摘要:【目的】從全基因組水平開展擬鱷龜養(yǎng)殖群體遺傳多樣性及群體遺傳結構分析,評估養(yǎng)殖擬鱷龜?shù)姆N質資源狀況,為擬鱷龜種質資源的開發(fā)與利用及促進其養(yǎng)殖產業(yè)健康發(fā)展提供參考依據(jù)?!痉椒ā糠謩e從肇慶高要市活道鎮(zhèn)榮杰龜鱉專業(yè)合作社(RJ)、肇慶市滋源龜鱉養(yǎng)殖專業(yè)合作社(ZY)和肇慶市四會肇慶盛科農業(yè)發(fā)展有限公司(SK)各采集30只擬鱷龜,通過對3個擬鱷龜養(yǎng)殖群體90個樣本進行基因組重測序,基于全基因組單核苷酸多態(tài)性(SNP)進行系統(tǒng)發(fā)育進化樹分析和主成分分析,從基因組水平評估養(yǎng)殖擬鱷龜遺傳多樣性及群體遺傳結構?!窘Y果】基于形態(tài)性狀比例參數(shù)的聚類分析結果顯示,3個擬鱷龜養(yǎng)殖群體分為兩大分支,SK群體與RJ群體先聚類在一起,然后與ZY群體聚合。在3個擬鱷龜養(yǎng)殖群體中共檢測出708112個SNPs位點,過濾篩選后獲得220950個高質量純合SNPs位點和440435個高質量雜合SNPs位點。3個擬鱷龜養(yǎng)殖群體的單核苷酸密度均為0.01 SNP/kb,核苷酸多樣性(π)為0.00166~0.00171,多態(tài)信息含量(PIC)為0.151~0.154,觀測雜合度(Ho)為0.171~0.205,近交系數(shù)(FHOM)分布在0.0571~0.1110;不同群體間的遺傳分化系數(shù)(Fs)t在0.0056~0.0138,基因流(Nm)在-0.2486~-0.2466?;谌蚪MSNP構建的系統(tǒng)發(fā)育進化樹顯示,3個擬鱷龜養(yǎng)殖群體整體上可分為兩大分支,第一分支主要由RJ群體和SK群體組成,第二分支主要由ZY群體組成,與形態(tài)聚類分析結果基本一致。主成分分析也發(fā)現(xiàn),3個擬鱷龜養(yǎng)殖群體間的相互距離較近,且存在相互交叉現(xiàn)象。【結論】3個擬鱷龜養(yǎng)殖群體遺傳多態(tài)性較低,遺傳背景不夠豐富,群體間遺傳分化程度低,推測具有相似的遺傳背景,來源于同一引種群體。因此,在今后的育種工作亟需引入新的種質資源,為種質創(chuàng)新提供更豐富的遺傳基礎。
關鍵詞:擬鱷龜;全基因組重測序;遺傳多樣性;遺傳結構;SNP位點
中圖分類號:S917.4;S966.5文獻標志碼:A 文章編號:2095-1191(2024)11-3392-12
Genetic diversity and structural analysis of Chelydra serpentinabased on whole genome resequencing
YANG Hua-lin1,2, LI Wei2, JI Li-qin2, ZHU Xin-ping2*, HONG Xiao-you2*
(1College of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; 2Pearl River Fisheries Re‐search Institute, Chinese Academy of Fishery Sciences/Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong 510380, China)
Abstract:【Objective】The genetic diversity and genetic structure of the breeding population of Chelydra serpentina were analyzed from the whole genome level, and the germplasm resources of C. serpentina were evaluated, so as to pro‐vide reference for the development and utilization of germplasm resources of C. serpentina and promote the healthy deve-lopment of the breeding industry of C. serpentina.【 Method】A total of 30 C. serpentina were collected from Rongjie TurtleBreeding Professional Cooperative( RJ) in Huandao Town, Gaoyao City, Zhaoqing City, Ziyuan Turtle Breeding Profes‐sional Cooperative in Zhaoqing City( ZY) and Sihui Zhaoqing Shengke Agricultural Development Co., Ltd. in Zhaoqing City (SK) respectively, and 90 samples from 3 C. serpentina groups were resequenced. Phylogenetic tree analysis and principal component analysis were conducted based on whole genome single nucleotide polymorphisms( SNP) to evalua-te the genetic diversity and population genetic structure of cultured C. serpentina at the genome level. 【Result】The re‐sults of cluster analysis based on morphological trait proportion parameters showed that the 3 groups were divided into 2 branches, SK group and RJ group were first clustered together, and then aggregated with ZY group. A total of 708112 SNPs loci were detected in the 3 groups, and 220950 high quality homozygous SNPs loci and 440435 high quality hetero‐zygous SNPs loci were obtained after filtering. The single nucleotide density, single nucleotide polymorphism( π), poly‐morphism information content( PIC) and observed heterozygosity( Ho) of the 3 groups of C. serpentina were 0.01 SNP /kb, 0.00166-0.00171, 0.151-0.154 and 0.171-0.205. The inbreeding coefficient (FHOM) ranged from 0.0571 to 0.1110. The coefficient of genetic differentiation (Fst) and gene flow (Nm) ranged from 0.0056 to 0.0138 and from -0.2486 to -0.2466. The phylogenetic tree constructed on the basis of the whole genome SNP showed that the 3 groups of C. serpen‐tina could be divided into 2 branches as a whole. The first branch was mainly composed of RJ group and SK group, and the second branch was mainly composed of ZY group, which was basically consistent with the results of morphological cluster analysis. The principal component analysis also found that the distance between the 3 groups of C. serpentina was relatively close, and there was cross-over phenomenon. 【Conclusion】The genetic polymorphism 3 groups of C. serpen‐tina is low, the genetic background is not rich enough, and the degree of genetic differentiation between the groups is low, so it is presumed that they had similar genetic background and come from the same introduced population. There‐fore, it is urgent to introduce new germplasm resources in future breeding work to provide a richer genetic basis for germ‐plasm innovation.
