国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

饑餓脅迫對花鱸幼魚攝食行為的分子調(diào)控研究

2024-02-09 00:00:00張瑞瓊邱麗華李太初張博趙超閆路路張博王鵬飛
南方農(nóng)業(yè)學(xué)報 2024年11期
關(guān)鍵詞:花鱸

摘要:【目的】探究饑餓脅迫對花鱸幼魚攝食行為的分子調(diào)控,為應(yīng)對花鱸饑餓脅迫和解析饑餓脅迫對花鱸攝食行為的影響提供理論參考。【方法】以花鱸幼魚為研究對象,饑餓處理后檢測饑餓脅迫對花鱸幼魚體質(zhì)量和攝食率的影響及饑餓脅迫對攝食相關(guān)基因相對表達(dá)量的影響。饑餓再投喂處理后,實時熒光定量PCR檢測饑餓再投喂對花鱸幼魚攝食相關(guān)基因相對表達(dá)量的影響。【結(jié)果】短期饑餓和中長期饑餓處理后花鱸幼魚體質(zhì)量和增重率均顯著降低(Plt;0.05,下同),食欲生成相關(guān)基因相對表達(dá)量均顯著升高,厭食生成相關(guān)基因相對表達(dá)量均顯著降低。短期饑餓再投喂花鱸幼魚攝食率能恢復(fù)到正常水平,食欲生成相關(guān)基因npy、agrp、mch和galanin相對表達(dá)量逐漸降低,投喂3 d后恢復(fù)到對照組水平;厭食生成相關(guān)基因m-tor、pomc和α-msh相對表達(dá)量逐漸升高。長期饑餓再投喂花鱸幼魚食攝食率不能恢復(fù)至正常水平,食欲生成相關(guān)基因npy、agrp、mch、galanin和厭食生成相關(guān)基因leptin、m-tor、pomc和α-msh相對表達(dá)量均逐漸升高?!窘Y(jié)論】短期饑餓脅迫和中長期饑餓脅迫花鱸幼魚體質(zhì)量和增重率均顯著下降,短期饑餓再投喂花鱸幼魚攝食率能恢復(fù)至正常水平,食欲生成相關(guān)基因相對表達(dá)量逐漸降低,厭食生成相關(guān)基因(m-tor、pomc和α-msh)相對表達(dá)量逐漸升高;中長期饑餓再投喂花鱸幼魚攝食率不能恢復(fù)至正常水平,食欲生成相關(guān)基因和厭食

生成相關(guān)基因相對表達(dá)量均呈逐漸升高的變化趨勢。

關(guān)鍵詞:花鱸;饑餓脅迫;食欲生成因子;厭食生成因子

中圖分類號:S965.211文獻(xiàn)標(biāo)志碼:A 文章編號:2095-1191(2024)11-3436-08

Molecular regulation of starvation stress on feeding behavior of juvenile Lateolabrax maculates

ZHANG Rui-qiong1,2, QIU Li-hua2,3, LI Tai-chu2,4, ZHANG Bo2,3a, ZHAO Chao2,3YAN Lu-lu2,3, ZHANG Bo2,3b, WANG Peng-fei2,3*

(1College of Fisheries and Life Sciences, Dalian Ocean University, Dalian, Liaoning 116000, China; 2South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong 510300, China; 3Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572426, China; 4Tianjin Fishery Institute,Tianjin 300221, China)

Abstract:【Objective】Investigating the molecular regulation of feeding behavior in juvenile Lateolabrax maculatusunder starvation stress, to provide theoretical references for coping with starvation stress in L. maculatus and elucidating the impact of starvation stress on their feeding behavior. 【Method】Using juvenile L. maculatus as subjects, investigated the effects of starvation stress on body mass and feeding rate, as well as the impact on the relative expression levels of feeding related genes. After the starvation followed by feeding treatment, real-time fluorescence quantitative PCR was employed to assess the influence of starvation and feeding on the relative expression levels of feeding-related genes in the juvenile L. maculatus.【 Result】After both short-term and medium and long term starvation treatments, the body mass and body mass gain of juvenile L. maculatus was significantly reduced( Plt;0.05, the same below), with a significant increasein the relative expression levels of appetite generation genes and a significant decrease in the relative expression levels of anorexia generation genes. After short-term starvation followed by feeding, the feeding rate of juvenile L. maculatus could recover to normal level, with the relative expression levels of appetite generation genes npy, agrp, mch and galanin grodually decreased, returning to control group level after 3 d of feeding; the relative expression levels of an‐orexia generation genes m-tor, pomc and α-msh gradually increased. In contrast, long-term starvation and followed by feeding did not allow the feeding rate of juvenile L. maculatus to return to normal levels, with the relative expression levels of both appetite-stimulating genes npy, agrp, mch and galanin and anorexia generation genes leptin, m-tor, pomc and α-msh gradually increased.【 Conclusion】The body mass and body mass gain of juvenile L. maculatus is significantly decreased under short-term and long-term starvation stress, and the feeding rate of juvenile L. maculatus after short-term starvation followed by feeding returned to normal level. The expression levels of appetite generation genes gradually de‐crease, and the expression levels of anorexia generation genes( leptin, m-tor, pomc and α-msh) first decrease and then in‐crease. The feeding rate of juvenile L. maculatus under long-term starvation followed by feeding can not recover to the normal level, and the relative expression levels of appetite generation genes and anorexia generation genes grodually in‐crease.

