国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

鎘脅迫對合浦珠母貝C型凝集素基因表達及部分生理指標的影響

2024-02-09 00:00:00劉忠華陳潔黃曉玲涂淏天梁海鷹
南方農業(yè)學報 2024年11期
關鍵詞:合浦結構域胰腺

摘要:【目的】明確合浦珠母貝對鎘脅迫的免疫響應機制,為豐富貝類的免疫生物學研究提供理論基礎。【方法】以2齡合浦珠母貝為研究材料,通過RACE克隆合浦珠母貝的2個C型凝集素(CTL)基因(PmCTL1和PmCTL4),并采用實時熒光定量PCR檢測這2個基因在合浦珠母貝各組織中的表達情況。以4.0 mg/L氯化鎘(CdCl2)溶液對合浦珠母貝進行脅迫,分別于脅迫0、3、6、12、24和48 h后采集肝胰腺及血淋巴組織,檢測肝胰腺中的PmCTL1和PmCTL4基因表達情況及血清酸性磷酸酶(ACP)、過氧化氫酶(CAT)和超氧化物歧化酶(SOD)的活性變化;同時以0.5 mg/L氯化鎘溶液脅迫21 d,觀察統(tǒng)計合浦珠母貝肝體指數(HSI)的變化趨勢?!窘Y果】克隆獲得的PmCTL1、PmCTL4基因cDNA序列全長分別為853和1113 bp,對應的編碼蛋白各含有1個典型的CRD結構域,且CRD結構域中均含有6個保守的半胱氨酸,與其他軟體動物的相似性較高。PmCTL1和PmCTL4基因在合浦珠母貝的肝胰腺、性腺、閉殼肌、鰓和外套膜等組織中均有表達,但二者具有不同的組織表達分布特征;肝胰腺中PmCTL1和PmCTL4基因相對表達量隨鎘脅迫時間的推移呈明顯的波動變化趨勢,在鎘脅迫6 h時二者的相對表達量均最低,PmCTL1基因在鎘脅迫3 h時達最高值[約是鎘脅迫前(0 h)的3.23倍],PmCTL4基因在鎘脅迫12 h時達最高值[約是鎘脅迫前(0 h)的2.03倍]。合浦珠母貝血清ACP活性在鎘脅迫24 h時達最高值,CAT活性在鎘脅迫6 h時達最高值,SOD活性在鎘脅迫3 h時達最高值;合浦珠母貝HSI隨鎘脅迫時間的推移而逐漸下降。【結論】在鎘脅迫下合浦珠母貝發(fā)生明顯的免疫應激,PmCTL1、PmCTL4基因及血清ACP、CAT和SOD均能響應鎘脅迫,即CTL和血清酶類在貝類的鎘解毒過程中發(fā)揮重要作用,且主要發(fā)生在肝胰腺組織中。

關鍵詞:合浦珠母貝;鎘脅迫;C型凝集素(CTL);肝胰腺;酶活性;肝體指數(HSI)

中圖分類號:S968.316.1文獻標志碼:A 文章編號:2095-1191(2024)11-3414-12

Effects of cadmium stress on the expression of C-type lectin gene and some physiological indexes of Pinctada fucata martensii

LIU Zhong-hua1, CHEN Jie2, HUANG Xiao-ling2, TU Hao-tian2, LIANG Hai-ying2*

(1Center for Laboratory Animals, South China Agricultural University, Guangzhou, Guangdong 510640, China; 2Fishe-ries College, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China)

Abstract:【Objective】To clarify the immune response mechanism of Pinctada fucata martensii to cadmium stress, which could provide theoretical basis for enriching the immunological studies of shellfish. 【Method】Using 2-year-old P. fucata martensii as the research material, 2 C-type lectin (CTL) genes (PmCTL1 and PmCTL4) of P. fucata martensii were cloned through the RACE technique, and real-time fluorescence quantitative PCR was used to detect the expression of the 2 genes in various tissues of P. fucata martensii. P. fucata martensii were stressed with a 4.0 mg/L cadmium chloride (CdCl2) solution, and the hepatopancreas and hemolymph tissues were collected at 0, 3, 6, 12, 24 and 48 h after stress to detect the expression of PmCTL1 and PmCTL4 genes in the hepatopancreas and the activity changes of serum acid phos‐phatase( ACP), catalase( CAT) and superoxide dismutase( SOD). At the same time, a 21 d stress experiment was con‐ducted with a 0.5 mg/L cadmium chloride solution, and the changes in the hepatosomatic index( HSI) of P. fucata marten‐sii were observed and statistically analyzed. 【Result】The full-length cDNA sequences of the cloned PmCTL1 and PmCTL4 genes were 853 and 1113 bp respectively, and the corresponding encoded proteins each contained 1 typical CRD domain CRD. The CRD domains all had 6 conserved cysteines and showed high similarity to those of other mollusks. The PmCTL1 and PmCTL4 genes were expressed in various tissues of P. fucata martensii, including the hepatopancreas, go‐nads, adductor muscle, gills and mantle, but they exhibited different tissue expression patterns. The relative expression levels of PmCTL1 and PmCTL4 genes in the hepatopancreas showed a clear fluctuating trend over time with cadmium stress. At 6 h of cadmium stress, the relative expression levels of both were at their lowest. The PmCTL1 gene reached its highest value at 3 h of cadmium stress [approximately as 3.23 times as that of pre-cadmium stress (0 h)], and the PmCTL4 gene reached its highest value at 12 h of cadmium stress[ approximately as 2.03 times as that of pre-cadmium stress (0 h)]. The serum ACP activity of P. fucata martensii reached its peak at 24 h of cadmium stress, CAT activity peaked at 6 h of cadmium stress, and SOD activity peaked at 3 h of cadmium stress. The HSI of P. fucata martensii gradually decreased over time with the progression of cadmium stress. 【Conclusion】Under cadmium stress, P. fucata martensii experiences obvious immune stress. The PmCTL1 and PmCTL4 genes, as well as serum ACP, CAT and SOD, all respond to cadmium stress. This indicates that CTL and serum enzymes play important roles in the detoxification process of cadmium in shellfish, with the primary activity occurring in the hepatopancreas tissue.

