對(duì)于未表達(dá)GFP的ObSSCs,表達(dá)GFP的ObSSCs紅色熒光信號(hào)明顯減弱(圖6),進(jìn)一步證實(shí)在共轉(zhuǎn)染整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA的ObSSCs中GFP全編碼序列被修復(fù),GFP得以正常表達(dá),即整合質(zhì)粒pCas9-zU6sgRNA在ObSSCs中有明顯的編輯效果。此外,對(duì)比整合質(zhì)粒pCas9-zU6sgRNA在pCVpr質(zhì)粒轉(zhuǎn)染ObSSCs和正常ObSSCs中的基因編輯效率,結(jié)果(圖7)顯示,質(zhì)粒CRISPR/Cas9系統(tǒng)在基因組中的編輯效率與在外源質(zhì)粒中的編輯效率基本一致。
2. 4 整合質(zhì)粒pCas9-zU6sgRNA體內(nèi)基因編輯效率
為測(cè)試質(zhì)粒CRISPR/Cas9系統(tǒng)在體內(nèi)的基因編輯效率,選擇與馬口魚同為鯉科的斑馬魚胚胎進(jìn)行體內(nèi)驗(yàn)證。以共注射整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA的斑馬魚胚胎為試驗(yàn)組,不注射質(zhì)粒的胚胎為空白對(duì)照組,只注射報(bào)告質(zhì)粒pCVpf-gRNA(50 pg)的胚胎為陰性對(duì)照組,檢測(cè)整合質(zhì)粒pCas9-zU6sgRNA的體內(nèi)基因編輯效果,結(jié)果(圖8)顯示,注射24 h后,在空白對(duì)照組和陰性對(duì)照組斑馬魚胚胎均未觀察到綠色熒光信號(hào),而在試驗(yàn)組斑馬魚胚胎的動(dòng)物極區(qū)觀察到明顯的綠色熒光信號(hào)。
為進(jìn)一步確認(rèn)GFP序列是否在動(dòng)物體內(nèi)被成功修復(fù),提取斑馬魚胚胎基因組DNA進(jìn)行PCR鑒定,結(jié)果(圖9)顯示:空白對(duì)照組斑馬魚胚胎未檢測(cè)到GFP片段;只注射報(bào)告質(zhì)粒pCVpf-gRNA陰性對(duì)照組斑馬魚胚胎檢測(cè)到未修復(fù)的GFP片段,但不存在經(jīng)基因編輯修復(fù)的GFP片段;在10枚共注射整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA的斑馬魚胚胎中均檢測(cè)到同源重組修復(fù)的雙鏈DNA條帶,表明報(bào)告質(zhì)粒pCVpf-gRNA在斑馬魚胚胎內(nèi)發(fā)生了同源重組修復(fù),GFP全編碼序列被修復(fù),GFP正常表達(dá),且整合質(zhì)粒pCas9-zU6sgRNA在斑馬魚胚胎中的編輯效率達(dá)100%。為了直觀評(píng)估報(bào)告質(zhì)粒pCVpf-gRNA在斑馬魚胚胎內(nèi)發(fā)生同源重組修復(fù)的效率,統(tǒng)計(jì)表達(dá)GFP全編碼序列的斑馬魚胚胎比例,結(jié)果發(fā)現(xiàn),空白對(duì)照組和陰性對(duì)照組均未觀測(cè)到表達(dá)GFP全編碼序列的斑馬魚胚胎,而共注射整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA試驗(yàn)組斑馬魚胚胎表達(dá)GFP全編碼序列的百分比達(dá)100%。此外,對(duì)比整合質(zhì)粒pCas9-zU6sgRNA在馬口魚SSCs和斑馬魚胚胎中的基因編輯效率,發(fā)現(xiàn)整合質(zhì)粒pCas9-zU6sgRNA在斑馬魚胚胎中的基因編輯效率顯著高于ObSSCs(100% vs 0.63%)。