Key words: Lateolabrax maculatus; starvation stress; appetite generation factors; anorexia generation factors

Foundation items: Guangdong Basic and Applied Basic Research Project(2023A1515030022); Guangdong Key Area Research and Development Plan Project(2021B0202020002); Guangzhou Science and Technology Project (2023 B03J1304); Central Public-interest Scientific Institution Basal Research Fund, CAFS(2023TD21)

0 引言

【研究意義】花鱸(Lateolabrax maculatus)又名海鱸、七星鱸,隸屬于硬骨魚綱(Osteichthyes)鱸形目(Perciformes)鮨科(Serranidae),是我國重要的海水養(yǎng)殖魚類,年養(yǎng)殖量居全國海水養(yǎng)殖魚類前三(農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局等,2021,2022,2023)。在集約化養(yǎng)殖過程中,不及時或不均勻的投喂常導(dǎo)致花鱸因長期攝食不足或饑餓而產(chǎn)生的異速生長(在幼魚階段尤其明顯),進(jìn)而影響花鱸的日常管理與商品魚質(zhì)量(Azodi et al.,2015)。因此,開展饑餓脅迫對花鱸幼魚攝食行為的分子調(diào)控研究,對應(yīng)對花鱸饑餓脅迫和解析饑餓脅迫對花鱸攝食行為的影響具有重要意義?!厩叭搜芯窟M(jìn)展】饑餓、低溫、鹽度和低氧等環(huán)境脅迫在魚類生存與適應(yīng)過程中普遍存在(黃偉卿等,2022;徐德峰等,2024)。饑餓脅迫是魚類養(yǎng)殖和自然生態(tài)環(huán)境中常見的壓力源,饑餓狀態(tài)下魚類的各項生理生化指標(biāo)會發(fā)生變化,進(jìn)而影響魚類生長及各項生命活動(Yang et al.,2019a)。短期饑餓能顯著抑制鮸魚早期幼體的生長和消化酶活性,在饑餓后3和6 d,后期幼體和稚魚的生長和消化酶活性也受到顯著影響(單秀娟和竇碩增,2011);長期饑餓能引起羅非魚脾臟萎縮、T細(xì)胞凋亡及自發(fā)性炎癥,進(jìn)而損害免疫細(xì)胞穩(wěn)態(tài),使羅非魚更易受到細(xì)菌感染,并影響其存活率(Li et al.,2023)。人工養(yǎng)殖條件下魚類是否饑餓受其攝食行為的調(diào)控,而攝食行為由大腦中食欲生成因子和厭食生成因子的平衡決定(詹秋羽等,2020)。食欲生成因子可增強動物食欲,主要受甘丙肽(galanin)、黑色素聚集激素(mch)、刺鼠(agrp)相關(guān)基因和神經(jīng)肽Y(npy)等分子的調(diào)控(Volkoff and Peter,2001;Kang and Kim,2013;Bertucci et al.,2019);厭食生成因子則能抑制食欲并增加機(jī)體能量消耗,主要受雷帕霉素靶蛋白(m-tor)、瘦素(leptin)、阿片黑素促皮質(zhì)激素(pomc)及α -促黑素細(xì)胞激素(α -msh)等分子的調(diào)控(Laplante and Sabatini,2012;Tavares et al.,2013;Anderson et al.,2016;Yang et al.,2019b)。虹鱒魚腹腔注射瘦素后攝食量在24 h內(nèi)顯著降低,提示瘦素在虹鱒魚中可能通過抑制食欲來調(diào)控其攝食行為(Murashita et al.,2008);神經(jīng)肽Y作為一種食欲生成因子,能刺激金魚食欲并促進(jìn)其攝食行為,提高其活性可能會促進(jìn)金魚食欲(Butler and Volkoff,2023)?!颈狙芯壳腥朦c】魚類饑餓脅迫在自然狀態(tài)與人工集約化養(yǎng)殖過程中普遍存在,但至今鮮見從遺傳調(diào)控角度解析不同饑餓階段花鱸幼魚攝食行為調(diào)節(jié)機(jī)制的研究報道。【擬解決的關(guān)鍵問題】以花鱸幼魚為研究對象,饑餓處理后檢測花鱸幼魚體質(zhì)量和攝食率,饑餓再投喂處理后檢測花鱸幼魚攝食調(diào)控關(guān)鍵因子食欲生成和厭食生成相關(guān)基因表達(dá)水平,探究饑餓脅迫對花鱸幼魚攝食的影響,為應(yīng)對人工集約化養(yǎng)殖過程中魚類饑餓脅迫問題提供理論參考。

1 材料與方法

1. 1 試驗材料

供試花鱸幼魚購自饒平西海岸水產(chǎn)科技公司,選擇健壯無傷、平均體質(zhì)量15.69±0.19 g花鱸幼魚100尾。動物試驗由中國水產(chǎn)科學(xué)研究院動物倫理委員會批準(zhǔn),批準(zhǔn)號2011AA1004020012。