Key words: Pinctada fucata martensii; cadmium stress; C-type lectin (CTL); hepatopancreas; enzyme activity; hepatosomatic index( HSI)

Foundation items: National Natural Science Foundation of China(31472306); Guangdong Natural Science Founda‐tion(2023A1515012924, 2021A1515010962); Guangdong Science and Technology Special Projec(t 2021A05250)

0 引言

【研究意義】合浦珠母貝(Pinctada fucata mar‐tensii)又稱馬氏珠母貝,是我國重要的海水養(yǎng)殖珍珠貝,且具有極高的經濟價值(盧金昭等,2021;王成等,2024),但近年來受鎘等重金屬的污染,出現生長緩慢、病害頻發(fā)及死亡率高等現象(衣美艷等,2012)。重金屬能在生物體內積蓄后沿食物鏈富集,且在貝類中的富集系數遠高于其他水生生物(李婷婷,2016;翟毓秀等,2020)。合浦珠母貝體內的鎘含量明顯高于鉛、砷及汞等金屬,且因養(yǎng)殖環(huán)境中鎘濃度的變化而變化(方玲等,2019),即鎘污染對合浦珠母貝生長的危害已不容忽視。【前人研究進展】貝類發(fā)生免疫調控時,多種信號通路被激活而發(fā)揮作用,尤其以信號傳導最重要(杜麗等,2008)。磷酸化是一種重要的信號傳遞機制,如在p38MAPK信號通路中,p38蛋白磷酸化可將胞外信號傳導至胞內,由此響應胞外信號(Zhang et al.,2019)。酸性磷酸酶(ACP)是一類參與磷酸基團轉移反應及維持體內能量收支平衡的水解酶,由血細胞釋放到血清中,在吞噬細胞進行吞噬作用前能將異物部分水解(彭懷明和周書林,2010;張明明等,2017);ACP作為重要的代謝調節(jié)酶,能反映體內底物的去磷酸化狀態(tài),在無脊椎水生生物的非特異性免疫反應過程中發(fā)揮重要作用,如厚殼貽貝(Mytilus coruscus)(Hu et al.,2015)、海灣扇貝(Argopecten irradians)(Chi et al.,2017)及克氏原螯蝦(Procambarus clarkii)(Guo et al.,2020)等。超氧化物歧化酶(SOD)和過氧化氫酶(CAT)能清除氧自由基,保護細胞免受氧化損傷(孫靜,2021),在紫貽貝(Mytilus galloprovincialis)、太平洋牡蠣(Crassostrea gigas)、淡水貽貝(Unio tigridis)及合浦珠母貝等貝類中已得到證實(Gostiukhina and Golovina,2013;Al-Fanharawi et al.,2019;梁海鷹等,2024),因此常作為衡量機體免疫狀況的主要檢測指標。腫瘤壞死因子(Tumor necrosis factor,TNF)與腫瘤壞死因子受體(Tumor necrosis factor recep‐tor,TNFR)超家族在機體的先天免疫和獲得性免疫方面均發(fā)揮重要作用,TNFR超家族的共同特征是含有1個或多個鈣離子(Ca2+)依賴糖識別結構域(Carbonhydrate-recognition domain,CRD)(梁碧丹等,2024)。CRD結構域是一類能與單個或多個多糖識別并特異性結合的位點,有助于合浦珠母貝識別入侵病原微生物細胞壁上的多糖成分,激活免疫系統(tǒng)而實現對病原體的清除作用(吳羽媛等,2017;Li et al.,2019)。C型凝集素(C-type lectins,CTL)超家族的結構特點也含有CRD結構域,在免疫識別和防御機制中起關鍵作用(Brown et al.,2018)。軟體動物具有不同類型的凝集素,包括C型、P型、F型、 I型、S型(半乳糖凝集素)及五聚體凝集素。從合浦珠母貝蛋白組數據庫中已鑒定出23種CTL(Liu et al.,2023),且從合浦珠母貝CTL家族中成功克隆出含有1個CRD結構域的PmCTL-1基因(He et al.,2020)及含有2個CRD結構域的Pmlectin基因(Guo et al.,2023),二者在合浦珠母貝的先天免疫系統(tǒng)中發(fā)揮重要作用。肝胰腺是軟體動物的主要免疫器官及先天免疫分子的重要來源(王志新等,2013;R?szer,2014)。已有研究表明,鎘可導致細胞鈣穩(wěn)態(tài)失調,干擾細胞內與Ca2+相關的信息傳遞(趙芳芳,2018),且鎘離子(Cd2+)通過耗盡組織中的谷胱甘肽或替換機體內的氧化還原金屬等方式,而提高機體的氧化壓力(顧海龍,2013)。綜上所述,明確鎘脅迫對CTL基因表達、免疫酶活性及肝胰腺的影響,對揭示合浦珠母貝的鎘解毒機制具有重要意義?!颈狙芯壳腥朦c】近年來,隨著工業(yè)的快速發(fā)展,大量污水排入海域,導致近岸海域受重金屬污染日趨嚴重。合浦珠母貝缺乏獲得性免疫,主要依賴先天免疫系統(tǒng)抵御病害入侵,其中CTL及免疫相關酶扮演著重要角色(Wang et al.,2013;Sun et al.,2023),但至今鮮見鎘脅迫對合浦珠母貝免疫應答及生理指標影響的相關報道?!緮M解決的關鍵問題】以合浦珠母貝為研究對象,運用RACE克隆2個CTL基因(PmCTL1和PmCTL4),并檢測鎘脅迫對合浦珠母貝CTL免疫應答、血清免疫酶活性及肝胰腺指數的影響,旨在明確合浦珠母貝對鎘脅迫的免疫響應機制,為豐富貝類的免疫生物學研究提供理論基礎。

1 材料與方法

1. 1 試驗材料

供試合浦珠母貝為2齡貝,由廣東省湛江市徐聞縣合浦珠母貝養(yǎng)殖基地提供,采集合浦珠母貝肝胰腺、性腺、閉殼肌、鰓、血淋巴和外套膜等6個組織材料。其中,肝胰腺用于RACE擴增,肝胰腺、性腺、閉殼肌、鰓組織和外套膜用于實時熒光定量PCR檢測,血淋巴用于酶活性測定。血淋巴在4 ℃下1500 r/min離心15 min,收集上清液保存;其他組織樣品采集后液氮速凍,再置于-80 ℃超低溫冰箱保存或立即使用。大腸桿菌DH5α感受態(tài)細胞由廣東海洋大學水產學院珍珠研究團隊保存提供;TRIzol Reagent購自美國Invitrogen公司;SMARTerTM RACE cDNA Amplification Kit購自美國Clontech公司;pMD19-T載體、rTaq DNA聚合酶、DNA Marker及ACP、CAT和SOD活性檢測試劑盒購自生工生物工程(上海)股份有限公司。動物試驗由廣東海洋大學動物倫理委員會批準,批準號20230312。

1. 2 試驗方法

1. 2. 1 PmCTL基因cDNA序列克隆 采用TRIzol法提取合浦珠母貝肝胰腺總RNA,通過1.0%瓊脂糖凝膠電泳驗證總RNA完整性,運用NanoDrop ND 1000紫外分光光度計檢測其濃度及純度。參照SMARTerTM RACE cDNA Amplification Kit說明反轉錄合成5'-RACE和3'-RACE的cDNA模板。從合浦珠母貝轉錄組數據庫中篩選出注釋為CTL的Unigene序列,以Primer Premier 5.0設計特異性擴增引物(表1),分別擴增PmCTL1和PmCTL4基因cDNA序列,經1.0%瓊脂糖凝膠電泳檢測合格后,將目的基因片段連接至pMD19-T載體上,再轉化DH5α感受態(tài)細胞,擴大培養(yǎng)后挑取陽性單克隆進行菌落PCR檢測,并送至生工生物工程(上海)股份有限公司測序。