Key words: Chelydra serpentina; whole genome resequencing; genetic diversity; genetic structure; SNP locus
Foundation items: Youth Project of National Natural Science Foundation of China(32102789); Scientific and Tech‐nological Innovation Team Project of Chinese Academy of Fishery Sciences(909231004); Government Purchase Service Project of Ministry of Agriculture and Rural Affairs(191231009); China-ASEAN Maritime Cooperation Fund(CAMC- 2018F)
0 引言
【研究意義】擬鱷龜(Chelydra serpentina)又名蛇鱷龜、小鱷龜、鱷龜?shù)?,隸屬于爬行綱(Reptilia)龜鱉目(Testudines)鱷龜科(Chelydridae)擬鱷龜屬(Chelydra),原產于北美,因其含肉率高(可食用部分高達70%),且肉質細嫩無腥味、營養(yǎng)豐富、生長速度快及飼養(yǎng)技術簡單(李振業(yè)等,2014),于20世紀90年代引入我國進行人工養(yǎng)殖。2005年,農業(yè)部發(fā)布第485號公告認定擬鱷龜為適宜推廣的引進品種。經過近20年的養(yǎng)殖推廣,擬鱷龜逐漸受到養(yǎng)殖戶和消費者的青睞,已成為水產養(yǎng)殖的熱門品種之一。我國華南地區(qū)是擬鱷龜養(yǎng)殖的主產區(qū),經種質資源調查發(fā)現(xiàn)以廣東肇慶的養(yǎng)殖規(guī)模較大,但存在病害頻發(fā)及生長速度差異等問題。因此,亟待對人工養(yǎng)殖擬鱷龜進行種質資源調查,從基因組水平了解其群體遺傳多樣性,為養(yǎng)殖擬鱷龜種質資源的保護利用及促進其養(yǎng)殖業(yè)健康發(fā)展提供參考依據(jù)?!厩叭搜芯窟M展】目前,針對野生擬鱷龜?shù)难芯恐饕杏诜N質資源調查、分類鑒定及生態(tài)學等方面(Phil‐lips et al.,1996;de Solla and Martin,2011;Vervust et al.,2011;Paterson et al.,2012)。作為養(yǎng)殖品種,有關擬鱷龜?shù)难芯慷嗉性跔I養(yǎng)成分分析(劉翠娥等,2007;葉泰榮等,2007)、生理生化(李思明等,2008;Lawniczak and Teece,2009;Rhen et al.,2009)、養(yǎng)殖技術(沈保平等,2008;Schnars et al.,2011;劉堅紅,2012)、病害防治(劉繼芳等,2009)等方面,但針對擬鱷龜養(yǎng)殖群體遺傳多樣性的研究相對較少(劉麗等,2013)。全基因組重測序是通過對已知基因組序列物種的不同個體基因組進行測序,在基因水平上對不同目標個體或群體進行比較分析(王中鐸等,2023),在遺傳多樣性分析和系統(tǒng)發(fā)育進化等方面已得到廣泛應用(van der Nest et al.,2020;Ma et al.,2021;Zhang et al.,2022)。Spinks等(2014)基于高通量測序獲得900個西部池龜(Emys marmorata)個體的89個SNPs位點及1個線粒體基因序列信息,深入分析了西部池龜?shù)倪M化史。阿旺措吉等(2022)利用全基因組重測序數(shù)據(jù)對3個昌都黑山羊群體的遺傳多樣性和群體遺傳結構進行分析,發(fā)現(xiàn)昌都黑山羊具有豐富的遺傳多樣性,且3個群體為同一品種,品種內存在一定的雜交現(xiàn)象。王統(tǒng)苗等(2022)基于全基因組重測序對不同地區(qū)的鴨種群體進行遺傳結構分析,研究結論為獲取我國地方鴨遺傳資源間的遺傳信息和遺傳關系提供了重要依據(jù)。吳昊天等(2022)利用第二代高通量測序技術對新疆和西藏的2個棕鱒(Salmo trutta)群體進行基因組重測序,從基因組水平分析棕鱒群體的遺傳結構,為指導物種保護和育種提供了理論依據(jù)。朱皓東(2022)通過Super-GBS簡化基因組重測序檢測并識別羅氏沼蝦(Macrobrachium rosenbergii)全基因組可信度較高的SNP位點,探究3個群體的遺傳多樣性與遺傳變異,并建立了羅氏沼蝦快速生長專門化品系。馬鈞等(2023)利用全基因組重測序,從遺傳多樣性及親緣關系等方面對秦川牛進行綜合評估,發(fā)現(xiàn)保種群體具有豐富的遺傳多樣性,尚未出現(xiàn)大面積近交,但部分個體存在近交風險?!颈狙芯壳腥朦c】目前,基因組重測序已廣泛應用于物種遺傳多樣性研究領域(Saha et al.,2022;黎旺長等,2023;張彥等,2023),但尚無利用重測序數(shù)據(jù)對擬鱷龜進行遺傳多樣性及遺傳結構分析的研究報道。【擬解決的關鍵問題】通過對廣東肇慶3個具代表性擬鱷龜養(yǎng)殖企業(yè)的養(yǎng)殖群體進行基因組重測序,從全基因組水平開展物種遺傳多樣性及群體遺傳結構分析,以評估養(yǎng)殖擬鱷龜?shù)姆N質資源狀況,為擬鱷龜種質資源的開發(fā)與利用及促進其養(yǎng)殖產業(yè)健康發(fā)展提供參考依據(jù)。
1 材料與方法
1. 1 試驗材料
擬鱷龜樣本采自廣東省肇慶市,3個采樣點分別為肇慶高要市活道鎮(zhèn)榮杰龜鱉專業(yè)合作社(RJ)、肇慶市滋源龜鱉養(yǎng)殖專業(yè)合作社(ZY)和肇慶市四會肇慶盛科農業(yè)發(fā)展有限公司(SK)。每個采樣點采集30只擬鱷龜,共90個樣本。動物試驗經中國水產科學研究院珠江水產研究所動物倫理委員會批準,批準號LAEC-PRFRI-2022-01-03。
1. 2 試驗方法
1. 2. 1 形態(tài)測量與聚類分析 利用高精度的游標卡尺(精確到0.1 mm)和電子天平(精確到0.1 g)對3個養(yǎng)殖群體90個樣本進行測量,包括背甲長、背甲寬、體高、尾長、腹甲長和腹甲寬等6個形態(tài)性狀及其體質量,并利用SPSS 27.0中的Analyze-C1assify-Hierarchical-Cluster對3個群體進行聚類分析。