1. 2 試驗方法

活力較好的花鱸幼魚置于室內(nèi)水泥池中暫養(yǎng)2周使其適應(yīng)試驗環(huán)境。暫養(yǎng)期間每天9:00和17:00各投喂一次配合飼料,每天換水量為總水體積的1/3。暫養(yǎng)及試驗期間的水質(zhì)指標(biāo):溫度(26.0±1.0)℃,鹽度28‰~30‰,溶解氧大于5.0 mg/L,pH 7.81~8.30。暫養(yǎng)2周后,將花鱸幼魚隨機(jī)分為:對照組(C):每天正常投喂;短期饑餓組(S3):連續(xù)饑餓3 d(S3-0)、饑餓3 d后投喂1 d(R3-1)、饑餓3 d后投喂2 d(R3-2)、饑餓3 d后投喂3 d(R3-3);中長期饑餓組(S7):連續(xù)饑餓7 d( S7-0)、饑餓7 d后投喂1 d (R7-1)、饑餓7 d后投喂2 d(R7-2)、饑餓7 d后投喂3 d(R7-3)。試驗期間的養(yǎng)殖條件及投喂處理與暫養(yǎng)期間一致。

1. 3 樣品采集與測定

試驗開始前,每組隨機(jī)撈取10尾花鱸幼魚測量初始體質(zhì)量(精確至0.01 g)。試驗開始后,在每個設(shè)定階段隨機(jī)撈取6尾花鱸幼魚,采樣之前使用MS-222麻醉劑(200 mg/L)麻醉花鱸幼魚,測量體質(zhì)量并計算體質(zhì)量下降率(BMDR)、體質(zhì)量恢復(fù)率(BMRR)、增重率(BWG)和攝食率(FR),隨后采集

全腦組織,并迅速置于液氮中保存?zhèn)溆?。公式如下?/p>

BMDR(%)=(M0-Ms)/M0×100

BMRR(%)=(M-M)/M×10rss0

BWG(%)=(M-M)/M×10r000

FR(%)=N/M×10d d0

式中,M為初始體質(zhì)量(g);M為饑餓結(jié)束時0s體質(zhì)量(g);M為恢復(fù)投喂結(jié)束后體質(zhì)量(g);N為日rd攝食量(g);M為恢復(fù)投喂后不同天數(shù)體質(zhì)量(g)d。

1. 4 不同攝食條件下攝食相關(guān)基因表達(dá)分析

采用TRIzol法提取組織總RNA并反轉(zhuǎn)錄合成cDNA。用Primer Premier 5.0設(shè)計開放閱讀框(ORF)特異性擴(kuò)增引物(表1)。實時熒光定量PCR反應(yīng)體系12.50 μL:2×SYBR Premix Ex Taq 6.25 μL,cDNA模板1.00 μL,上、下游引物(30 mmol/L)各0.50 μL,ddH2O 4.25 μL。擴(kuò)增程序:94 ℃預(yù)變性30 s;94 ℃ 5 s,60 ℃ 30 s,72 ℃ 30 s,進(jìn)行40個循環(huán)。熔解曲線分析為65~95 ℃,以確保每個單一產(chǎn)物的擴(kuò)增效果。每組設(shè)置6個生物學(xué)重復(fù),以β-Actin為內(nèi)參基因使用2-ΔΔCt法計算目的基因相對表達(dá)量。目的基因mch、galanin、α-msh、agrp、npy、leptin、pomc和m-tor 參照王家齊(2018)的花鱸轉(zhuǎn)錄組數(shù)據(jù)。

1. 5 統(tǒng)計分析

試驗數(shù)據(jù)采用SPSS 26.0進(jìn)行單因素方差分析(One-way ANOVA)和Duncan’s多重比較分析,利用GraphPad Prism 8.0制圖。

2 結(jié)果與分析

2. 1 饑餓再投喂對花鱸幼魚體質(zhì)量的影響

饑餓再投喂對花鱸幼魚體質(zhì)量的影響見表2?;|幼魚的體質(zhì)量隨饑餓時間延長而下降,S3組和S7組體質(zhì)量下降率分別為1.27%和1.79%;恢復(fù)投喂后,S3組和S7組花鱸體質(zhì)量均有所增加,體質(zhì)量恢復(fù)率分別為8.97%和3.71%,饑餓時間越長恢復(fù)率越小;試驗結(jié)束時,S3組和S7組花鱸幼魚體質(zhì)量均有所增加,S3組增重率顯著高于S7組(Plt;0.05,下同)。此外,恢復(fù)投喂后S3組和S7組雖然體質(zhì)量均有所增加,但增重率均顯著低于對照組,分別為8.15%和1.85%。表明饑餓脅迫對花鱸幼魚體質(zhì)量存在顯著影響。

2. 2 饑餓再投喂對花鱸幼魚攝食率的影響

饑餓再投喂對花鱸幼魚攝食率的影響如圖1所示。R3-1組花鱸幼魚攝食率顯著高于C組,攝食率由1.62%升高至1.94%,約升高20%。R7-1組花鱸幼魚攝食率降低了15%,顯著低于C組。試驗結(jié)束時,R3-3組花鱸幼魚攝食率恢復(fù)至C組水平,而R7-3組花鱸幼魚攝食率顯著低于C組。表明饑餓脅迫對花鱸幼魚體質(zhì)量的恢復(fù)存在顯著影響,且饑餓脅迫時間越長影響越大。