1. 2. 2 PmCTL蛋白生物信息學分析 通過ORF finder(https://www.ncbi.nlm.nih.gov/orffinder/)推導PmCTL1和PmCTL4基因編碼氨基酸序列;使用ProtScale(https://web.expasy.org/protscale/)預測分析PmCTL1和PmCTL4氨基酸序列親/疏水性;采用ProtParam(https://web.expasy.org/protparam/)分析PmCTL1和PmCTL4蛋白理化性質;運用SignalP 5.0(https://services.healthtech.dtu.dk/service.php?Sig‐nalP-5.0)預測其信號肽;利用PSITE(http://linux1. softberry.com/berry.phtml?topic=psiteamp;group=pro‐gramsamp;subgroup=proloc)預測蛋白翻譯后修飾位點(PTMs);采用TMHMM-2.0(https://services.health‐tech.dtu.dk/service.php?TMHMM-2.0)分析其跨膜結構;使用SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)和SWISS-MODEL(https://swissmodel.expasy.org/interactive)分別預測蛋白二、三級結構;利用SMART(http://smart.embl-heidelberg.de/)預測蛋白結構域;通過DNAMAN 9.0對PmCTL基因進行多序列比對及BLAST同源比對分析,并以MEGA 11.0構建系統(tǒng)發(fā)育進化樹。

1. 2. 3 PmCTL基因組織表達譜分析 采用實時熒光定量PCR檢測PmCTL基因在合浦珠母貝肝胰腺、性腺、閉殼肌、鰓和外套膜等組織中的表達情況。實時熒光定量PCR反應體系10.0 μL:cDNA模板0.5 μL,SYBR Select Master Mix 5.0 μL,上、下游引物各0.4 μL,滅菌雙蒸水3.7 μL。擴增程序:95 ℃預變性5 min;95 ℃ 10 s,60 ℃ 15 s,72 ℃ 15 s,進行45個循環(huán);95 ℃ 10 s,60 ℃ 1 min,95 ℃ 1 s;37 ℃結束反應。以β-Actin為內參基因,通過2?ΔΔCt法計算目的基因相對表達量,并以SPSS 25.0進行單因素方差分析(One-way ANOVA)和Duncan’s多重比較。每個組織進行3次生物學重復,每個樣品設3次重復。

1. 2. 4 鎘脅迫后PmCTL基因時序表達分析 根據預試驗結果,以4.0 mg/L氯化鎘(CdCl)溶液對合2浦珠母貝進行脅迫,其他飼養(yǎng)條件為水溫20 ℃、鹽度30‰。分別于脅迫0、3、6、12、24和48 h后采集合浦珠母貝的肝胰腺組織,參照1.2.3中的方法測定鎘脅迫后PmCTL1和PmCTL4基因的表達變化。

1. 2. 5 鎘毒脅迫后合浦珠母貝血清酶活性測定

以4.0 mg/L氯化鎘溶液對合浦珠母貝進行脅迫,其他飼養(yǎng)條件為水溫20 ℃、鹽度30‰。分別于脅迫0、3、6、12、24和48 h后采集合浦珠母貝的血淋巴,4 ℃下1500 r/min離心15 min,收集血清,用于測定ACP、CAT和SOD活性。

1. 2. 6 鎘脅迫后合浦珠母貝肝體指數(HSI)變化

參考GB 3097—1997《海水水質標準》,以0.5 mg/L 氯化鎘溶液對合浦珠母貝進行脅迫,試驗期間每2 d投喂1次小球藻,每3 d更換1次海水。分別于脅迫0、7、14和21 d后隨機挑取9只合浦珠母貝進行解剖,取其肝胰腺稱重并計算HS(I符振強等,2021)。

HS(I %)=濕肝胰腺重量/濕體重×100

2 結果與分析

2. 1 PmCTL基因克隆及序列分析結果

PmCTL1基因cDNA序列全長853 bp,包括507 bp的開放閱讀框(ORF)、186 bp的5'端非編碼區(qū)(5'-UTR)及160 bp的3'端非編碼區(qū)(3'-UTR),共編碼168個氨基酸殘基(圖1-A);PmCTL4基因cDNA序列全長1113 bp,包括735 bp的ORF、225 bp的5'-UTR及153 bp的3'-UTR,共編碼244個氨基酸殘基(圖1-B)。

2. 2 PmCTL蛋白理化性質分析結果

PmCTL1蛋白分子式為C871H1288N226O253S11,不穩(wěn)定系數為28.90,屬于不穩(wěn)定蛋白;堿性氨基酸殘基(Arg+Lys)、酸性氨基酸殘基(Asp+Glu)總數分別為13和14個。ProtScale預測結果(圖2-A)顯示,在第11~12 位氨基酸處出現最強疏水性(疏水指數為2.922),第141位氨基酸處出現最強親水性(親水指數為-2.500),總平均親水性系數(GRAVY)為-0.33,屬于親水性蛋白。PSITE預測發(fā)現,PmCTL1蛋白包含4個N-糖基化位點、3個蛋白激酶C磷酸化位點、1個酪蛋白激酶II磷酸化位點及1個CTL結構域

活性位點。

PmCTL4蛋白分子式為C1263H1853N321O393S13,不穩(wěn)定系數為51.87,屬于不穩(wěn)定蛋白。ProtScale預測結果(圖2-B)顯示,在第14位氨基酸處出現最強疏水性(疏水指數為2.778),在第151位氨基酸處出現最強親水性(親水指數為-2.967),GRAVY為-0.434,屬于親水性蛋白。PSITE預測發(fā)現,PmCTL4蛋白包含2個N-糖基化位點、1個蛋白激酶C磷酸化位點、7個酪蛋白激酶II磷酸化位點、3個酪氨酸激酶磷酸化位點、4個N-肉豆蔻?;稽c及3個微體C端靶

向信號。

TMHMM-2.0預測結果表明,PmCTL1蛋白無跨膜結構(圖3-A),而PmCTL4蛋白存在跨膜結構,屬于跨膜蛋白(圖3-B)。SMART對PmCTL1和PmCTL4蛋白的功能結構域預測發(fā)現,二者均含有1個典型的CRD結構域(圖4)。