同時(shí)進(jìn)一步確認(rèn)GFP序列是否在動(dòng)物體內(nèi)被正確修復(fù),通過(guò)菌落PCR鑒定及送至生工生物工程(上海)股份有限公司測(cè)序分析,以檢驗(yàn)報(bào)告質(zhì)粒pCVpf-gRNA是否完成同源重組修復(fù),結(jié)果(圖10)顯示,在空白對(duì)照組和陰性對(duì)照組斑馬魚胚胎中均檢測(cè)到gRNA和同源臂序列,而在共注射整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA的斑馬魚胚胎(2#)中未檢測(cè)到gRNA和同源臂序列,表明報(bào)告質(zhì)粒pCVpf-gRNA在斑馬魚胚胎內(nèi)已發(fā)生同源重組修復(fù),修復(fù)了GFP全編碼序列。
3 討論
目前,基因工程育種已成為水產(chǎn)種質(zhì)創(chuàng)新的重要途徑,但受限于養(yǎng)殖魚類的繁育周期,致使基因工程育種的進(jìn)展緩慢。借助體外基因編輯,將SSCs的基因編輯技術(shù)與體外誘導(dǎo)技術(shù)相結(jié)合,有利于基因編輯精子的獲取,進(jìn)而加速養(yǎng)殖魚類基因編輯新品種(系)的創(chuàng)制。本研究構(gòu)建了用于體外和體內(nèi)基因編輯的整合質(zhì)粒pCas9-zU6sgRNA和報(bào)告質(zhì)粒pCVpf-gRNA,為魚類SSCs基因編輯技術(shù)及誘導(dǎo)SSCs產(chǎn)生基因編輯精子提供了技術(shù)支持。在實(shí)現(xiàn)CRISPR/Cas9系統(tǒng)的幾種方案中,制備Cas9/sgRNA核糖核蛋白(RNP)復(fù)合物需要特定的設(shè)備和技術(shù),以及成本高昂的試劑(Liu et al.,2018;Hamar and Kültz,2021;Str?msnes et al.,2022),且體外合成的sgRNA易降解(Dehler et al.,2016);體外合成mRNA注射則需要成本昂貴的體外轉(zhuǎn)錄試劑,且合成的mRNA極易降解(Pan et al.,2022;陳若雪等,2024)。相比之下,整合質(zhì)粒pCas9-zU6sgRNA和報(bào)告質(zhì)粒pCVpf-gRNA通過(guò)替換gRNA及細(xì)胞轉(zhuǎn)染即可獲得編輯的ObSSCs,且通過(guò)PCR或顯微鏡觀察GFP信號(hào)可直接檢測(cè)編輯效率;整合質(zhì)粒pCas9-zU6sgRNA還可有效編輯斑馬魚胚胎。相對(duì)于使用RNP復(fù)合物進(jìn)行基因編輯,質(zhì)粒CRISPR/Cas9系統(tǒng)具有經(jīng)濟(jì)、簡(jiǎn)單等優(yōu)點(diǎn),可作為未來(lái)獲取基因編輯配子的主要途徑,以加快創(chuàng)制養(yǎng)殖魚類新品種(系)。
U6啟動(dòng)子作為一種聚合酶III啟動(dòng)子,已廣泛應(yīng)用于shRNA或sgRNA的表達(dá)(Kim et al.,2012;Ma et al.,2014)。哺乳動(dòng)物的U6啟動(dòng)子可基因編輯鯉科魚類細(xì)胞系,如鯉(Cyprinus carpio)尾鰭細(xì)胞系(KF-1)(Zhao et al.,2016)和草魚腎細(xì)胞系CIK(Ma et al.,2018),但其基因編輯效率尚未得到評(píng)估。斑馬魚的U6啟動(dòng)子可基因編輯羅非魚細(xì)胞(Boonanuntanasarn et al.,2009)和鮭(Salmo salar)細(xì)胞(Escobar-Aguirre et al.,2019)。