2. 3 饑餓脅迫對花鱸幼魚攝食相關(guān)基因相對表達(dá)量的影響

饑餓脅迫對花鱸幼魚攝食相關(guān)基因相對表達(dá)量的影響如圖2所示。與C組相比,S3組和S7組花鱸幼魚食欲生成相關(guān)基因galanin、mch、agrp和npy的相對表達(dá)量均顯著升高;與S3組相比,S7組花鱸幼魚食欲生成相關(guān)基因的相對表達(dá)量顯著降低(圖2-A)。與C組相比,S3組和S7組花鱸幼魚厭食生成相關(guān)基因m-tor、leptin、pomc和α-msh的相對表量表達(dá)均顯著降低,且S7組降幅較S3組更大(圖2-B)。表明饑餓脅迫下花鱸幼魚能通過促進(jìn)食欲生成相關(guān)基因的相對表達(dá)量,降低厭食相關(guān)基因的相對表達(dá)量來調(diào)控其攝食行為。

2. 4 短期饑餓再投喂對花鱸幼魚攝食相關(guān)基因相對表達(dá)量的影響

結(jié)果如圖3所示,R3-1組花鱸幼魚食欲生成相關(guān)基因npy、agrp、mch和galanin的相對表達(dá)量顯著高于C組,且隨著投喂時間延長,食欲生成相關(guān)基因的相對表達(dá)量逐漸降低,至投喂3 d后基本恢復(fù)到C組水平。R3-1組花鱸幼魚厭食生成相關(guān)基因m-tor、pomc和α-msh的相對表達(dá)量顯著低于C組,且隨著投喂時間延長,厭食生成相關(guān)基因相對表達(dá)量逐漸升高,至投喂3 d后,m-tor和α-msh基因相對表達(dá)量基本恢復(fù)到C組水平?;謴?fù)投喂后,厭食生成相關(guān)基因leptin的相對表達(dá)量雖整體呈下降趨勢,但在投喂3 d后相對表達(dá)量仍顯著高于C組。

2. 5 長期饑餓再投喂對花鱸幼魚攝食相關(guān)基因相對表達(dá)量的影響

結(jié)果如圖4所示,恢復(fù)投喂后,花鱸幼魚食欲生成相關(guān)基因npy、agrp、mch和galanin的相對表達(dá)量持續(xù)升高,但R7-3組仍顯著低于C組。厭食生成相關(guān)基因m-tor、pomc和α-msh的相對表達(dá)量在恢復(fù)投喂后呈升高趨勢,且m-tor和pomc基因相對表達(dá)量在R7-3組仍顯著低于C組。表明長期饑餓脅迫導(dǎo)致花鱸幼魚促食調(diào)節(jié)能力降低,促食/抑食平衡向食欲降低的方向變化,且短期內(nèi)不能恢復(fù)到正常攝食調(diào)節(jié)水平。

3 討論

攝食調(diào)節(jié)是魚類應(yīng)對饑餓脅迫的重要機(jī)制,對魚類的生存和生長具有重要意義(McCue,2010;Adakli and Ta?bozan,2015;馬元等,2022)。本研究以花鱸幼魚為研究對象,通過不同時長饑餓處理及再投喂試驗,探究饑餓脅迫對花鱸幼魚攝食行為的影響及調(diào)控機(jī)制。

3. 1 饑餓對花鱸幼魚攝食行為的影響

饑餓脅迫是一種常見的逆境脅迫,對魚類生理、行為及基因的表達(dá)等均有重要影響。研究表明,南方鲇、團(tuán)頭魴和比目魚幼魚等在饑餓處理下生長速率和脂肪含量逐漸降低,胃腸道和肌肉發(fā)育也受顯著影響(McGaw,2007;Piccinetti et al.,2015;Ren et al.,2015);舌鰨(Cynoglossus semilaevis)幼魚經(jīng)饑餓脅迫處理后體質(zhì)量顯著低于同期正常養(yǎng)殖組,且不同時長的饑餓處理對幼魚攝食率和消化率均有顯著影響(Tian et al.,2010)。本研究發(fā)現(xiàn),短期饑餓處理對花鱸幼魚體質(zhì)量和攝食影響較小,而長期饑餓處理影響較大,且不同饑餓時長處理對花鱸幼魚攝食相關(guān)基因的調(diào)控存在明顯差異。魚類攝食調(diào)節(jié)是一個復(fù)雜的神經(jīng)—體液調(diào)節(jié)過程,由大腦中食欲生成因子和厭食生成因子的平衡決定。因此,探究食欲生成因子和厭食生成因子相關(guān)基因的表達(dá)是研究魚類攝食行為的重要途徑(Lin et al.,2000;Silverstein,2002;詹秋羽等,2020;Assanet al.,2021)。本研究發(fā)現(xiàn),饑餓處理后花鱸幼魚食欲生成相關(guān)基因相對表達(dá)量上調(diào),厭食生成相關(guān)基因相對表達(dá)量下調(diào),表明饑餓處理能促進(jìn)花鱸幼魚攝食。隨著饑餓時間增加,食欲生成相關(guān)基因相對表達(dá)量明顯降低,提示長期饑餓條件下花鱸幼魚促進(jìn)攝食的能力降低,與Wan等(2012)、李林芳(2013)對鯉魚(Cyprinus car‐pio)、斜帶石斑魚(Epinephelus coioides)和斑馬魚(Danio rerio)的研究結(jié)果相符。