2. 3 PmCTL蛋白同源進化分析結果

將PmCTL1氨基酸序列與長牡蠣(Crassostrea gigas,XP_011416426.1)、美洲牡蠣(Crassostrea vir‐ginica,XP_022289259.1)、紫貽貝(VDI67798.1)和大西洋扇貝(Pecten maximus,XP_033763161.1)的CTL氨基酸序列,PmCTL4氨基酸序列與長牡蠣(XP_034311602.1)、葡萄牙牡蠣(Crassostrea angulata,XP_052686600.1)、美洲牡蠣(XP_022293350.1)、紫貽貝(AJQ21499.1)和大西洋扇貝(XP_033732131.1)的CTL氨基酸序列分別進行多序列比對分析,結果(圖5)表明,PmCTL1和PmCTL4氨基酸序列與其他軟體動物CTL氨基酸序列的相似性較高,其CRD結構域中均含有6個保守的半胱氨酸?;贑TL1氨基酸序列相似性構建的系統(tǒng)發(fā)育進化樹(圖6-A)顯示,合浦珠母貝與其他軟體動物聚類在同一分支上,斑馬魚(Danio rerio)、青鳉(Oryzias latipes)、人類(Homo sapiens)和小鼠(Mus musculus)則聚為另一分支;基于CTL4氨基酸序列相似性構建的系統(tǒng)發(fā)育進化樹(圖6-B)也顯示,合浦珠母貝與其他軟體動物聚類在同一分支上,且合浦珠母貝與地中海貽貝(Mytilus trossulus)的親緣關系最近。通過SWISS-MODEL預測PmCTL1和PmCTL4蛋白的三級結構,結果(圖7)發(fā)現,PmCTL1和PmCTL4蛋白各有5個β-折疊,與人類CTL蛋白的三級結構存在明顯差異,但均具有2個連續(xù)的α-螺旋結構。

2. 4 PmCTL基因在合浦珠母貝各組織中的表達分布特征

實時熒光定量PCR檢測發(fā)現,PmCTL1和PmCTL4基因在合浦珠母貝的肝胰腺、性腺、閉殼肌、鰓和外套膜等組織中均有表達(圖8),但二者具有不同的組織表達分布特征。PmCTL1基因在合浦珠母貝不同組織中的表達分布存在明顯差異,以肝胰腺中的相對表達量最高、鰓組織中的相對表達量最低,二者間差異顯著(Plt;0.05,下同);PmCTL4基因在合浦珠母貝各組織中的相對表達量無顯著差異(Pgt;0.05,下同)。2. 5 鎘脅迫后PmCTL基因在合浦珠母貝肝胰腺中的表達變化

以實時熒光定量PCR檢測鎘脅迫后PmCTL1和PmCTL4基因在合浦珠母貝肝胰腺中的時序表達情況,結果(圖9)顯示,PmCTL1基因的相對表達量總體上呈先升高后下降再升高的變化趨勢,在鎘脅迫3 h時達最高值,約是鎘脅迫前(0 h)的3.23倍;于鎘脅迫6 h時降至最低值,此后逐漸升高,至鎘脅迫48 h時的相對表達量較鎘脅迫前(0 h)顯著升高,約為2.29倍。PmCTL4基因的相對表達量呈先降低后升高的波動變化趨勢,于鎘脅迫6 h時降至最低值,但在鎘脅迫12 h時達最高值,約是鎘脅迫前(0 h)的2.03倍;至鎘脅迫48 h時,其相對表達量約是鎘脅迫前(0 h)的1.87倍,差異達顯著水平。

2. 6 鎘脅迫對合浦珠母貝血清酶活性的影響

由圖10可看出,ACP活性在鎘脅迫6 h時降至最低值,但至鎘脅迫24 h時上升到最高值,此后持續(xù)降低并趨于初始水平(圖10-A);CAT活性則在鎘脅迫6 h時達最高值,在鎘脅迫12 h時降至最低值,此后持續(xù)升高,并于鎘脅迫24 h后趨于穩(wěn)定(圖10-B);SOD活性在鎘脅迫3 h時達最高值,至鎘脅迫6 h時降至最低值且低于正常水平(0 h),此后SOD活性持續(xù)升高并逐漸趨于穩(wěn)定,至鎘脅迫48 h時其活性略高于鎘脅迫前(0 h)的正常水平(圖10-C)。

2. 7 鎘脅迫對合浦珠母貝HSI的影響

鎘脅迫下合浦珠母貝HSI的變化趨勢如圖11所示。合浦珠母貝HSI隨鎘脅迫時間的推移而逐漸下降,具體表現為:鎘脅迫0~7 d合浦珠母貝HSI呈現下降趨勢,鎘脅迫7~14 d趨于穩(wěn)定,但在鎘脅迫14~21 d合浦珠母貝HSI下降加速。

3 討論

3. 1 鎘脅迫對合浦珠母貝免疫調節(jié)基因的影響

本研究通過RACE成功獲得PmCTL1和PmCTL4基因cDNA全長序列,SMART預測發(fā)現PmCTL1和PmCTL4蛋白各含有1個典型的CRD結構域,且CRD結構域中均含有6個保守的半胱氨酸,與其他軟體動物的相似性較高。CRD結構域可結合病原體細胞表面的碳水化合物,因此CTL作為模式識別受體(PRR)在動物的先天免疫系統(tǒng)中發(fā)揮重要作用(Fujita,2002)。與脊椎動物相比,無脊椎動物的CRD結構域能鑒定出更多的基序變體,且存在顯著差異,這種多樣性可能有助于無脊椎動物識別廣譜的碳水化合物,而支持其先天免疫的特異性(Chen et al.,2021),也可能是PmCTL1和PmCTL4系統(tǒng)發(fā)育進化樹分析中節(jié)點可信值偏低的原因。越來越多的研究證實,軟體動物的CTL序列及其功能具有多樣性,在抵抗外界刺激的過程中發(fā)揮重要作用(Wang et al.,2011)。CRD結構域促使CTL能進行非自我的免疫識別,參與細胞凝集(Qu et al.,2016)和吞噬作用(Luo et al.,2006),而具有抗炎、抗菌及抗病毒活性(Vasta et al.,2004;Zhao et al.,2007;Huang et al.,2020);CTL還參與細胞分化、細胞增殖及B細胞和T細胞的激活過程(Hardingham and Fosang,1992;Rabinovich and Toscano,2009)。由此可見,具有CRD結構域的CTL在軟體動物先天免疫

過程中發(fā)揮重要作用。

趙芳芳等(2019)通過研究鎘脅迫對河南華溪蟹(Sinopotamon honanense)CTL免疫應答的影響,結果發(fā)現ShLec21和ShLec23這2種CTL基因主要在肝胰腺中表達。本研究結果顯示,PmCTL1基因在合浦珠母貝不同組織中的表達分布存在明顯差異,以肝胰腺中的相對表達量最高、鰓組織中的相對表達量最低;而PmCTL4基因在合浦珠母貝各組織中的相對表達量無顯著差異。PmCTL1和PmCTL4基因高表達于肝胰腺中,表明肝胰腺是合浦珠母貝應對外界刺激的重要防御器官。通過對比鎘脅迫后2個CTL基因在合浦珠母貝肝胰腺中的表達變化,發(fā)現PmCTL1和PmCTL4基因相對表達量隨鎘脅迫時間的推移呈明顯的波動變化趨勢,故推測肝胰腺中高表達的PmCTL1和PmCTL4基因在機體免疫及解毒過程中發(fā)揮重要作用。PmCTL1和PmCTL4基因雖然在合浦珠母貝肝胰腺中的相對表達量較高,但在其他不同組織中的相對表達量存在明顯差異,是否與其在合浦珠母貝先天免疫系統(tǒng)中發(fā)揮不同作用有關,還有待進一步探究。