1. 2. 2 DNA提取 按照MGIEasy基因組DNA提取試劑盒說明提取擬鱷龜肌肉基因組DNA,獲得的肌肉基因組DNA樣品浸泡于70%酒精中,-20 ℃冰箱保存?zhèn)溆谩?/p>
1. 2. 3 DNA文庫構建 利用NanoDrop超微量核酸分析儀檢測樣品DNA濃度,以瓊脂糖凝膠電泳檢測樣品DNA純度。通過超聲波儀打斷0.001 mg基因組DNA,選取0.2~0.4 mg大小的基因片段,并在3'端鏈接DNA接頭,采用PCR擴增加入DNA接頭的基因片段,提純回收后對PCR擴增產物進行解鏈,將未被破壞的DNA分子進行環(huán)化,構建DNA文庫。
1. 2. 4 測序及參考基因組比對 委托深圳華大基因股份有限公司利用DNBSEQ-T7測序平臺對3個擬鱷龜養(yǎng)殖群體樣本進行全基因組重測序,獲得的原始序列(Raw reads)以Trimmomatic進行質控分析,過濾后得到的有效序列(Clean reads)用于后續(xù)分析。通過BWA-MEM算法將過濾得到的Clean reads比對到參考基因組,利用SAMtools中的sort工具將比對生成的sam文件轉換成source.bam文件(Li et al.,2009);比對結果文件利用SAMtools、Picard Tools和ReSeqTools進一步排序、去重復及加ID等操作(He et al.,2013),選擇Qgt;30的Clean reads用于變異檢測分析。
1. 3 數(shù)據(jù)分析
1. 3. 1 SNP位點分析 通過 GATK進行基因序列變異檢測分析(McKenna et al.,2010),將變異檢測獲得的SNP集融合,進行個體及群體水平的遺傳參數(shù)多樣性評估。以GATK中的HaplotypeCaller完成每個樣品的變異檢測,使用CombineGVCFs將得到的gvcf文件合并,通過GenotypeGVCFs進行聯(lián)合基因分型,得到vcf文件。采用GATK推薦的參數(shù)進行過濾:變異置信度與深度的比值(QD)≥2;Fisher檢驗的P≤60;MQRankSum≥-12.5;ReadPosRankSum≥-8.0;Stran‐dOddsRatio(SOR)gt;3.0。此外,由于基因型缺失率較高的SNP位點通常是基因組區(qū)域較復雜或測序數(shù)據(jù)比對的質量較低所致,SNP可信度也較低,因此只保留基因型檢出率在60%以上的SNP位點。采用SelectVariants篩選出所有變異序列中的SNP位點,經Variant Filtraition過濾以獲得高可信度SNP數(shù)據(jù)集,再通過SNP數(shù)據(jù)集將各樣品SNP位點與對應參考基因組SNP雜合及純合比例結果進行統(tǒng)計分析。
1. 3. 2 遺傳多樣性分析 在PLINK中設定參數(shù)滑動窗口大小為50 kb,步長為20 kb,計算3個群體的核苷酸多樣性(PI)(Chang et al.,2015);利用R語言腳本與perl語言腳本對試驗數(shù)據(jù)進行處理,最終生成可視化圖形。
1. 3. 3 群體遺傳結構分析 通過PLINK將包含SNP信息的vcf文件轉換成bed和ped文件(Chang et al.,2015),將結果輸入Admixture中判斷群體的遺傳結構,群體亞群數(shù)目設為K=2~12,并計算交叉驗證誤差(Cross-validation error);繪制交叉驗證誤差圖得到最佳分群數(shù)(Alexander et al.,2009),利用R語言腳本和ggplot2軟件包進行可視化處理(Wick‐ham et al.,2017)。運用PLINK生成ped、map和bed文件,根據(jù)編寫的perl腳本計算遺傳距離,生成的meg文件輸入MEGA 10.0以獲得可視化的系統(tǒng)發(fā)育進化樹(Tamura et al.,2021),再通過Interactive Tree of Life網站(https://itol.embl.de/)對系統(tǒng)發(fā)育進化樹進行可視化(Letunic and Bork,2021)。使用EIGENSOFT中的smartpca程序進行主成分分析(Patterson et al.,2006),并以R語言腳本及ggplot2軟件包生成可視化圖形(Wickham et al.,2017)。
2 結果與分析
2. 1 擬鱷龜群體形態(tài)性狀比例聚類分析結果
3個擬鱷龜養(yǎng)殖群體90個樣本的形態(tài)性狀比例如表1所示。對擬鱷龜形態(tài)性狀進行聚類分析,獲得不同養(yǎng)殖群體形態(tài)性狀比例參數(shù)的聚類分析結果。由圖1可看出,3個養(yǎng)殖群體分為兩大分支,其中,SK群體與RJ群體先聚類在一起,然后與ZY群體聚合,表明SK群體與RJ群體的形態(tài)更相似。
2. 2 擬鱷龜基因組重測序及參考基因組比對結果
通過DNBSEQ-T7測序平臺對3個擬鱷龜養(yǎng)殖群體90個肌肉基因組DNA樣品進行全基因組重測序,樣品產出的總測序堿基(Total sequencing bases)為1432.14 Gb,平均測序堿基(Average sequencing bases)為15.91 Gb,平均測序深度(Average depth)為6.7X。測序參考基因組為黃喉擬水龜(Mauremys reevesii)基因組,其基因組大?。℅enome size)為2.37 Gb,Scaffold N50 為130.47 Mb。測序數(shù)據(jù)量及過濾結果如表2所示。其中,Q30平均值為92.71%~92.84%,GC含量平均值在44.32%~44.35%,表明樣本建庫質量良好,符合基因組重測序的標準。
運用BWA-MEM將90個擬鱷龜基因組重測序數(shù)據(jù)與黃喉擬水龜基因組(NCBI登錄號GCA_0161619 35.1)進行比對,結果(表2)顯示,質控后得到的平均測序數(shù)為100658616~109367305,平均基因組比對率為99.18%~99.31%,平均測序深度為6.10%~6.25%,平均覆蓋率在83.74%~83.81%,表明擬鱷龜基因組重測序基本覆蓋了黃喉擬水龜參考基因組,可用于后續(xù)的SNP位點篩選及遺傳結構分析。