3. 2 短期饑餓對花鱸幼魚攝食行為的影響

為應(yīng)對饑餓脅迫,魚類已進(jìn)化出耐餓機(jī)制以保證饑餓狀態(tài)下機(jī)體的各項生理活動(Caruso et al.,2011)。Tian等(2010)研究證實,短期饑餓通常對魚類攝食的影響較小,為進(jìn)一步探究短期饑餓再投喂對花鱸幼魚攝食的影響,本研究探究了饑餓3 d后再投喂對花鱸幼魚攝食調(diào)控相關(guān)基因表達(dá)的影響。結(jié)果表明,恢復(fù)投喂早期食欲生成相關(guān)基因表達(dá)顯著上調(diào),且在短期內(nèi)能恢復(fù)到正常水平,與在金魚(Narnaware and Peter,2001)和重口裂腹魚(Deng et al.,2019)中的研究結(jié)果一致;短期饑餓恢復(fù)投喂后花鱸幼魚厭食生成相關(guān)基因 pomc、m-tor和α-msh初始表達(dá)量顯著低于對照組,隨著投喂時間增加表達(dá)量逐漸上調(diào),提示短期饑餓后恢復(fù)攝食起始階段花鱸幼魚抑制攝食作用最弱,在草魚(Ctenopharyn‐godon idellus)(Gong et al.,2017)和刺鲃(Spinibar‐bus hollandi)(Yang et al.,2019b)中也觀察到相似的結(jié)果。表明短期饑餓對花鱸幼魚攝食的影響較小,且能通過調(diào)控攝食相關(guān)基因基本恢復(fù)至正常水平。需要注意的是,恢復(fù)投喂后厭食生成相關(guān)基因leptin表達(dá)量雖整體呈下降趨勢,但在投喂3 d后相對表達(dá)量仍高于C組,提示短期饑餓再投喂花鱸幼魚對leptin基因的調(diào)控可能與其他厭食生成相關(guān)基因不同,還需進(jìn)一步探究。

3. 3 長期饑餓對花鱸幼魚攝食行為的影響

饑餓突破閾值后會對魚類正常生理活動甚至存活產(chǎn)生嚴(yán)重影響(Bar,2014)。舌鰨幼魚經(jīng)長期饑餓后代謝率發(fā)生明顯變化,恢復(fù)投喂后體質(zhì)量也顯著低于對照組(Tian et al.,2015);羅非魚(Oreochromis niloticus)幼魚在長期饑餓后,血清指標(biāo)發(fā)生顯著變化,生長也受到明顯影響(Sakyi et al.,2020)。本研究中,中長期饑餓后花鱸幼魚體質(zhì)量顯著低于對照組,恢復(fù)投喂后食欲生成相關(guān)基因相對表達(dá)量也顯著低于對照組,且攝食率不能恢復(fù)至正常水平,提示長期饑餓脅迫可能造成了花鱸幼魚正常攝食調(diào)控功能受損,最終影響其生理代謝與攝食行為。研究表明,饑餓影響魚類免疫狀態(tài)(Gao et al.,2018;Dawood,2021),短期饑餓能增強羅非魚T細(xì)胞活性與增殖,而長期饑餓能顯著降低T細(xì)胞活性與增殖(Li et al.,2023);leptin基因具有維持集體能量代謝平衡的作用(Trombley et al.,2012),還參與調(diào)控免疫細(xì)胞(主要是T細(xì)胞)成熟和細(xì)胞因子分泌(Kinoshita et al.,2022)。本研究觀察到花鱸幼魚leptin基因短期饑餓脅迫和長期饑餓再投喂后期相對表達(dá)量均高于對照組,究其原因可能是饑餓脅迫影響了花鱸免疫狀態(tài),花鱸幼魚在短期饑餓脅迫后能激活T細(xì)胞免疫,而長期饑餓脅迫后則降低T細(xì)胞免疫。

4 結(jié)論

短期饑餓脅迫和中長期饑餓脅迫花鱸幼魚體質(zhì)量和增重率均顯著下降,短期饑餓再投喂花鱸幼魚攝食率能恢復(fù)至正常水平,食欲生成相關(guān)基因相對表達(dá)量逐漸降低,厭食生成相關(guān)基因(m-tor、pomc和α-msh)相對表達(dá)量逐漸升高;中長期饑餓再投喂花鱸幼魚攝食率不能恢復(fù)至正常水平,食欲生成相關(guān)基因和厭食生成相關(guān)基因相對表達(dá)量均逐漸升高。

參考文獻(xiàn)((References)):

黃偉卿,陳宇光,張藝,喬瑩,馬笑晚,周逢芳,阮少江,丁建發(fā). 2022. 鹽度脅迫對曼氏無針烏賊胚胎發(fā)育和生長性能的影響[J]. 漁業(yè)現(xiàn)代化,49(6):100-107.[ Huang W Q,Chen Y G,Zhang Y,Qiao Y,Ma X W,Zhou F F,Ruan S J,Ding J F. 2022. Effects of salinity stress on embryonic development and growth performance of cuttlefish Sepie-lla maindroni[J]. Fishery Modernization,49(6):100-107.] doi: 10.3969/j.issn.1007-9580.2022.06.013.

李林芳. 2013. 斑馬魚Galanin receptor 1a基因的時空表達(dá)及其功能研究[D]. 青島:中國海洋大學(xué). [Li L F. 2013. Spatiotemporal expression and functional study of the Galanin receptor 1a gene in zebrafish[D]. Qingdao:Ocean University of China.] doi:10.7666/d.D326830.