3. 2 鎘脅迫對合浦珠母貝免疫相關酶活性與免疫器官的影響

重金屬鎘能在無脊椎動物體內誘導產生大量過氧化氫(H2O2)和游離態(tài)氧(O2-)等活性氧產物,干擾細胞內的氧化還原平衡,導致機體不飽和脂肪酸過氧化或DNA氧化損傷等,而體內抗氧化系統(tǒng)被激活,以保護機體免受氧化損傷(Benedetti et al.,2015;戰(zhàn)君菲,2021)。在缺乏特異性免疫球蛋白的軟體動物體內,ACP是溶酶體的標志酶,能在酸性環(huán)境下通過修飾或改變外來異物的表面分子組成,而加快吞噬細胞對異物的吞噬和降解速度(劉志鴻等,2003;丁瑞霞等,2022)。鯽(Carassius auratus)在鎘脅迫后其腸道、肝胰腺和鰓組織中的ACP活性均呈先上升后下降的變化趨勢(詹付鳳和趙欣平,2007);黃顙魚(Pelteobagrus fulvidraco)血清ACP活性在低濃度和高濃度鎘脅迫處理中均表現出先激活后抑制的變化趨勢(陳立偉,2011);長江華溪蟹(Sinopotamon yangtsekiens)在鎘脅迫后其鰓組織中的ACP活性升高(Li et al.,2014);牛蛙(Rana catesbiana)受鎘脅迫后其消化道ACP活性明顯升高(米紀聰等,2022)。本研究中,合浦珠母貝受鎘脅迫后其血清ACP活性呈先升高后下降的波動變化趨勢,可能是ACP被激活后受到抑制,但隨著抑制效應的減弱,ACP活性逐漸升高并發(fā)揮免疫作用。CAT和SOD是抗氧化系統(tǒng)的重要生物酶,其中,CAT可將細胞代謝產物H2O2分解成O2和H2O(崔前進等,2017),SOD能將OH和O2-轉化為O2及毒性較低的H2O(2李亞男和張海濱,2018)。本研究結果表明,鎘脅迫初期合浦珠母貝為避免細胞受到氧化損傷及清除過量的O2-,血清SOD活性快速升高,在鎘脅迫3 h時達最高值;隨后SOD活性先下降后上升并逐漸趨于穩(wěn)定,是由于合浦珠母貝開始受到鎘刺激時表現為清除過量O2-的自衛(wèi)反應,但隨著鎘脅迫時間的延長,Cd2+可能置換出SOD中原有的鋅離子(Zn2+)和錳離子(Mn2+)而形成Cd-SOD(王麗麗,2011),改變SOD分子構象及降低其活性;隨著解毒作用的進行,Cd2+抑制效應降低,SOD活性得以恢復。CAT在H O的刺激下被激活2 2,其活性在鎘脅迫6 h時達最高值,隨后CAT活性開始下降,可能是由于Cd2+將CAT中心的Fe(Ⅱ)置換出來,而致使其活性喪失(孫淑紅等,2009)。鎘是一種毒副作用很強的重金屬,可富集于機體內臟中而影響其正常的生理功能,導致細胞畸形甚至凋亡等(張林寶等,2014;洪亞軍等,2019)。本研究中,合浦珠母貝在低濃度(0.5 mg/L)鎘脅迫下,其HSI隨脅迫時間的推移而逐漸下降,說明鎘脅迫對合浦珠母貝肝胰腺的損傷較大。

4 結論

在鎘脅迫下合浦珠母貝發(fā)生明顯的免疫應激,PmCTL1、PmCTL4基因及血清ACP、CAT和SOD均能響應鎘脅迫,即CTL和血清酶類在貝類的鎘解毒過程中發(fā)揮重要作用,且主要發(fā)生在肝胰腺組織中。

參考文獻((References)):

陳立偉. 2011. 鎘積累對黃顙魚酶活及金屬硫蛋白表達的影響[D]. 保定:河北大學.[ Chen L W. 2011. Effects of cad‐mium accumulation on enzyme activity and metallothio‐nein expression of Pelteobagrus fulvidraco[D]. Baoding:Hebei University.]

崔前進,陳冰,邱麗華,付旭,楊博學,韓雨哲,姜晨. 2017. 低鹽脅迫對鈍吻黃蓋鰈幼魚鰓Na+/K+-ATP酶、肝臟抗氧化酶和非特異免疫酶的影響[J]. 廣東海洋大學學報,37(6):26-32.[ Cui Q J,Chen B,Qiu L H,Fu X,Yang B X,Han Y Z,Jiang C. 2017. Influence of low salinity stress on the gill Na+/K+-ATPase,liver antioxidase and non-specific immune enzyme in juvenile Pleuronectes yokohama[J]. Journal of Guangdong Ocean University,37(6):26-32.] doi:10.3969/j.issn.1673-9159.2017.06.005.

丁瑞霞,黃星美,趙旺,鄧正華,陳恒大,溫為庚,馬振華,王江勇,鄭忠明. 2022. pH急性脅迫對方斑東風螺行為及免疫酶活性的影響[J]. 漁業(yè)現代化,49(6):84-90.[ Ding R X,Huang X M,Zhao W,Deng Z H,Chen H D,Wen W G,Ma Z H,Wang J Y,Zheng Z M. 2022. Effects of pH acute stress on the behavior and immune enzyme activity of Babylonia areolata[J]. Fishery Modernization,49(6):84-90.] doi:10.3969/j.issn.1007-9580.2022.06.011.

杜麗,張巍,陸逵,王鳳陽,王愛民. 2008. 貝類免疫機制研究進展[J]. 動物醫(yī)學進展,29(3):77-81.[ Du L,Zhang W,Lu K,Wang F Y,Wang A M. 2008. Progress on immuno‐logical mechanism in mollusks[J]. Progress in Veterinary Medicine,29(3):77-81.] doi:10.3969/j.issn.1007-5038. 2008.03.020.

方玲,馬海霞,李來好,楊賢慶,榮輝,岑劍偉. 2019. 貝類中重金屬鎘的研究進展[J]. 核農學報,33(7):1408-1414. [Fang L,Ma H X,Li L H,Yang X Q,Rong H,Cen J W. 2019. Research progress of cadmium in shellfish[J]. Jour‐nal of Nuclear Agricultural Sciences,33(7):1408-1414.] doi:10.11869/j.issn.100-8551.2019.07.1408.

符振強,董揚帆,湯上上,周利,徐暢,李二超. 2021. 低鹽脅迫下飼料中添加α-硫辛酸對凡納濱對蝦生長、抗氧化能力及腸道健康的影響[J]. 動物營養(yǎng)學報,33(9):5203-5218. [Fu Z Q,Dong Y F,Tang S S,Zhou L,Xu C,Li E C. 2021. Effects of dietary α-lipoic acid on growth,antioxi‐dant capacity and intestinal health of Litopenaeus vanna‐mei under low salinity stress[J]. Chinese Journal of Ani‐mal Nutrition,33(9):5203-5218.] doi:10.3969/j.issn.1006-267x.2021.09.040.