2. 3 擬鱷龜全基因組SNP位點鑒定結果
由表3可看出,在3個擬鱷龜養(yǎng)殖群體中共檢測出708112個SNPs位點,過濾篩選后獲得220950個高質量的純合SNPs位點和440435個高質量的雜合SNPs位點,這些SNP位點將用于3個擬鱷龜養(yǎng)殖群體的遺傳多樣性分析。
2. 4 擬鱷龜遺傳多樣性分析結果
多態(tài)信息含量(PIC)是衡量基因變異程度的重要參數(shù),PIC越大表明遺傳信息越豐富(賈舒雯,2011)。PICgt;0.50為高度多態(tài)位點,0.25lt;PIClt;0.50為中度多態(tài)位點,PIClt;0.25屬于低度多態(tài)位點(Botstein et al.,1980;徐煜等,2021)。由表4可看出,3個擬鱷龜養(yǎng)殖群體的單核苷酸密度均為0.01 SNP/kb;核苷酸多樣性(π)為0.00166~0.00171,總群體為0.00169;PIC為0.151~0.154,總群體為0.153;觀測雜合度(Ho)為0.171~0.205,總群體為0.186;基于基因組雜合度計算的近交系數(shù)(FHOM)分布在0.0571~0.1110,總群體為0.0845。由表5可看出,不同擬鱷龜養(yǎng)殖群體間的遺傳分化系數(shù)(Fs)t在0.0056~0.0138,平均為0.0097。當Fst小于0.05時,表明遺傳分化水平較低(Holsinger and Weir,2009)。不同擬鱷龜養(yǎng)殖群體間的基因流(Nm)在-0.2486~-0.2466,表明不同群體間存在著較小的基因交換概率。綜上所述,不同擬鱷龜養(yǎng)殖群體遺傳分化程度較低,擬鱷龜種源較單一。
2. 5 擬鱷龜群體遺傳結構分析結果
采用Admixture對3個擬鱷龜養(yǎng)殖群體的遺傳結構進行分析,對最優(yōu)亞群進行評估,結果如圖2所示。當交叉驗證誤差最小時,K=2為假定的最佳分群數(shù)目。K=2時的擬鱷龜群體遺傳結構(圖3)顯示,3個擬鱷龜養(yǎng)殖群體的遺傳結構相似,僅存在較小的雜交特征。
2. 6 擬鱷龜遺傳關系及其主成分分析結果
基于90個擬鱷龜樣本的全基因組SNP位點,繪制系統(tǒng)發(fā)育進化樹及進行主成分分析,以評估測序個體的群體遺傳結構。結果顯示,在構建的系統(tǒng)發(fā)育進化樹上無法明顯區(qū)分相鄰較近的群體,故推測90個擬鱷龜樣本具有相似的遺傳背景。由系統(tǒng)發(fā)育進化樹(圖4)的拓撲結構可看出,3個擬鱷龜養(yǎng)殖群體整體上可分為兩大分支,第一分支主要由RJ群體和SK群體組成,第二分支主要由ZY群體組成,與形態(tài)聚類分析結果基本一致,即群體間的親緣關系較近。主成分分析結果(圖5)表明,3個擬鱷龜養(yǎng)殖群體間的相互距離較近,且存在相互交叉現(xiàn)象。3個擬鱷龜養(yǎng)殖群體中有部分個體緊密聚集在一起,其中,RJ群體較分散,而ZY群體較聚集。系統(tǒng)發(fā)育進化樹與主成分分析結果基本吻合,說明3個擬鱷龜養(yǎng)殖群體的親緣關系和遺傳距離較近。
3 討論
Fst是評價群體間遺傳分化的重要指標之一(傅洪拓等,2010),當Fst保持在0~0.05時,表明群體間存在很小的遺傳分化,基本上不用考慮;當Fst維持在0.05~0.15時,表明群體間呈中等程度的分化;當Fst在0.15~0.25時,表明群體間存在較大的遺傳分化;當Fst大于0.25時,表明群體間遺傳分化顯著(McConnell et al.,1995)。本研究中,3個擬鱷龜養(yǎng)殖群體間的Fst為0.0056~0.0138,且100%的變異來源于群體內部,沒有變異來自于群體間,表明人工養(yǎng)殖擬鱷龜群體間的遺傳分化程度相對較低。Da是衡量群體間遺傳分化程度的重要指標。3個擬鱷龜養(yǎng)殖群體的Dα僅為0.0056~0.0139,說明擬鱷龜選育群體的遺傳結構并未發(fā)生明顯改變。選擇育種通常需要連續(xù)多代選育才能獲得可穩(wěn)定遺傳的優(yōu)良性狀,但隨著選育代數(shù)的增加,群體遺傳多樣性不斷下降,進而影響選育效果,因此適當拓寬選育群體的遺傳基礎可為其選育工作的持續(xù)進行提供有力保障(劉志剛等,2021)。聚類分析是對不同群體間的差異水平進行初步量化,可反映群體間親緣關系的遠近(李勤生等,1991)。本研究的形態(tài)聚類分析和全基因組SNP位點分析均顯示,3個擬鱷龜養(yǎng)殖群體可清晰分為兩大類,RJ群體與SK群體為一類,ZY群體單獨為一類,說明RJ群體與SK群體的親緣關系較近,二者與ZY群體的親緣關系相對較遠,但由于群體間的Fst較低,因此3個群體無法完全區(qū)分開。
遺傳多樣性是生物多樣性的一個層次,是物種在長期進化過程中不斷發(fā)生變異所產生的特征,能反映物種或種群在進化過程中的適應性與生存能力(Liu et al.,2020;馬克巖等,2023)。種質資源的遺傳多樣性是育種工作中衡量各品種親緣關系遠近、雜交選配和雜種優(yōu)勢強弱的重要指標,因此,育種工作中要格外重視種質資源的遺傳背景,明確各品種間的遺傳相似系數(shù)(劉易科等,2020)。隨著測序技術的快速發(fā)展,從第一代測序到第三代高通量測序,致使各品種間的遺傳多樣性研究更透徹深入。與簡化基因組測序對比,全基因組重測序理論上覆蓋了整個基因組,10.0X以上的測序深度可覆蓋90%~99%的基因組,滿足群體遺傳多樣性分析。近十年來,全基因組重測序及其產生的海量SNP位點已廣泛應用于動植物和微生物群體進化與重要性狀關聯(lián)分析,為分子育種基因型鑒定系統(tǒng)提供了新的平臺(沈穎越等,2020)。滕爽爽等(2021)利用多態(tài)性SNP標記分析縊蟶(Sinonovacula constricta)5個群體的遺傳多樣性,結果顯示5個群體的Ho平均值范圍為0.265~0.317。吳昊天等(2022)通過全基因組重測序分析新疆和西藏棕鱒(Salmo trutta)群體的遺傳多樣性,發(fā)現(xiàn)西藏棕鱒群體的Ho(0.324)明顯高于新疆棕鱒群體(0.316)。本研究中,3個擬鱷龜養(yǎng)殖群體的Ho為0.171~0.205。相對而言,擬鱷龜養(yǎng)殖群體的遺傳多樣性略低,可能與其為引進種有關。擬鱷龜在國內沒有廣泛分布,引進基礎數(shù)量有限,雖然經過多年人工養(yǎng)殖發(fā)展,但多個養(yǎng)殖企業(yè)的養(yǎng)殖群體可能來源于同一基礎群體,群體間的Fst較低。