為進(jìn)一步提高基因編輯效率,本研究選擇與馬口魚同為鯉科的斑馬魚U6啟動(dòng)子進(jìn)行試驗(yàn),以不同比例的整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA共轉(zhuǎn)染ObSSCs后,觀察到較弱的綠色熒光信號(hào)。G418富集編輯的ObSSCs通過(guò)PCR可檢測(cè)到報(bào)告質(zhì)粒的同源重組修復(fù)。此外,質(zhì)粒CRISPR/Cas9系統(tǒng)在正常ObSSCs和pCVpr質(zhì)粒轉(zhuǎn)染ObSSCs中的基因編輯效果基本一致,表明質(zhì)粒CRISPR/Cas9系統(tǒng)在基因組中的編輯效率與在外源質(zhì)粒中的編輯效率相似,提示質(zhì)粒CRISPR/Cas9系統(tǒng)也可應(yīng)用于其他養(yǎng)殖魚類細(xì)胞系,并根據(jù)報(bào)告質(zhì)粒的編輯效率確認(rèn)所設(shè)計(jì)sgRNA在該養(yǎng)殖魚類SSCs中的基因編輯效率。細(xì)胞內(nèi)mRNA和蛋白的代謝與降解需要一定時(shí)間,雖然質(zhì)粒CRISPR/Cas9系統(tǒng)在pCVpr質(zhì)粒轉(zhuǎn)染ObSSCs基因組上已完成編輯,但其細(xì)胞內(nèi)仍存在具備活性的RFP及具備轉(zhuǎn)錄活性的RFP基因編碼序列,因此僅能觀察到未新增轉(zhuǎn)錄本而導(dǎo)致紅色熒光信號(hào)減弱及恢復(fù)編碼GFP序列而顯示綠色熒光信號(hào)的ObSSCs,但未觀察到紅色熒光完全消失只顯示綠色熒光的ObSSCs。
為進(jìn)一步驗(yàn)證質(zhì)粒CRISPR/Cas9系統(tǒng)在體內(nèi)的基因編輯效果,以整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA共注射斑馬魚胚胎,在斑馬魚胚胎中同樣可觀察到明顯的綠色熒光信號(hào)。本研究發(fā)現(xiàn),整合質(zhì)粒pCas9-zU6sgRNA在斑馬魚胚胎的基因編輯效率顯著高于ObSSCs(100% vs 0.63%),可能是多種因素所致:(1)細(xì)胞轉(zhuǎn)染試劑仍無(wú)法保證整合質(zhì)粒在個(gè)性化干細(xì)胞系中具備較高的轉(zhuǎn)染效率。使用TransIT-X2轉(zhuǎn)染試劑對(duì)ObSSCs進(jìn)行單質(zhì)粒轉(zhuǎn)染時(shí)的轉(zhuǎn)染效率約20.00%,2個(gè)質(zhì)粒同時(shí)轉(zhuǎn)染同一細(xì)胞的概率為4.00%;其中0.63%的ObSSCs發(fā)生基因編輯,故基因編輯效率約15.75%。(2)U6啟動(dòng)子在異源物種中的活性同樣無(wú)法保證(Das et al.,1987),因此本研究選擇與馬口魚同為鯉科的斑馬魚U6啟動(dòng)子。(3)在胚胎注射時(shí),注射后在單個(gè)胚胎中的少量細(xì)胞完成基因編輯即可顯示綠色熒光,在細(xì)胞中則需單個(gè)細(xì)胞完成全部重組修復(fù)過(guò)程后才能顯示綠色熒光。綜上所述,質(zhì)粒CRISPR/Cas9系統(tǒng)在ObSSCs和斑馬魚胚胎均實(shí)現(xiàn)了有效的基因編輯,為后續(xù)應(yīng)用該系統(tǒng)實(shí)現(xiàn)SSCs基因編輯及借助體外誘導(dǎo)技術(shù)實(shí)現(xiàn)養(yǎng)殖魚類基因編輯新品種(系)的快速創(chuàng)制打下了基礎(chǔ)。