顧海龍. 2013. Cd、Pb、Hg暴毒下泥蚶的分子生態(tài)毒理學研究[D]. 上海:上海海洋大學.[ Gu H L. 2013. Molecular ecotoxicological studies of blood clam,Tegillarca granosa exposed to Cd,Pb,Hg[D]. Shanghai:Shanghai Ocean Uni-versity.]

洪亞軍,馮承蓮,徐祖信,廖偉,閆振飛,劉大慶,符志友. 2019. 重金屬對水生生物的毒性效應機制研究進展[J]. 環(huán)境工程,37(11):1-9.[ Hong Y J,Feng C L,Xu Z X,Liao W,Yan Z F,Liu D Q,Fu Z Y. 2019. Advances on eco‐toxicity effects of heavy metals to aquatic organisms and the mechanisms[J]. Environmental Engineering,37(11):

1-9.] doi:10.13205/j.hjgc.201911001.

李婷婷. 2016. 黃海膠州灣多介質重金屬空間分布及風險評價[D]. 重慶:西南大學.[ Li T T. 2016. Distribution and pollution of heavy metals in multimedia of Jiaozhou Bay in Yellow Sea[D]. Chongqing:Southwest University.]

李亞男,張海濱. 2018. 海洋無脊椎動物抗氧化酶研究進展[J]. 海洋通報,37(3):241-253.[ Li Y N,Zhang H B. 2018. Progress in antioxidant enzymes study of marine inverte‐brates[J]. Marine Science Bulletin,37(3):241-253.] doi:10.11840/j.issn.1001-6392.2018.03.001.

梁碧丹,盧金昭,梁海鷹,張美珍,申鋮皓,張彬. 2024. 馬氏珠母貝TNFR27基因克隆與功能初探[J]. 水產學報,48(6):13-23.[ Liang B D,Lu J Z,Liang H Y,Zhang M Z,Shen C H,Zhang B. 2024. Cloning and preliminary study on the functions of PmTNFR27 gene in Pinctada fucata martensii[J]. Journal of Fisheries of China,48(6):13-23.] doi:10. 11964/jfc.20220413450.

梁海鷹,陳潔,張美珍. 2024. 琥珀?;揎棇︸R氏珠母貝植核免疫的影響[J]. 廣東海洋大學學報,44(2):39-45. [Liang H Y,Chen J,Zhang M Z. 2024. Effect of succiny-lation modification on nucleus-implantation immune res-ponse of Pinctada fucata martensii[J]. Journal of Guang‐dong Ocean University,44(2):39-45.] doi:10.3969/j.issn.

1673-9159.2024.02.006.

劉志鴻,牟海津,王清印. 2003. 軟體動物免疫相關酶研究進展[J]. 海洋水產研究,24(3):86-90.[ Liu Z H,Mou H J,Wang Q Y. 2003. Research progress of immune related enzymes in mollusca[J]. Marine Fisheries Research,24(3):86-90.] doi:10.3969/j.issn.1000-7075.2003.03.016.

盧金昭,房曉宸,梁海鷹,何軍軍,申鋮皓. 2021. 馬氏珠母貝NatF基因克隆及其表達分析[J]. 南方農業(yè)學報,52(11):3085-3092.[ Lu J Z,Fang X C,Liang H Y,He J J,Shen C H. 2021. Cloning and expression analysis of NatF gene from Pinctada fucata martensii[J]. Journal of Southern Agriculture,52(11):3085-3092.] doi:10.3969/j.issn.2095-1191.2021.11.020.

米紀聰,黃鴻斌,吳煜,陳嫻嫻,張盛周. 2022. 鎘、銅、鎳和鉛等重金屬離子抑制牛蛙消化道黏膜POX、NSE、SDH、ACP、ALP和ATPase活性[J]. 中國組織化學與細胞化學雜志,31(4):374-380.[ Mi J C,Huang H B,Wu Y,Chen X X,Zhang S Z. 2022. Heavy metal ions such as cad‐mium,copper,nickel and lead inhibit the activities of POX,NSE,SDH,ACP,ALP and ATPase in the digestive tract mucosa of the Rana catesbiana[J]. Chinese Journal of Histochemistry and Cytochemistry,31(4):374-380.] doi:10.16705/j.cnki.1004-1850.2022.04.007.

彭懷明,周書林. 2010. 軟體動物免疫功能研究進展[J]. 動物醫(yī)學進展,31(8):79-83.[ Peng H M,Zhou S L. 2010. Pro-gress on the immune functions of mollusks[J]. Progress in Veterinary Medicine,31(8):79-83.] doi:10.3969/j.issn. 1007-5038.2010.08.018.

孫靜. 2021. 鹽度脅迫對兩種殼色合浦珠母貝滲透調節(jié)、呼吸代謝、免疫及抗氧化系統(tǒng)的影響[D]. 天津:天津農學院. [Sun J. 2021. Effects of salinity stress on osmotic adjust‐ment,respiratory metabolism,immunity and antioxidant systems of Pinctada fucata with two shell colors[D]. Tian‐jin:Tianjin Agricultural University.] doi:10.27717/d.cnki.gtjnx.2021.000096.

孫淑紅,焦傳珍,劉小林,魏振林. 2009. Cd(Ⅱ)對泥鰍抗氧化酶活性和脂質過氧化的影響[J]. 大連水產學院學報,24(1):52-56.[ Sun S H,Jiao C Z,Liu X L,Wei Z L. 2009. Effects of cadmium(Ⅱ) stress on xanthine oxidase and antionxidant enzyme activities in hepatopancreas of orien‐tal weatherfish Misgurnus anguillicaudatus[J]. Journal of Dalian Fisheries University,24(1):52-56.] doi:10.3969/j.issn.1000-9957.2009.01.010.

王成,賴卓欣,宋欣霖,鐘如卓,鄭哲,王慶恒. 2024. 馬氏珠母貝Perlucin基因序列特征及其SNP與耐低溫性狀的關系[J]. 廣東海洋大學學報,44(1):55-63.[ Wang C,Lai Z X,Song X L,Zhong R Z,Zheng Z,Wang Q H. 2024. Sequence characteristics of Perlucin gene in Pinctada fucata martensii and relationship between its SNPs and low temperature tolerance[J]. Journal of Guangdong Ocean University,44(1):55-63.] doi:10.3969/j.issn.1673-9159. 2024.01.007.

王麗麗. 2011. 鎘在蝦夷扇貝體內的時空分布規(guī)律及對抗氧化防御系統(tǒng)的影響[D]. 青島:中國海洋大學.[ Wang L L. 2011. Studies on the distribution rule of cadmium in the Patinopecten yessoens body and the cadmium influence on antioxidant enzymes defense system[D]. Qingdao:Ocean University of China.] doi:10.7666/d.y1926847.