與微衛(wèi)星等重復序列多態(tài)標記相比,SNP具有遺傳穩(wěn)定性更高的特點,尤其是處于編碼區(qū)的SNP工作效率更高,在大樣本量檢測分析時更合適,即SNP標記被視為最具應用前景的分子標記,已廣泛應用于水產動物遺傳圖譜構建、遺傳多樣性分析及分子標記輔助育種等研究領域(滕爽爽等,2021;雷駱等,2023)。劉麗等(2013)通過開發(fā)具有高度多態(tài)性的微衛(wèi)星分子標記分析擬鱷龜養(yǎng)殖群體的遺傳多樣性,結果顯示,擬鱷龜群體的平均期望雜合度(He)為0.600,平均Ho為0.725,故推測擬鱷龜養(yǎng)殖群體存在較高的遺傳多樣性水平。本研究結果與劉麗等(2013)的研究結果存在差異,究其原因可能是:(1)微衛(wèi)星分子標記與SNP標記存在差異;(2)擬鱷龜?shù)娜哟嬖诓町?,與近年來的擬鱷龜養(yǎng)殖規(guī)模呈現(xiàn)萎縮,種質資源的保存受到一定影響有關。本研究通過全基因組重測序,從基因組水平解析擬鱷龜養(yǎng)殖群體的種質特性,結果顯示3個擬鱷龜養(yǎng)殖群體遺傳相似性較高、遺傳背景不夠豐富、群體間遺傳分化程度低,種源較單一。因此,在今后的育種工作亟需引入新的種質資源,為種質創(chuàng)新提供更豐富的遺傳基礎。
4 結論
3個擬鱷龜養(yǎng)殖群體遺傳多態(tài)性較低,遺傳背景不夠豐富,群體間遺傳分化程度低,推測具有相似的遺傳背景,來源于同一引種群體。因此,在今后的育種工作亟需引入新的種質資源,為種質創(chuàng)新提供更豐富的遺傳基礎。
參考文獻((References)):
阿旺措吉,仁青措姆,黃舒泓,周先輝,德吉,索朗達,王小龍,吳玉江,巴貴. 2022. 基于重測序數(shù)據(jù)的昌都黑山羊遺傳多樣性及群體結構分析[J]. 家畜生態(tài)學報,43(10):31-35.[ Awangcuoji,Renqingcuomu,Huang S H,Zhou X H,Deji,Solangda,Wang X L,Wu Y J,Bagui. 2022. Genetic diversity and population structure analysis of Changdu black sheep based on resequencing data[J]. Acta Ecologiae Animalis Domastici,43(10):31-35.] doi:10.3969/j.issn. 1673-1182.2022.10.005.
傅洪拓,喬慧,李法君,吳滟,龔永生,蔣速飛,熊貽偉,王寧. 2010. 長江不同江段青蝦的遺傳多樣性[J]. 水產學報,34(2):204-212.[ Fu H T,Qiao H,Li F J,Wu Y,Gong Y S,Jiang S F,Xiong Y W,Wang N. 2010. Genetic diversity of Macrobrachium nipponense on a regional scale in the Yangtze River[J]. Journal of Fisheries of China,34(2):204-212.] doi:10.3724/SP.J.1231.2010.06422.
賈舒雯,劉萍,韓智科,李健,潘魯青. 2011. 脊尾白蝦微衛(wèi)星富集文庫的構建與多態(tài)性標記的篩選[J]. 水產學報,35(12):1787-1794.[ Jia S W,Liu P,Han Z K,Li J,Pan L Q. 2011. Construction of microsatellite-enriched library and isolation of microsatellite markers in the ridgetail white prawn (Exopalaemon carinicauda)[J]. Journal of Fishe-ries of China,35(12):1787-1794.] doi:10.3724/SP.J.1231.2011.17612.
雷駱,祝駿賢,陳辰,王亞坤,劉曉莉,洪孝友,于凌云,魏成清,李偉,朱新平. 2023. 基于轉錄組測序的中華鱉SSR和SNP特征分析及性別標記篩選[J]. 廣東海洋大學學報,43(1):25-32.[ Lei L,Zhu J X,Chen C,Wang Y K,Liu X L,Hong X Y,Yu L Y,Wei C Q,Li W,Zhu X P. 2023. Analysis of SSR and SNP characteristics and scree-ning of sex-linked markers in Chinese soft-shelled turtle based on transcriptome sequencing[J]. Journal of Guang‐dong Ocean University,43(1):25-32.] doi:10.3969/j.issn.
1673-9159.2023.01.004.
黎旺長,劉瑋瑋,龍佳佳,楊小淦. 2023. 基于基因組重測序的廣西地方豬種遺傳多樣性和選擇信號分析[J]. 南方農業(yè)學報,54(8):2415-2422. [Li W C,Liu W W,Long J J,Yang X G. 2023. Genetic diversity and selection signals analysis of Guangxi local pig breeds based on whole-genome resequencing[J]. Journal of Southern Agriculture,54(8):2415-2422.] doi:10.3969/j.issn.2095-1191.2023.08.023.