馬元,張興志,何蘋萍,官俊良,韋嬪媛,張立,李蔚,朱鵬,許尤厚,嚴(yán)雪瑜,陳曉漢,彭金霞. 2022. 低氧脅迫對香港牡蠣攝食和代謝的影響[J]. 廣東海洋大學(xué)學(xué)報,42(3):127-133.[ Ma Y,Zhang X Z,He P P,Guan J L,Wei P Y,Zhang L,Li W,Zhu P,Xu Y H,Yan X Y,Chen X H,Peng J X. 2022. Effects of hypoxia stress on ingestion and metabolism of Crassostrea hongkongensis[J]. Journal of Guangdong Ocean University,42(3):127-133.] doi:10. 3969/j.issn.1673-9159.2022.03.017.

單秀娟,竇碩增. 2011. 短期饑餓脅迫下鮸魚(Miichthys miiuy)早期生活階段的生長及消化酶活性研究[J]. 海洋與湖沼,42(2):213-220. [Shan X J,Dou S Z. 2011. Effects of short-term food deprivation on the growth and activities of digestive enzymes of miiuy croaker Miichthys miiuy larvae and juveniles[J]. Oceanologia et Limnologia Sinica,42(2):213-220.]

徐德峰,廖威龍,鄭曉嫻,茅林春,謝晶,鄧尚貴. 2024. 低溫與無水脅迫下凡納濱對蝦肌肉品質(zhì)劣變標(biāo)記蛋白識別[J]. 廣東海洋大學(xué)學(xué)報,44(2):76-86.[ Xu D F,Liao W L,Zheng X X,Mao L C,Xie J,Deng S G. 2024. Identifica‐tion of marker proteins indicating potential flesh quality deterioration of Litopenaeus vannamei under low tempera‐ture stress and waterless stress[J]. Journal of Guangdong Ocean University,44(2):76-86.] doi:10.3969/j.issn.1673-9159.2024.02.011.

農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局,全國水產(chǎn)技術(shù)推廣總站,中國水產(chǎn)學(xué)會. 2021. 2021中國漁業(yè)統(tǒng)計年鑒[M]. 北京:中國農(nóng)業(yè)出版社. [Fishery and Fishery Administration of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2021. 2021 China fishery sta‐

tistical year book[M]. Beijing: China Agricultural Press.]

農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局,全國水產(chǎn)技術(shù)推廣總站,中國水產(chǎn)學(xué)會. 2022. 2022年中國漁業(yè)統(tǒng)計年鑒[M]. 北京:中國農(nóng)業(yè)出版社.[ Fishery and Fishery Administration of the Ministry of Agriculture and Rural Affairs,National Fishery Technology Promotion Station,China Society of Fisheries. 2022. 2022 China fisheries statistics yearbook[M]. Beijing: China Agricultural Press.]

農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局,全國水產(chǎn)技術(shù)推廣總站,中國水產(chǎn)學(xué)會. 2023. 2023中國漁業(yè)統(tǒng)計年鑒[M]. 北京:中國農(nóng)業(yè)出版社.[ Fishery Administration of the Ministry of Agriculture and Rural Affairs,National Fisheries Techno-logy Extension Center,China Society of Fisheries. 2023. 2023 China fishery statistical yearbook[M]. Beijing:China Agriculture Press.]

王家奇. 2018. 花鱸簡化基因組和轉(zhuǎn)錄組測序及基因表達(dá)分析[D]. 上海: 上海海洋大學(xué).[ Wang J Q. 2018. Genome survey and transcriptome sequencing of Lateolabrax macu‐latus and genes expression analysis[D]. Shanghai: Shang‐hai Ocean University.]

詹秋羽,王驥騰,韓濤. 2020. 魚類攝食調(diào)控的研究進(jìn)展[J].飼料工業(yè),41(16):41-47.[ Zhan Q Y,Wang J T,Han T. 2020. Research progress of fish feeding regulation[J]. Feed Industry,41(16):41-47.] doi:10.13302/j.cnki.fi.2020.16.008.

Adakli A,Ta?bozan O. 2015. The effects of different cycles of starvation and refeeding on growth and body composition on European sea bass( Dicentrarchus labrax)[J]. Turkish Journal of Fisheries and Aquatic Sciences,15:425-433. doi:10.13140/RG.2.1.4626.4168.

Anderson E J,?akir I,Carrington S J,Cone R D,Ghamari-Langroudi M,Gillyard T,Gimenez L E,Litt M J. 2016. 60 years of POMC: Regulation of feeding and energy homeo‐stasis by α-MSH. Journal of molecular endocrinology,56(4):T157-T174. doi:10.1530/JME-16-0014.

Assan D,Huang Y,Mustapha U F,Addah M N,Li G L,Chen H P. 2021. Fish feed intake,feeding behavior,and the physiological response of apelin to fasting and refeeding[J]. Frontiers in Endocrinology,12:798903. doi:10.3389/fendo.2021.798903.

Azodi M,Ebrahimi E,Motaghi E,Morshedi V. 2015. Meta‐bolic responses to short starvation and re-feeding in rain‐bow trout (Oncorhynchus mykiss)[J]. Ichthyological Re-search,62:177-183. doi:10.1007/s10228-014-0421-z.

Bar N. 2014. Physiological and hormonal changes during pro‐longed starvation in fish[J]. Canadian Journal of Fisheries and Aquatic Sciences,71(10):1447-1458. doi:10.1139/cjfas-2013-0175.