在養(yǎng)殖魚類基因編輯育種研究中,設(shè)計(jì)的gRNA編輯效率低下或無(wú)效則會(huì)導(dǎo)致新品種(系)創(chuàng)制失敗,而重新設(shè)計(jì)gRNA進(jìn)行試驗(yàn)又需要遵循養(yǎng)殖魚類的繁育周期。為直觀、快速地評(píng)估ObSSCs中sgRNA的基因編輯效率,本研究檢測(cè)了報(bào)告質(zhì)粒pCVpf-gRNA在ObSSCs和斑馬魚胚胎中經(jīng)同源重組修復(fù)后GFP正常表達(dá)的效果。報(bào)告質(zhì)粒pCVpf-gRNA是將gRNA序列與編碼GFP的同源臂序列同時(shí)插入GFP編碼序列,在質(zhì)粒CRISPR/Cas9系統(tǒng)介導(dǎo)的基因組切割修復(fù)過(guò)程中,報(bào)告質(zhì)粒pCVpf-gRNA通過(guò)同源重組修復(fù)GFP全編碼序列,恢復(fù)GFP正常表達(dá)。因此,可通過(guò)觀察綠色熒光信號(hào)直接快速評(píng)估sgRNA的基因編輯效率,而節(jié)省時(shí)間、經(jīng)濟(jì)和人力成本。
近年來(lái),SSCs已廣泛應(yīng)用于魚類生殖細(xì)胞移植(Zhang et al.,2022a)和體外誘導(dǎo)(Zhang et al.,2022b)。將魚類生殖細(xì)胞系的基因編輯技術(shù)與移植技術(shù)或體外誘導(dǎo)技術(shù)相結(jié)合,可縮短創(chuàng)制養(yǎng)殖魚類新品種(系)的時(shí)間(Jin et al.,2021)。在稀有鮈鯽(Gobiocy‐pris rarus)中,通過(guò)將SSCs移植到斑馬魚性腺中,可獲得CRISPR/Cas9編輯的功能性精子(Zhang et al.,2022a);在馬口魚精巢原代細(xì)胞的誘導(dǎo)下,ObSSCs能發(fā)生減數(shù)分裂而產(chǎn)生游動(dòng)的精子(Chen et al.,2022)??梢姡瑢SCs的基因編輯技術(shù)與移植技術(shù)或體外誘導(dǎo)技術(shù)相結(jié)合,有利于基因編輯精子的獲得。本研究成功富集了基因編輯的ObSSCs,可作為供體應(yīng)用于移植或體外誘導(dǎo)技術(shù)研究,為獲得馬口魚基因編輯的功能性精子及加快基因編輯創(chuàng)制養(yǎng)殖魚類新品種(系)提供新的見解。
4 結(jié)論
由整合質(zhì)粒pCas9-zU6sgRNA與報(bào)告質(zhì)粒pCVpf-gRNA構(gòu)成的質(zhì)粒CRISPR/Cas9系統(tǒng)能在ObSSCs中直觀評(píng)估基因編輯效率,且質(zhì)粒CRISPR/Cas9系統(tǒng)在同為鯉科魚類斑馬魚胚胎中的基因編輯效率高達(dá)100%。因此,質(zhì)粒CRISPR/Cas9系統(tǒng)可用于馬口魚和斑馬魚的sgRNA篩選,為創(chuàng)制養(yǎng)殖魚類新品種(系)提供新思路。
參考文獻(xiàn)((References)):
陳秋宇,安立龍. 2015. 魚類精原干細(xì)胞的研究進(jìn)展[J]. 廣東農(nóng)業(yè)科學(xué),42(6):105-110.[ Chen Q Y,An L L. 2015. Advances in fish spermatogonial stem cells[J]. Guang‐dong Agricultural Sciences,42(6):105-110.] doi:10.3969/
j.issn.1004-874X.2015.06.020.