李勤生,蔡慶華,華俐,劉建康. 1991. 東湖異養(yǎng)細菌群落的分類結構和聚類分析[J]. 水生生物學報,15(3):242-254. [Li Q S,Cai Q H,Hua L,Liu J K. 1991. The taxonomic structure and cluster analysis of heterotrophic bacterial communities from the Donghu Lake[J]. Acta Hydrobio‐logica Sinica,15(3):242-254.]
李思明,周定剛,歐陽玲花,溫安祥,黎德兵. 2008. 鱷龜血液抗菌肽生物活性研究[J]. 經濟動物學報,12(1):34-37. [Li S M,Zhou D G,Ouyang L H,Wen A X,Li D B. 2008. Study on biological activity of antimicrobial peptides extracted from blood of Chelydra serpentina[J]. Journal of Economic Animal,12(1):34-37.] doi:10.13326/j.jea. 2008.01.013.
李振業(yè),葉海勝,唐燕高,徐樹珍,葉威龍,程家高. 2014. 蛇鱷龜生態(tài)產卵與控溫孵化技術初步研究[J]. 安徽農業(yè)科學,42(17):5509-5510.[ Li Z Y,Ye H S,Tang Y G,Xu S Z,Ye W L,Cheng J G. 2014. Preliminary study of the eco‐logical spawning and temperature control incubation tech‐nology of Chelydraser pentina[J]. Journal of Anhui Agri‐cultural Sciences,42(17):5509-5510.] doi:10.13989/j.cnki. 0517-6611.2014.17.115.
劉翠娥,李若利,王建明,劉繼芳,梁啟防,葉青生. 2007. 小鱷龜含肉率和肌肉營養(yǎng)成分分析及品質評定[J]. 養(yǎng)殖與飼料,(10):9-13. [Liu C E,Li R L,Wang J M,Liu J F,Liang Q F,Ye Q S. 2007. Analysis and quality assessment of meat content and muscle nutrients of Chelydra serpen‐tina[J]. Animals Breeding and Feed,(10):9-13.] doi:10. 13300/j.cnki.cn42-1648/s.2007.10.034.
劉繼芳,蔡嘉慶,李若利,劉翠娥,姚紹云,梁啟防. 2009. 鱷龜常見病害及其防治技術[J]. 齊魯漁業(yè),26(11):43-44. [Liu J F,Cai J Q,Li R L,Liu C E,Yao S Y,Liang Q F. 2009. Common diseases of Chelydra serpentina and their
control techniques[J]. Shandong Fisheries,26(11):43-44.]劉堅紅. 2012. 鱷龜稚龜越冬養(yǎng)殖試驗[J]. 廣西農學報,27(3):55-58. [Liu J H. 2012. Experiment on overwinter breeding of juvenile Chelydra serpentina[J]. Journal of Guangxi Agriculture,27(3):55-58.] doi:10.3969/j.issn. 1003-4374.2012.03.016.
劉麗,劉海情,郭昱嵩,王中鐸,劉楚吾. 2013. 蛇鱷龜微衛(wèi)星標記的開發(fā)及一個養(yǎng)殖群體的遺傳多樣性分析[J]. 水生生物學報,37(4):669-677. [Liu L,Liu H Q,Guo Y S,Wang Z D,Liu C W. 2013. Isolation of microsatellite markers in the common snapping turtle( Chelydra serpen‐tina L.) and its application in genetic diversity analysis in a cultured population[J]. Acta Hydrobiologica Sinica,37(4):669-677.] doi:10.7541/2013.78.
劉易科,朱展望,陳泠,鄒娟,佟漢文,朱光,何偉杰,張宇慶,高春保. 2020. 基于SNP標記揭示我國小麥品種(系)的遺傳多樣性[J]. 作物學報,46(2):307-314.[ Liu Y K,Zhu Z W,Chen L,Zou J,Tong H W,Zhu G,He W J,Zhang Q Y,Gao C B. 2020. Revealing the genetic diversity of wheat varieties( lines) in China based on SNP marker[s J]. Acta Agronomica Sinica,46(2):307-314.] doi:10.3724/SP.J.1006.2020.91039.
劉志剛,曹建萌,高風英,可小麗,王淼,衣萌萌,盧邁新. 2021. 羅非魚“粵閩1號”母本選育群體世代間遺傳差異的微衛(wèi)星分析[J]. 大連海洋大學學報,36(1):16-22. [Liu Z G,Cao J M,Gao F Y,Ke X L,Wang M,Yi M M,Lu M X. 2021. Genetic differentiation analysis of maternal selective breeding generations of tilapia“ Yuemin No. 1” using microsatellites[J]. Journal of Dalian Ocean Univer‐sity,36(1):16-22.] doi:10.16535/j.cnki.dlhyxb.2020-208.
馬鈞,樊安平,王武生,張金川,江曉軍,馬瑞軍,賈社強,劉飛,雷初朝,黃永震. 2023. 全基因組重測序解析秦川牛保種群遺傳多樣性和遺傳結構[J]. 遺傳,45(7):602-616.[ Ma J,F(xiàn)an A P,Wang W S,Zhang J C,Jiang X J,Ma R J,Jia S Q,Liu F,Lei C C,Huang Y Z. 2023. Analysis of genetic diversity and genetic structure of Qinchuan cattle conservation population using whole-genome resequencing[J]. Hereditas,45(7):602-616.] doi:10.16288/j.yczz.23-
115.
馬克巖,韓金濤,白雅琴,李討討,馬友記. 2023. 基于簡化基因組測序的永登七山羊遺傳多樣性分析[J]. 畜牧獸醫(yī)學報,54(5):1939-1950.[ Ma K Y,Han J T,Bai Y Q,Li T T,Ma Y J. 2023. Genetic diversity analysis of Yongdeng Qishan sheep based on specific-locus amplified fragment sequencing[J]. Acta Veterinaria et Zootechnica Sinica,54(5):1939-1950.] doi:10.11843/j.issn.0366-6964.2023.05.016.