王志新,梁海鷹,杜曉東,黃榮蓮,鄧岳文,王慶恒,焦鈺. 2013. 馬氏珠母貝熱休克蛋白HSP60基因的克隆與表達分析[J]. 廣東海洋大學學報,33(6):14-23.[ Wang Z X,Liang H Y,Du X D,Huang R L,Deng Y W,Wang Q H,Jiao Y. 2013. Cloning and express characters of HSP60 gene from Pinctada martensii[J]. Journal of Guangdong Ocean University,33(6):14-23.]

吳羽媛,郭志穎,梁海鷹,王慶恒,鄧岳文,杜曉東. 2017. 馬氏珠母貝PmLec-8基因的克隆與表達分析[J]. 廣東海洋大學學報,37(4):1-7.[ Wu Y Y,Guo Z Y,Liang H Y,Wang Q H,Deng Y W,Du X D. 2017. Cloning and expression analysis of PmLec-8 gene from Pinctada fucata martensii[J]. Journal of Guangdong Ocean University,37(4):1-7.] doi:10.3969/j.issn.1673-9159.2017.04.001.

衣美艷,范秀萍,吳紅棉,胡雪瓊. 2012. 馬氏珠母貝各組織及其糖胺聚糖中四種重金屬含量分析[C]//廣東省食品學會. 廣東省食品學會第六次會員大會暨學術研討會論文集.[ Yi M Y,Fan X P,Wu H M,Hu X Q. 2012. Analysis of four kinds of heavy metals in different tissues and gly‐cosaminoglycan from Pinctada martensii[C]//Guangdong Food Society. Proceedings of the 6th General Meeting and Academic Seminar of the Guangdong Food Society.]

翟毓秀,郭萌萌,江艷華,姚琳,趙艷芳,吳海燕,李風鈴,譚志軍. 2020. 貝類產品質量安全風險分析[J]. 中國漁業(yè)質量與標準,10(4):1-25.[ Zhai Y X,Guo M M,Jiang Y H,Yao L,Zhao Y F,Wu H Y,Li F L,Tan Z J. 2020. Analysis on the quality and safety risks of shellfish products[J]. China Fisheries Quality and Standards,10(4):1-25.] doi:10.3969/j.issn.2095-1833.2020.04.001.

詹付鳳,趙欣平. 2007. 重金屬鎘對鯽魚堿性磷酸酶和酸性磷酸酶活性的影響[J]. 四川動物,26(3):641-643.[ Zhan F F,Zhao X P. 2007. Effects of cadmium on ACP and AKP in Carassias auratus[J]. Sichuan Journal of Zoology,26(3):641-643.] doi:10.3969/j.issn.1000-7083.2007.03.053.

戰(zhàn)君菲. 2021. 鎘和砷對菲律賓蛤仔毒性的劑量—效應關系研究[D]. 北京:中國科學院大學.[ Zhan J F. 2021. Dose-effect relationship of toxicities induced by cadmium and arsenic to Ruditapes philippinarum[D]. Beijing:Univer‐sity of Chinese Academy of Sciences.] doi:10.27841/d.cnki.gytha.2021.000007.

張林寶,孫偉,蔡文貴,賈曉平. 2014. 菲律賓蛤仔兩種谷氧還蛋白基因對微生物侵染和重金屬脅迫的應答[J]. 中國水產科學,(6):1253-1259.[ Zhang L B,Sun W,Cai W G,Jia X P. 2014. Responses of two glutaredoxin genes to bac‐terial and cadmium challenge in Venerupis philippinarum[J]. Journal of Fishery Sciences of China,(6):1253-1259.] doi:10.3724/SP.J.1118.2014.01253.

張明明,王雷,王寶杰,劉梅,戰(zhàn)文斌,蔣克勇. 2017. 凡納濱對蝦堿性磷酸酶和酸性磷酸酶基因的克隆、表達及鹽度應答效應[J]. 海洋科學,41(1):83-95.[ Zhang M M,Wang L,Wang B J,Liu M,Zhan W B,Jiang K Y. 2017. cDNA cloning and gene expressionin response to salinity of alka‐line phosphatase and acid phosphatase from Litopenaeus vanname[iJ]. Marine Sciences,41(1):83-95.] doi:10. 11759//hykx20160112002.

趙芳芳,郎朗,張左兵,王蘭. 2019. 鎘脅迫對河南華溪蟹兩種C型凝集素免疫應答的影響[J]. 水生生物學報,43(2):348-355. [Zhao F F,Lang L,Zhang Z B,Wang L. 2019. Effects of cadmium on immune responses of two C-type lectins in the freshwater crab Sinopotamon henanense[J]. Acta Hydrobiologica Sinica,43(2):348-355.] doi:10.7541/2019.043.

趙芳芳. 2018. 鎘脅迫對河南華溪蟹兩種C型凝集素免疫應答的影響[D]. 太原:山西大學.[ Zhao F F. 2018. Effect of cadmium stress on immune response of two C-type lec‐tins of the freshwater crab Sinopotamon henanense[D]. Taiyuan:Shanxi University.]

Al-Fanharawi A A,Rabee M A,Al-Mamoori J M A. 2019. Multi-biomarker responses after exposure to organophos‐phates chlorpyrifos in the freshwater mussels Unio tigridis and snails Viviparous benglensis[J]. Human and Ecologi‐cal Risk Assessment:An International Journal,25(5):1137-1156. doi:10.1080/10807039.2018.1460800.

Benedetti M,GiulianI M E,RegolI F. 2015. Oxidative metabo‐lism of chemical pollutants in marine organisms:Molecu‐lar and biochemical biomarkers in environmental toxico-logy[J]. Annals of the New York Academy of Sciences,1340(1):8-19. doi:10.1111/nyas.12698.

Brown G D,Willment J A,Whitehead L. 2018. C-type lectins in immunity and homeostasis[J]. Nature Reviews immu‐nology,18(6):374-89. doi:10.1038/s41577-018-0004-8.

Chen H L,Cai X H,Qiu H N,Fang J,Wu X Z. 2021. A novel C-type lectin from Crassostrea gigas involved in the innate defense against Vibrio alginolyticus[J]. Biochemi‐cal and Biophysical Research Communications,566:155-163. doi:10.1016/j.bbrc.2021.05.092.

Chi C,Giri S S,Jun J W,Kim H J,Kim S W,Yun S,Park S C. 2017. Effects of algal toxin okadaic acid on the non-specific immune and antioxidant response of bay scallop (Argopecten irradians)[J]. Fish amp; Shellfish Immunology,65:111-117. doi:10.1016/j.fsi.2017.03.031.

Fujita T. 2002. Evolution of the lectin-complement pathway and its role in innate immunity[J]. Nature Reviews Immu‐nology,2:346-353. doi:10.1038/nri800.

Gostiukhina L O,Golovina V I. 2013. Comparative analysis of antioxidant complex of the Black Sea mollusks Mytilus galloprovincialis,Anadara inaequivalvis and Crassostrea gigas[J]. Hydrobiological Journal,49(3):77-84. doi:10. 1615/HydrobJ.v49.i3.70.