Bertucci J I,Blanco A M,Sundarrajan L,Rajeswari J J,Velasco C,Unniappan S. 2019. Nutrient regulation of endocrine factors influencing feeding and growth in fish[J]. Fron‐tiers in Endocrinology,10:83. doi:10.3389/fendo.2019. 00083.

Butler Maggie J,Volkoff H. 2023. The role of visfatin/NAMPT in the regulation of feeding in goldfish( Carassius auratus)[J]. Peptides,160:170919. doi:10.1016/J.PEPTIDES.2022. 170919.

Caruso G,Denaro M G,Caruso M,Mancari F,Genovese L,Maricchiolo G. 2011. Response to short term starvation of growth,haematological,biochemical and non-specific immune parameters in European sea bass (Dicentrarchus labrax) and blackspot sea bream (Pagellus bogaraveo)[J]. Marine Environmental Research,72(1-2):46-52. doi:10.1016/j.marenvres.2011.04.005.

Dawood M A O. 2021. Nutritional immunity of fish intestines: Important insights for sustainable aquaculture[J]. Reviews in Aquaculture,13(1):642-663. doi:10.1111/raq.12492.

Deng X X,Lei L,Yuan D Y,Zheng Z L,Zhu C K,Luo H,Ye H,Li D M,Wang J,Li B H,Lv G J,Zhou C W. 2019. Cloning,expression profiling,and effects of fasting status on neuropeptide Y in Schizothorax davidi[J]. Journal of

Food Biochemistry,437:e12892. doi:10.1111/jfbc.12892.

Gao X J,Pi D M,Chen N,Li X X,Liu X D,Yang H,Wei W H,Zhang X J. 2018. Survival,virulent characteristics,and transcriptomic analyses of the pathogenic Vibrio anguilla‐rum under starvation stress[J]. Frontiers in Cellular and Infection Microbiology,8:389. doi:10.3389/fcimb.2018. 00389.

Gong Y L,Chen W J,Han D,Zhu X M,Yang Y X,Jin J Y,Liu H K,Xie S Q. 2017. Effects of food restriction on growth,body composition and gene expression related in regula‐tion of lipid metabolism and food intake in grass carp[J]. Aquaculture,469:28-35. doi:10.1016/j.aquaculture.2016. 12.003.

Kang D Y,Kim H C. 2013. Functional characterization of two melanin-concentrating hormone genes in the color camou‐flage,hypermelanosis,and appetite of starry flounder[J]. General and Comparative Endocrinology,189:74-83. doi:10.1016/j.ygcen.2013.04.025.

Kinoshita Y,Arita S,Ogawa T,Takenouchi A,InagakiOhara K. 2022. Augmented leptin-induced trefoil factor 3 expression and epidermal growth factor receptor transactivation differ‐entially influences neoplasia progression in the stomach and colorectum of dietary fat-induced obese mice[J]. Archives of Biochemistry and Biophysics,72: 109379. doi:10.1016/J.ABB.2022.109379.

Laplante M,Sabatini D M. 2012. mTOR signaling in growth control and disease[J]. Cell,149(2):274-293. doi:10. 1016/j.cell.2012.03.017.

Li K M,Wei X M,Li K,Zhang Q,Zhang J X,Wang D,Yang J L. 2023. Dietary restriction to optimize T cell immunity is an ancient survival strategy conserved in vertebrate evolu‐tion[J]. Cellular and Molecular Life Sciences:CMLS,80(8):219. doi:10.1007/s00018-023-04865-x.

Lin X,Volkoff H,Narnaware Y, Bernier N J,Peyon P,Peter R E. 2000. Brain regulation of feeding behavior and food intake in fish[J]. Comparative Biochemistry and Physio-logy Part A:Molecular amp; Integrative Physiology,126(4): 415-434. doi:10.1016/S1095-6433(00)00230-0.

McCue M D. 2010. Starvation physiology: Reviewing the dif‐ferent strategies animals use to survive a common cha-llenge[J]. Comparative Biochemistry and Physiology Part A:Molecular amp; Integrative Physiology.156(1):1-18. doi:10.1016/j.cbpa.2010.01.002.

McGaw I J. 2007. The interactive effects of exercise and fee-ding on oxygen uptake,activity levels,and gastric proces-sing in the graceful crab cancer gracilis[J]. Physiological and Biochemical Zoology,80(3):335-343. doi:10.1086/513083.

Murashita K,Uji S,Yamamoto T,R?nnestad I,Kurokawa T. 2008. Production of recombinant leptin and its effects on food intake in rainbow trout (Oncorhynchus mykiss)[J]. Comparative biochemistry and physiology Part B: Bio‐chemistry amp; Molecular Biology,150(4):377-384. doi:10.1016/j.cbpb.2008.04.007.

Narnaware Y K,Peter R E. 2001. Neuropeptide Y stimulates food consumption through multiple receptors in goldfish[J]. Physiology amp; Behavior,74(1-2):185-190. doi:10. 1016/s0031-9384(01)00556-x.

Piccinetti C C,Donati M,Radaelli G,Caporale G,Mosconi G,Palermo F,Cossignani L,Salvatori R,Lopez R P,Olivotto I. 2015. The effects of starving and feeding on Dover sole (Solea solea,Soleidae,Linnaeus,1758) stress response and early larval developmen[t J]. Aquaculture Research,46(10):2512-2526. doi:10.1111/are.12410.