沈保平,萬全,胡海濤. 2008. 鱷龜?shù)娜斯し敝澈椭升斉嘤夹g研究[J]. 現(xiàn)代農業(yè)科技,(22):227-228.[ Shen B P,Wan Q,Hu H T. 2008. Research on the artificial reproduc‐tion of crocodile turtles and the cultivation techniques of juvenile turtles[J]. Modern Agricultural Science and Tech‐nology,(22):227-228.] doi:10.3969/j.issn.1007-5739.2008.22.159.
沈穎越,金群力,蔡為明,范麗軍,馮偉林,宋婷婷. 2020. 基于重測序信息的金針菇菌株資源遺傳多樣性及群體結構分析[J]. 菌物學報,39(6):1016-1028.[ Shen Y Y,Jin Q L,Cai W M,F(xiàn)an L J,F(xiàn)eng W L,Song T T. 2020. Analyses of population diversity and structure of Flammulina filifor‐mis strains based on whole genome resequencing data[J]. Mycosystema,39(6):1016-1028.] doi:10.13346/j.myco‐systema.200041.
滕爽爽,胡高宇,范建勛,柴雪良,肖國強. 2021. 縊蟶5個群體遺傳多樣性和遺傳分化的SNP分析[J]. 水生生物學報,45(4):861-870.[ Teng S S,Hu G Y,F(xiàn)an J X,Chai X L,Xiao G Q. 2021. Genetic diversity and genetic differen‐tiation analysis of Sinonovacula constricta populations revealed by SNP markers[J]. Acta Hydrobiologica Sinica,45(4):861-870.] doi:10.7541/2021.2019.145.
王統(tǒng)苗,郭其新,白皓,常國斌,陳國宏. 2022. 基于全基因組重測序對不同鴨遺傳資源進行群體結構分析[J]. 中國畜牧雜志,57(11):78-81. [Wang T M,Guo Q X,Bai H,Chang G B,Chen G H. 2022. Analysis of population struc‐ture of different duck genetic resources based on whole-genome resequencing[J]. Chinese Journal of Animal Scien-ce,57(11):78-81.] doi:10.19556/j.0258-7033.20210126-05.
王中鐸,何傳猛,姚澤彬,李金蓬,陳子陽,鄧愛萍,賴卓欣,李銀芳,董忠典,郭昱嵩. 2023. 全基因組重測序篩選弓背青鳉三亞群體性別遺傳標記[J]. 廣東海洋大學學報,43(4):69-75.[ Wang Z D,He C M,Yao Z B,Li J P,Chen Z Y,Deng A P,Lai Z X,Li Y F,Dong Z D,Guo Y S. 2023. Screening of sex genetic markers in the Sanya population of Oryzias curvinotus by whole-genome resequencing[J]. Journal of Guangdong Ocean University,43(4):69-75.] doi:10.3969/j.issn.1673-9159.2023.04.009.
吳昊天,李亞琳,王軍,陳曉雯,陸穎,王成輝. 2022. 新疆和西藏棕鱒群體的遺傳多樣性分析[J]. 南方農業(yè)學報,53(5):1425-1433.[ Wu H T,Li Y L,Wang J,Chen X W,Lu Y,Wang C H. 2022. Genetic diversity analysis on brown trout populations in Xinjiang and Tibe[t J]. Journal of Sou-thern Agriculture,53(5):1425-1433.] doi:10.3969/j.issn. 2095-1191.2022.05.025.
徐煜,黃小帥,胡曉娟,徐武杰,蘇浩昌,文國樑,曹煜成,楊鏗. 2021. 凡納濱對蝦進口親蝦子一代群體的遺傳變異分析[J]. 南方農業(yè)學報,52(11):3139-3146.[ Xu Y,Huang X S,Hu X J,Xu W J,Su H C,Wen G L,Cao Y C,Yang K. 2021. Genetic variation analysis among first filial genera‐tion of introduced Litopenaeus vannamei stocks[J]. Jour‐nal of Southern Agriculture,52(11):3139-3146.] doi:10. 3969/j.issn.2095-1191.2021.11.026.
葉泰榮,李家樂,李應森. 2007. 鱷龜(Chelydra serpentina)的營養(yǎng)成分分析[J]. 現(xiàn)代漁業(yè)信息,22(6):6-9.[ Ye T R,Li J L,Li Y S. 2007. Analysis on nutritional composition of Chelydra serpentina[J]. Modern Fisheries Information,22(6):6-9.] doi:10.3969/j.issn.1004-8340.2007.06.002.
張彥,熊和麗,張斌,相德才,劉韶娜,趙智勇. 2023. 基于全基因組重測序的藏豬脂質沉積相關基因鑒定[J]. 南方農業(yè)學報,54(2):325-335. [Zhang Y,Xiong H L,Zhang B,Xiang D C,Liu S N,Zhao Z Y. 2023. Identification of lipid deposition related genes in Tibetan pigs based on whole genome re-sequencing[J]. Journal of Southern Agri‐culture,54(2):325-335.] doi:10.3969/j.issn.2095-1191. 2023.02.001.
朱皓東. 2022. 羅氏沼蝦野生和養(yǎng)殖群體形態(tài)學及遺傳多樣性研究[D]. 上海:上海海洋大學.[ Zhu H D. 2022. Mor‐phological and genetic diversity of wild and cultured stocks of Macrobrachium rosenbergi[iD]. Shanghai:Shang‐hai Ocean University.] doi:10.27314/d.cnki.gsscu.2022.00 0228.
Alexander D H,Novembre J,Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Research,19(9):1655-1664. doi:10.1101/gr.094052.109.
Botstein D,White R L,Skolnick M,Davis R W. 1980. Con‐struction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics,32(3):314-331.
Chang C C,Chow C C,Tellier L C,Vattikuti S M,Purcell S M,Lee J J. 2015. Second-generation plink: Rising to the cha-llenge of larger and richer datasets[J]. GigaScience,4(1):s13742-015-0047-8. doi:10.1186/s13742-015-0047-8.
de Solla S R,Martin P A. 2011. Absorption of current use pesti‐cides by snapping turtle (Chelydra serpentina) eggs intreated soil[J]. Chemosphere,85(5):820-825. doi:10. 1016/j.chemosphere.2011.06.080.