陳若雪,蔣月雯,王夢(mèng)洋,許朝然,梁晶婕,陳天圣. 2024. 基于密碼子優(yōu)化mSaCas9蛋白的重組表達(dá)與應(yīng)用[J]. 廣東海洋大學(xué)學(xué)報(bào),44(4):19-26.[ Chen R X,Jiang Y W,Wang M Y,Xu Z R,Liang J J,Chen T S. 2024. Recombinant expression and application of mSaCas9 protein based on codon-optimization[J]. Journal of Guangdong Ocean Uni‐versity,44(4):19-26.] doi:10.3969/j.issn.1673-9159.2024.04.003.
劉源壹,李昕俞,張磊,芒來(lái),杜明. 2023. 動(dòng)物精原干細(xì)胞體外培養(yǎng)研究進(jìn)展[J]. 飼料研究,46(14):144-150.[ Liu Y Y,Li X Y,Zhang L,Mang L,Du M. 2023. Research prog‐ress on in vitro culture of animal spermatogonial stem cells[J]. Feed Research,46(14):144-150.] doi:10.13557/j.cnki. issn1002-2813.2023.14.028.
歐琳. 2021. 初探草魚與赤眼鱒性成熟[J]. 水產(chǎn)養(yǎng)殖,(5):56-58.[ Ou L. 2021. A preliminary study of sexual matura‐tion in Ctenopharyngodon idellus and Squaliobarbus cur‐riculu[sJ]. Journal of Aquaculture,(5):56-58.] doi:10.3969/j.issn.1004-2091.2021.05.018.
徐紅艷,李名友,桂建芳,洪云漢. 2010. 魚類生殖細(xì)胞[J]. 中國(guó)科學(xué):生命科學(xué),40(2):124-138.[ Xu H Y,Li M Y,Gui J F,Hong Y H. 2010. Fish germ cells[J]. Science China:Life Sciences,40(2):124-138.] doi:10.1007/s11427- 010-0058-8.
張國(guó)棟. 2018. 哺乳動(dòng)物原始生殖細(xì)胞的體內(nèi)特化和體外培養(yǎng)[J]. 中國(guó)生物化學(xué)與分子生物學(xué)報(bào),34(5):467-472. [Zhang G D. 2018. In vivo specialisation and in vitro cul‐ture of mammalian primordial germ cells[J]. Chinese Jour‐nal of Biochemistry and Molecular Biology,34(5):467-472.] doi:10.13865/j.cnki.cjbmb.2018.05.02.
Boonanuntanasarn S,Panyim S,Yoshizaki G. 2009. Usage of putative zebrafish U6 promoters to express shRNA in Nile tilapia and shrimp cell extracts[J]. Transgenic Research,18:323-325. doi:10.1007/s11248-009-9249-0.
Chen X,Kan Y T,Zhong Y,Jawad M,Wei W B,Gu K Y,Gui L,Li M Y. 2022. Generation of a normal long-term-cultured Chinese hook snout carp spermatogonial stem cell line capable of sperm production in vitro[J]. Biology,11(7):1069. doi:10.3390/biology11071069.
Chen X,Song P,Xia J,Guo J,Shi Y H,Zhong Y,Li M Y. 2021. Evolutionarily conserved boule and dazl identify germ cells of Coilia nasus[J]. Aquaculture and Fisheries,8(3):244-251. doi:10.1016/j.aaf.2021.10.001.
Cui Z K,Liu Y,Wang W W,Wang Q,Zhang N,Lin F,Wang N,Shao C W,Dong Z D,Li Y Z,Yang Y M,Hu M Z,Li H L,Gao F T,Wei Z F,Meng L,Liu Y,Wei M,Zhu Y,Guo H,Cheng C H K,Schartl M,Chen S L. 2017. Genome edi-ting reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole( Cynoglossus semilaevis)[J]. Scientific Reports,7:42213. doi:10.1038/srep42213.