Ren M C,Habte-Tsion H M,Liu B,Xie J,Ge X P,Zhou Q L,Pan L K. 2015. Food deprivation of blunt snout bream,megalobrama amblycephala fingerlings and the subsequent effect of feeding with different dietary starch levels on glu‐cose metabolism[J]. The Israeli Journal of Aquaculture-

Bamidgeh,67:1188.

Sakyi M E,Cai J,Tang J F,Xia L Q,Li P F,Abarike E D,Kue‐butornye F K A,Jian J C. 2020. Short term starvation and re-feeding in Nile tilapia( Oreochromis niloticus,Linnaeus 1758):Growth measurements,and immune responses. Aquaculture Reports,16:100261. doi:10.1016/j.aqrep.2019.100261.

Silverstein J T. 2002. Using genetic variation to understand con‐trol of feed intake in fish[J]. Fish Physiology and Bio‐chemistry,27:173-178. doi:10.1023/B:FISH.0000032724. 36866.ce.

Tavares E,Maldonado R,Mi?ano F J. 2013. Aminoprocalcitonin-mediated suppression of feeding involves the hypotha‐lamic melanocortin system[J]. American Journal of Phy-siology. Endocrinology and Metabolism,304(12):E1251-62. doi:10.1152/ajpendo.00590.2012.

Tian J,He G,Mai K S,Liu C D. 2015. Effects of postprandial starvation on mRNA expression of endocrine-,amino acid and peptide transporter-,and metabolic enzyme-related genes in zebrafish( Danio rerio)[J]. Fish Physiology and Biochemistry,41(3):773-787. doi:10.1007/s10695-015-0045-x.

Tian X L,F(xiàn)ang J H,Dong S L. 2010. Effects of starvation and recovery on the growth,metabolism and energy budget of juvenile tongue sole (Cynoglossus semilaevis)[J]. Aqua‐culture,310(1-2):122-129. doi:10.1016/j.aquaculture. 2010.10.021.

Trombley S,Maugars G,Kling P, Bj?rnsson B T,Schmitz M. 2012. Effects of long-term restricted feeding on plasma leptin,hepatic leptin expression and leptin receptor expres‐sion in juvenile Atlantic salmon( Salmo salar L.)[J]. Ge-neral and Comparative Endocrinology,175(1):92-99. doi:10.1016/j.ygcen.2011.10.001.

Volkoff H,Peter R E. 2001. Interactions between orexin A,NPY and galanin in the control of food intake of the gold‐fish,Carassius auratus[J]. Regulatory Peptides,101(1-3):59-72. doi:10.1016/S0167-0115(01)00261-0.

Wan Y M,Zhang Y,Ji P F,Li Y,Xu P,Sun X W. 2012. Molecular characterization of CART,AgRP,and MC4R genes and their expression with fasting and re-feeding in common carp (Cyprinus carpio)[J]. Molecular Biology Reports,39(3):2215-2223. doi:10.1007/s11033-011-

0970-4.

Yang M X,Deng K Y,Pan M Z,Gu Z X,Liu D,Zhang Y,Zhang W B,Mai K S. 2019a. Glucose and lipid metabolic adaptations during postprandial starvation of Japanese flounder Paralichthys olivaceus previously fed different levels of dietary carbohydrates[J]. Aquaculture,501:416-429. doi: 10.1016/j.aquaculture.2018.12.003.

Yang Y,Zhou H Q,Shu H,Zhong D M,Zhang M Q,Xia J H. 2019b. Effect of fasting and subsequent refeeding on the transcriptional profiles of brain in juvenile Spinibarbus hol‐landi[J]. PLoS One,14(3):e0214589. doi:10.1371/jour‐nal.pone.0214589.

(責(zé)任編輯 蘭宗寶)

猜你喜歡
花鱸
丁酸梭菌對花鱸幼魚生長性能、免疫消化及腸道菌群的影響
不同生長階段花鱸生長性狀與體質(zhì)量的相關(guān)性
花鱸
——家喻戶曉的中國海鱸
丁香酚對花鱸幼魚的麻醉效果
我國花鱸養(yǎng)殖產(chǎn)業(yè)現(xiàn)狀與種子工程研究進(jìn)展
鹽度脅迫對花鱸幼魚腸道抗氧化和非特異性免疫能力的影響
東營市花鱸淡水池塘養(yǎng)殖關(guān)鍵技術(shù)
花鱸運輸密度對其成活率的影響
花鱸攝食調(diào)控相關(guān)因子全長cDNA的克隆和序列分析
離岸深水抗風(fēng)浪網(wǎng)箱養(yǎng)殖海鱸體長與體重的關(guān)系
开封市| 兰西县| 咸阳市| 阳原县| 巴彦淖尔市| 竹溪县| 正阳县| 连城县| 仙桃市| 梅河口市| 永春县| 宽甸| 福安市| 阿瓦提县| 古蔺县| 肃北| 长沙县| 泾川县| 县级市| 托里县| 奉化市| 成武县| 远安县| 枝江市| 利川市| 九江市| 景德镇市| 津市市| 大理市| 永昌县| 武威市| 石柱| 彭阳县| 洛川县| 靖远县| 大足县| 岳阳县| 杭锦后旗| 洱源县| 博爱县| 剑川县|