He W,Zhao S,Liu X,Dong S,Lv J,Liu D,Wang J,Meng Z. 2013. ReSeqTools:An integrated toolkit for large-scale next-generation sequencing based resequencing analysis[J]. Genetics and Molecular Research,12(4):6275-6283. doi:10.4238/2013.December.4.15.
Holsinger K E,Weir B S. 2009. Genetics in geographically structured populations:Defining,estimating and interpre-ting FS[TJ]. Nature Reviews Genetics,10(9):639-650. doi:10.1038/nrg2611.
Lawniczak C J,Teece M A. 2009. Lipid metabolism during em-bryonic development of the common snapping turtle,Che‐lydra serpentina[J]. Comparative Biochemistry and Phy-siology. Part B:Biochemistry amp; Molecular Biology,153(1):73-80. doi:10.1016/j.cbpb.2009.01.016.
Letunic L,Bork P. 2021. Interactive tree of life( iTOL) v5:An online tool for phylogenetic tree display and annotation[J]. Nucleic Acids Research,49(W1):W293-W296. doi:10.1093/NAR/GKAB301.
Li H,Handsaker B,Wysoker A,F(xiàn)ennel T,Ruan J,Homer N,Marth G,Abecasis G,Durbin R. 2009. The sequence align‐ment/map format and SAMtools[J]. Bioinformatics,25(16):2078-2079. doi:10.1093/bioinformatics/btp352.
Liu F,Qu Y K,Geng C,Wang A M,Zhang J H,Li J F,Chen K J,Liu B,Tian H Y,Yang W P,Yu Y B. 2020. Analysis of the population structure and genetic diversity of the red swamp crayfish (Procambarus clarkii) in China using SSR markers[J]. Electronic Journal of Biotechnology,47:59-71. doi:10.1016/j.ejbt.2020.06.007.
Ma J,Gao X,Li J Y,Gao H J,Wang Z Z,Zhang L P,Xu L Y,Gao H,Li H W,Wang Y H,Zhu B,Cai W T,Wang C Y,Chen Y. 2021. Assessing the genetic background and selec‐tion signatures of Huaxi cattle using high-density SNP array[J]. Animals (Basel),11(12):36-49. doi:10.3390/ANI11123469.
McConnell S,Hamilton L,Morris D,Cook D,Paquet D,Bent‐zen P,Wright J. 1995. Isolation of salmonid microsatellite loci and their application to the population genetics of Canadian east coast stocks of Atlantic salmon[J]. Aquacul‐
ture,137(1-4):19-30. doi:10.1016/0044-8486(95)01111-0.
McKenna A,Hanna M,Banks E,Sivachenko A,Cibulskis K,Kernytsky A,Garimella K,Altshuler D,Gabriel S,Daly M,DePristo M A. 2010. The Genome Analysis Toolkit:A MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research,20(9):1297-1303. doi:10.1101/gr.107524.110.
Paterson J E,Steinberg B D,Litzgus J D. 2012. Generally spe‐cialized or especially general? Habitat selection by Snap‐ping turtles (Chelydra serpentina) in central Ontario[J]. Canadian Journal of Zoology,90(2):139-149. doi:10.1139/z11-118.
Patterson N,Price A L,Reich D. 2006. Population structure and eigenanalysis[J]. PLoS Genetics,12(12):e190. doi:10. 1371/journal.pgen.0020190.
Phillips C A,Dimmick W W,Carr J L. 1996. Conservation genetics of the common snapping turtle( Chelydra serpen‐tina)[J]. Conservation Biology,10(2):397-405. doi:10. 1046/j.1523-1739.1996.10020397.x.
Rhen T,Jangula A,Schroeder A,Woodward-Bosh R. 2009. The platelet-derived growth factor signaling system in snap‐ping turtle embryos,Chelydra serpentina:Potential role in temperature-dependent sex determination and testis deve-lopmen[t J]. General and Comparative Endocrinology,161(3):335-343. doi:10.1016/j.ygcen.2009.01.014.
Saha A,Andersson A,Kurland S,Keehnen N L P,Kutschera V E,H?ssjer O,Ekman D,Karlsson S,Kardos M,St?hl G,Allendorf F W,Ryman N,Laikre L. 2022. Whole-genome resequencing confirms reproductive isolation between sym‐patric demesof brown trout (Salmo trutta) detected with allozyme[J]. Molecular Ecology,31(2):498-511. doi:10. 1111/mec.16252.
Schnars J L,Voss M A,Stauffer J R. 2011. An egg injection technique to evaluate the effect of polychlorinated biphe‐nylson the hatching success of the snapping turtle (Chel‐dra serpentina serpentina)[J]. Environmental Toxicology and Chemisiry,30(4):915-919. doi:10.1002/etc.455.
Spinks P Q,Thomson R C,Bradley Shaffer H. 2014. The advantages of going large:Genome-wide SNPs clarify the complex population history and systematics of the threa-tened western pond turtle[J]. Molecular Ecology,23(9):2228-2241. doi:10.1111/mec.12736.
Tamura K,Stecher G,Kumar S. 2021. MEGA11:Molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution,38(7):3022-3027. doi:10.1093/molbev/msab120.
van der Nest M A,Hlongwane N,Hadebe K,Chan W Y,van der Merwe N A,de Vos L,Greyling B,Kooverjee B B,Soma P,Dzomba E F,Bradfield M,Muchadeyi F C. 2020. Breed ancestry divergence admixture,and selection pa-tterns of the Simbra crossbreed[J]. Frontiers in Genetics,11:608-650. doi:10.3389/fgene.2020.608650.
Vervust B,Brecko J,Herrel A. 2011. Temperature effects on snapping performance in the common snapper Chelydra serpentina (Reptilia,Testudines)[J]. Journal of Experi‐mental Zoology,315(1):41-47. doi:10.1002/jez.650.
Wickham H,Navarro D,Pedersen T L. 2017. ggplot2:Elegant graphics for data analysis[M]. New York:Springer.
Zhang S J,Yao Z,Li X M,Zhang Z J,Liu X,Yang P,Chen N B,Xia X T,Lü S J,Shi Q T,Wang E Y,Ru B R,Jiang Y,Lei C Z,Chen H,Huang Y Z. 2022. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing date[J]. BMC Genomics,23(1):460. doi:10.1186/S12864-022-08645-Y.
(責任編輯 蘭宗寶)