Das G,Henning D,Reddy R. 1987. Structure,organization,and transcription of Drosophila U6 small nuclear RNA genes[J]. Journal of Biological Chemistry,262(3):1187-1193. doi:10.1016/s0021-9258(19)75769-x.
de Kretser D M,Loveland K L,Meinhardt A,Simorangkir D,Wreford N. 1998. Spermatogenesis[J]. Human Reproduc‐tion,13(S1):1-8. doi:10.1093/humrep/13.suppl_1.1.
Dehler C E,Boudinot P,Martin S A M,Collet B. 2016. Deve-lopment of an efficient genome editing method by CRISPR/Cas9 in a fish cell line[J]. Marine Biotechnology,18:449-452. doi:10.1007/s10126-016-9708-6.
Dong Q,Nie C H,Wu Y M,Zhang D Y,Wang X D,Tu T,Jin J,Tian Z Y,Liu J Q,Xiao Z Y,Wan S M,Gao Z X. 2023. Generation of blunt snout bream without intermuscular bones by runx2b gene mutation[J]. Aquaculture,567:739263. doi:10.1007/s10126-016-9708-6.
dos Santos Nassif Lacerda S M,Costa G M J,de Franca L R. 2014. Biology and identity of fish spermatogonial stem cell[J]. General and Comparative Endocrinology,207:56-65. doi:10.1016/j.ygcen.2014.06.018.
Escobar-Aguirre S,Arancibia D,Escorza A,Bravo C,Andrés M E,Zamorano P,Martínez V. 2019. Development of a bicistronic vector for the expression of a CRISPR/Cas9-mCherry system in fish cell lines[J]. Cells,8(1):75. doi:10.3390/cells8010075.
Gan R H,Li Z,Wang Z W,Li X Y,Wang Y,Zhang X J,Tong J F,Wu Y,Xia L Y,Gao Z X,Zhou L,Gui J F. 2023. Crea-tion of intermuscular bone-free mutants in amphitriploid gibel carp by editing two duplicated runx2b homeologs[J]. Aquaculture,567:739300. doi:10.1016/j.aquaculture. 2023.739300.
Gu K Y,Zhang Y,Zhong Y,Kan Y T,Jawad M,Gui L,Ren M C,Xu G C,Liu D,Li M Y. 2023. Establishment of a Coilia nasus spermatogonial stem cell line capable of spermato‐genesis in vitro[J]. Biology,12(9):1175. doi:10.3390/bio-logy12091175.
Gur G,Melamed P,Gissis A,Yaron Z. 2000. Changes along the pituitary-gonadal axis during maturation of the black carp,Mylopharyngodon piceus[J]. The Journal of Experimental Zoology,286(4):405-413.
Hamar J,Kültz D. 2021. An efficient vector-based CRISPR/Cas9 system in an Oreochromis mossambicus cell line using endogenous promoters[J]. Scientific Reports,11:7854. doi:10.1101/2020.08.04.237065.
Han J Y,Miao Y L,Hua J L,Li Y,Zhang X,Zhou J L,Li N,Zhang Y,Zhang J Y,Liu Z H. 2019. Porcine pluripotent stem cells:Progress,challenges and prospects[J]. Fron‐tiers of Agricultural Science and Engineering,6(1):8-27. doi:10.15302/j-fase-2018233.
Hong Y H,Liu T M,Zhao H B,Xu H Y,Wang W J,Liu R,Chen T S,Deng J R,Gui J F. 2004. Establishment of a nor‐mal medakafish spermatogonial cell line capable of sperm production in vitro[J]. Proceedings of the National Aca-demy of Sciences of the United States of America,101(21):8011-8016. doi:10.1073/pnas.0308668101.