Guo K,Ruan G L,Fan W H,Wang Q,Fang L,Luo J B,Liu Y L. 2020. Immune response to acute heat stress in the intes‐tine of the red swamp crayfish,Procambarus clarkii[J]. Fish amp; Shellfish Immunology,100:146-151. doi:10.1016/j.fsi.2020.03.017.

Guo Z J,Xie M,Shen C H,Liang H Y,Li C J,Wu Y F. 2023. Immune characterization and expression analysis of a C-type lectin from Pinctada fucata martensii[J]. Aquacul‐ture Reports,33:101786. doi:10.1016/j.aqrep.2023.101786.Hardingham T E,Fosang A J. 1992. Proteoglycans:Many forms and many functions[J]. FASEB Journal,6(3):861-870.

He J J,Shen C H,Liang H Y,Fang X C,Lu J Z. 2020. Antimi‐crobial properties and immune-related gene expression of a C-type lectin isolated from Pinctada fucata martensi[iJ]. Fish amp; Shellfish Immunology,105:330-340. doi:10.1016/j.fsi.2020.07.017.

Hu M H,Li L,Sui Y M,Li J L,Wang Y J,Lu W Q,Dupont S. 2015. Effect of pH and temperature on antioxidant responses of the thick shell mussel Mytilus coruscus[J]. Fish amp; Shellfish Immunology,46(2):573-583. doi:10. 1016/j.fsi.2015.07.025.

Huang Y,Shi Y,Hu S F,Wu T,Zhao Z. 2020. Characterization and functional analysis of two transmembrane C-type lec‐tins in obscure puffer( Takifugu obscurus)[J]. Frontiers in Immunology,11:436. doi:10.3389/fimmu.2020.00436.

Li D D,Nie H T,Dong S S,Huo Z M,Yan X W. 2019. Molecu‐lar cloning and expression analysis of C-type lectin (RpCTL) in Manila clam Ruditapes philippinarum after lipopolysaccharide challenge[J]. Fish amp; Shellfish Immu‐nology,86:981-993. doi:10.1016/j.fsi.2018.12.033.

Li R J,Zhou Y Y,Wang L,Ren G R,Zhou E M. 2014. Effects of cadmium alone and in combination with low molecular weight chitosan on metallothionein,glutathione-S-trans-ferase,acid phosphatase,and ATPase of freshwater crab Sinopotamon yangtsekiens[J]. Environmental Toxicology,29(3):298-309. doi:10.1002/tox.21758.

Liu P,Li W Y,Peng Y,Han S Y,Liang Z X,Cen Y H,Li X R,Wang P Y,Lü H Y,Zhang Q Y,Chen H L,Lin J. 2023. Molecular cloning,expression,and functional analysis of a putative lectin from the pearl oyster (Pinctada fucata,Gould 1850)[J]. Fish amp; Shellfish Immunology,143:109215. doi:10.1016/j.fsi.2023.109215.

Luo T,Yang H J,Li F,Zhang X B,Xu X. 2006. Purification,characterization and cDNA cloning of a novel lipo-polysaccharide-binding lectin from the shrimp Penaeus monodon[J]. Developmental amp; Comparative Immunology,30(7):607-617. doi:10.1016/j.dci.2005.10.004.

Qu B Z,Yang S S,Ma Z Y,Gao Z,Zhang S C. 2016. A new LDLa domain-containing C-type lectin with bacterial agglutinating and binding activity in amphioxus[J]. Gene,594(2):220-228. doi:10.1016/j.gene.2016.09.009.

Rabinovich G A,Toscano M A. 2009. Turning ?sweet? on immunity:Galectin-glycan interactions in immune tole-rance and inflammation[J]. Nature Reviews Immunology,9(5):338-352. doi:10.1038/nri2536.

R?szer T. 2014. The invertebrate midintestinal gland (hepato‐pancreas) is an evolutionary forerunner in the integration of immunity and metabolism[J]. Cell and Tissue Research,358(3):685-695. doi:10.1007/s00441-014-1985-7.

Sun J J,Wang L L,Song L S. 2023. The primitive complement system in molluscs[J]. Developmental amp; Comparative Immunology,139:104565. doi:10.1016/j.dci.2022.104565.

Vasta G R,Ahmed H,Odom E W. 2004. Structural and func‐tional diversity of lectin repertoires in invertebrates,proto‐chordates and ectothermic vertebrates[J]. Current Opinion in Structural Biology,14(5):617-630. doi:10.1016/j.sbi. 2004.09.008.

Wang L L,Qiu L M,Zhou Z,Song L S. 2013. Research prog‐ress on the mollusc immunity in China[J]. Developmental amp; Comparative Immunology,39(1-2):2-10. doi:10.1016/j.dci.2012.06.014.

Wang L Y,Huang M G,Zhang H X,Song L. 2011. The immune role of C-type lectins in molluscs[J]. ISJ-Invertebrate Survival Journal,8(2):241-246.

Zhang S J,Yu J J,Wang H X,Liu B Z Z,Xin Y. 2019. p38 MAPK is involved in the immune response to pathogenic Vibrio in the clam Meretrix petechialis[J]. Fish amp; Shell‐fish Immunology,95:456-463. doi:10.1016/j.fsi.2019.10.048.

Zhao Z Y,Yin Z X,Weng S P,Guan H J,Li S D,Xing K,Chan S M,He J G. 2007. Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virusresis‐tant shrimp (Litopenaeus vannamei) by suppression sub‐tractive hybridisation[J]. Fish amp; Shellfish Immunology,22(5):520-534. doi:10.1016/j.fsi.2006.07.003.

(責任編輯 蘭宗寶)

猜你喜歡
合浦結構域胰腺
合浦絨螯蟹研究進展
當代水產(2021年9期)2021-12-02 01:35:02
同時多層擴散成像對胰腺病變的診斷效能
蛋白質結構域劃分方法及在線服務綜述
合浦珠母貝完全雙列雜交組合生長性狀比較
重組綠豆BBI(6-33)結構域的抗腫瘤作用分析
組蛋白甲基化酶Set2片段調控SET結構域催化活性的探討
千里水茫茫,南海明夜珰——六朝士民的“珠”印象與合浦珠業(yè)
合浦漢墓群 見證漢代的繁榮“海絲”
大眾考古(2015年7期)2015-06-26 08:40:56
哪些胰腺“病變”不需要外科治療
泛素結合結構域與泛素化信號的識別
徐汇区| 微博| 犍为县| 南靖县| 永定县| 韩城市| 汉中市| 疏勒县| 腾冲县| 河池市| 柘城县| 敖汉旗| 当雄县| 峡江县| 错那县| 谷城县| 南溪县| 鄂尔多斯市| 文安县| 固始县| 桂平市| 塘沽区| 涞源县| 肇源县| 大田县| 宜阳县| 工布江达县| 龙胜| 吴桥县| 大兴区| 镇雄县| 黎平县| 手机| 香格里拉县| 中卫市| 兴文县| 张家口市| 巨野县| 嵩明县| 化德县| 蒙城县|