Hong Y H,Winkler C,Schartl M. 1996. Pluripotency and diffe-rentiation of embryonic stem cell lines from the medaka-fish( Oryzias latipes)[J]. Mechanisms of Development,60(1):33-44. doi:10.1016/s0925-4773(96)00596-5.
Jin Y H,Robledo D,Hickey J M,McGrew M J,Houston R D. 2021. Surrogate broodstock to enhance biotechnology research and applications in aquaculture[J]. Biotechnology Advances,49:107756. doi:10.1016/j.biotechadv.2021.10 7756.
Kan Y T,Zhong Y,Jawad M,Chen X,Liu D,Ren M C,Xu G C,Gui L,Li M Y. 2022. Establishment of a Coilia nasus gonadal somatic cell line capable of sperm induction in vitro[J]. Biology,11(7):1049. doi:10.3390/biology1107 1049.
Kawasaki T,Saito K,Sakai C,Shinya M,Sakai N. 2012. Pro‐duction of zebrafish offspring from cultured spermatogo‐nial stem cells[J]. Genes to Cells,17(4):316-325. doi:10. 1111/j.1365-2443.2012.01589.x.
Kim N Y,Baek J Y,Choi H S,Chung I S,Shin S H,Lee J I,Choi J Y,Yang J M. 2012. Short-hairpin RNA-mediated gene expression interference in trichoplusiani cells[J]. Jour‐nal of Microbiology and Biotechnology,22(2):190-198. doi:10.4014/jmb.1108.08045.
Kuang Y Y,Zheng X H,Cao D C,Sun Z P,Tong G X,Xu H,Yan T,Tang S Z,Chen Z X,Zhang T T,Zhang T,Dong L,Yang X X,Zhou H J,Guo W L,Sun X W. 2023. Generate a new crucian carp (Carassius auratus) strain without intermuscular bones by knocking out bmp6[J]. Aquacul‐ture,569:739407. doi:10.1016/j.aquaculture.2023.739407.
Liu Q Z,Yuan Y M,Zhu F,Hong Y H,Ge R W. 2018. Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured medaka fish cells[J]. Biology Open,7(8):bio035170. doi:10.1242/bio.035170.
Ma H M,Wu Y G,Dang Y,Choi J G,Zhang J L,Wu H Q. 2014. Pol III promoters to express small RNAs:Deli-neation of transcription initiation[J]. Molecular Therapy-Nucleic Acids,3(5):e161. doi:10.1038/mtna.2014.12.
Ma J,F(xiàn)an Y D,Zhou Y,Liu W Z,Jiang N,Zhang J M,Zeng L B. 2018. Efficient resistance to grass carp reovirus infec‐tion in JAM-A knockout cells using CRISPR/Cas9[J]. Fish amp; Shellfish Immunology,76:206-215. doi:10.1016/j.fsi. 2018.02.039.
Nagano M C,Yeh J R. 2013. Chapter Three—The identity and fate decision control of spermatogonial stem cells:Where is the point of no return?[J]. Current Topics in Developmen‐tal Biology,102:61-95. doi:10.1016/B978-0-12-416024-8.00003-9.
Pan Q H,Luo J Z,Jiang Y W,Wang Z,Lu K,Chen T S. 2022. Efficient gene editing in a medaka (Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA[J]. Journal of Zhejiang University-SCIENCE B,23:74-83. doi:10.1631/jzus.B2100343.
Porazinski S R,Wang H J,F(xiàn)urutani-Seiki M. 2010. Microinjec‐tion of medaka embryos for use as a model genetic orga-nism[J]. Journal of Visualized Experiments,46:e1937.doi:10.3791/1937-v.
Shankaran S S,Dahlem T J,Bisgrove B W,Joseph Yost H,Tristani-Firouzi M. 2017. CRISPR/Cas9-directed gene edi-ting for the generation of loss-of-function mutants in high-throughput zebrafish F0 screens[J]. Current Protocols in Molecular Biology,119:31. doi:10.1002/cpmb.42.
Str?msnes T A H,Schmidke S E,Azad M,Singstad ?,Gr?nsberg I M,Dalmo R A,Okoli A S. 2022. CRISPR/Cas9-mediated gene editing in salmonids cells and effi‐cient establishment of edited clonal cell lines[J]. Interna‐tional Journal of Molecular Sciences,23(24):16218. doi:10.3390/ijms232416218.
Sun X Y,Tao B B,Wang Y X,Hu W,Sun Y H. 2022. Isolation and characterization of germline stem cells in protogynous hermaphroditic Monopterus albu[sJ]. International Journal of Molecular Sciences,23(11):5861. doi:10.3390/ijms 23115861.
Valli H,Phillips B T,Shetty G,Byrne J A,Clark A T,Meistrich M L,Orwig K E. 2014. Germline stem cells:Toward the regeneration of spermatogenesis[J]. Fertility and Sterility,101(1):3-13. doi:10.1016/j.fertnstert.2013.10.052.
Xu X J,Guan W Z,Niu B L,Guo D D,Xie Q P,Zhan W,Yi S K,Lou B. 2022. Chromosome-level assembly of the Chi‐nese hooksnout carp( Opsariichthys bidens) genome using PacBio sequencing and Hi-C technology[J]. Frontiers in Genetics,12:788547. doi:10.3389/fgene.2021.788547.
Zhang F H,Hao Y K,Li X M,Li Y,Ye D,Zhang R,Wang X S,He M D,Wang H P,Zhu Z Y,Sun Y H. 2022a. Surrogate production of genome-edited sperm from a different sub‐family by spermatogonial stem cell transplantation[J]. Science China Life Sciences,65:969-987. doi:10.1007/s11427-021-1989-9.
Zhang H,Zhang W W,Mo C Y,Dong M D,Jia K T,Liu W,Yi M S. 2022b. Production of functional sperm from in vitro-cultured premeiotic spermatogonia in a marine fish[J]. Zoological Research,43(4):537-551. doi:10.24272/j.issn.2095-8137.2022.058.
Zhang Z M,Wang J,Li J N,Liu X,Liu L,Zhao C L,Tao W J,Wang D S,Wei J. 2023. Establishment of an integrated CRISPR/Cas9 plasmid system for simple and efficient genome editing in medaka in vitro and in vivo[J]. Bio-logy,12(2):336. doi:10.3390/biology12020336.
Zhao H B,Hong N,Lu W Q,Zeng H Q,Song J X,Hong Y H. 2012. Fusion gene vectors allowing for simultaneous drug selection,cell labeling,and reporter assay in vitro and in vivo[J]. Analytical Chemistry,84:987-993. doi:10.1021/ac202541t.
Zhao Y C,Wang T D,Yu Z,Wang H M,Liu B,Wu C Y,Teng C B. 2016. Inhibiting cyprinid herpesvirus-3 replication with CRISPR/Cas9[J]. Biotechnology Letters,38:573-578. doi:10.1007/s10529-015-2020-0.
Zhong C Y,Tao Y H,Liu M F,Wu X,Yang Y,Wang T,Meng Z N,Xu H Y,Liu X C. 2022. Establishment of a spermato‐gonial stem cell line with potential of meiosis in a her‐maphroditic fish,Epinephelus coioides[J]. Cells,11(18):2868. doi:10.3390/cells11182868.
Zhou L,Wang X Y,Liu Q H,Yang J K,Xu S H,Wu Z H,Wang Y F,You F,Song Z C,Li J. 2021. Successful sper‐matogonial stem cells transplantation within Pleuronecti‐formes:First breakthrough at inter-family level in marine fish[J]. International Journal of Biological Sciences,17:4426. doi:10.1101/2021.01.29.428910.
(責(zé)任編輯 蘭宗寶)