鐘敏 施震 周勁松 李晉杰
基金項(xiàng)目:湖北省衛(wèi)生健康委2019-2020年度科研立項(xiàng)項(xiàng)目(WJ2019F162)
作者單位:1湖北中醫(yī)藥大學(xué)第一臨床醫(yī)學(xué)院(郵編430000);2湖北省中醫(yī)院(光谷院區(qū))疼痛科
作者簡介:鐘敏(1994),女,碩士在讀,主要從事急慢性疼痛的中西醫(yī)臨床方面研究。E-mail:isk1ud4x@163.com
△通信作者 E-mail:anbair3359@163.com
摘要:目的 探討γ-氨基丁酸(GABA)信號通路對膿毒癥大鼠急性肺損傷(ALI)內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)和線粒體自噬的影響。方法 SD大鼠分為CON組、Model組、GABA信號通路激活劑巴氯芬組(巴氯芬組)、GABA信號通路抑制劑荷包牡丹堿(BIC)組(BIC組),每組6只。巴氯芬組腹腔注射5 mg/kg的巴氯芬,BIC組腹腔注射1 mg/kg BIC,每日1次,連續(xù)處理2周。CON組、Model組腹腔注射等量生理鹽水。酶聯(lián)免疫吸附試驗(yàn)檢測血清中超氧化物歧化酶(SOD)、丙二醛(MDA)水平及支氣管肺泡灌洗液(BALF)中細(xì)胞色素C(Cyt.C)、煙酰胺腺嘌呤二核苷酸磷酸(NADPH)水平;透射電子顯微鏡(TEM)觀察肺組織細(xì)胞超微形態(tài);HE染色觀察肺組織病理形態(tài);TUNEL染色觀察肺組織細(xì)胞凋亡;Western blot檢測肺組織GABAAR、GRP78、CHOP蛋白表達(dá)。結(jié)果 與Model組相比,巴氯芬組肺腫脹、充血、炎性細(xì)胞浸潤現(xiàn)象改善,肺損傷評分、MDA含量、凋亡指數(shù)、Cyt.C和NADPH水平、GRP78和CHOP蛋白水平降低(P<0.05),吞噬線粒體的自噬性空泡數(shù)量、SOD含量、GABAAR蛋白水平增加(P<0.05),而BIC組以上指標(biāo)結(jié)果與巴氯芬組趨勢相反。結(jié)論 活化GABA信號通路可改善膿毒癥大鼠ALI。
關(guān)鍵詞:膿毒癥;急性肺損傷;內(nèi)質(zhì)網(wǎng)應(yīng)激;線粒體自噬;γ-氨基丁酸
中圖分類號:R563文獻(xiàn)標(biāo)志碼:ADOI:10.11958/20231352
Effects of GABA signaling pathway on endoplasmic reticulum stress and mitochondrial autophagy in septic rats with acute lung injury
ZHONG Min1, SHI Zhen2△, ZHOU Jinsong2, LI Jinjie2
1 The First Clinical College of Hubei University of Traditional Chinese Medicine, Wuhan 430000, China;
2 Department of Pain, Hubei Hospital of Traditional Chinese Medicine
△Corresponding Author E-mail: anbair3359@163.com
Abstract: Objective To investigate the effect of γ-aminobutyric acid (GABA) signaling pathway on endoplasmic reticulum (ER) stress and mitochondrial autophagy in septic rats with acute lung injury (ALI). Methods SD rats were randomly grouped into the control (CON) group, the model group, the GABA signaling pathway activator Baclofen group (the Baclofen group), the GABA signaling pathway inhibitor dicentrine group (the BIC group), with 6 rats in each group. The Baclofen group received intraperitoneal injection of 5 mg/kg Baclofen, and the BIC group received intraperitoneal injection of 1 mg/kg BIC, once a day, for two consecutive weeks. The CON group and the model group were injected with an equal amount of physiological saline via intraperitoneal injection. Enzyme linked immunosorbent assay was applied to detect serum levels of superoxide dismutase (SOD) and malondialdehyde (MDA) and levels of cytochrome C (Cyt.C) and Nicotinamide adenine dinucleotide phosphate (NADPH) in bronchoalveolar lavage fluid (BALF). Transmission electron microscopy (TEM) was applied to observe the ultrastructure of lung tissue cells. HE staining was applied to observe the pathological morphology of lung tissue. TUNEL staining was applied to observe the apoptosis of lung tissue. Western blot assay was applied to detect expression levels of GABAAR, GRP78 and CHOP proteins in lung tissue. Results Compared with the model group, the lung swelling, congestion and inflammatory cell infiltration were improved in the Baclofen group, and the lung injury score, MDA content, apoptosis index, Cyt.C and NADPH levels, GRP78, and CHOP protein levels were reduced (P<0.05). The number of autophagic vacuoles in phagocytic mitochondria, SOD content and GABAAR protein level were increased (P<0.05), however, the trend of above indicators in the BIC group was opposite to that in the Baclofen group. Conclusion Up-regulation of GABA signaling pathway may have an improvement effect on ALI in sepsis rats.
Key words: sepsis; acute lung injury; endoplasmic reticulum stress; mitophagy; gamma-aminobutyric acid
膿毒癥是一種臨床常見的急性危重疾病,主要表現(xiàn)為持續(xù)性低血壓、代謝性酸中毒和全身炎癥反應(yīng)綜合征,可導(dǎo)致患者多個器官功能損傷甚至死亡[1]。急性肺損傷(ALI)是膿毒癥常見的致死性并發(fā)癥[2]。目前,針對膿毒癥誘發(fā)ALI的治療方案仍然有限。一些研究顯示,降低膿毒癥誘導(dǎo)的內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)可以改善肺部炎癥和ALI,同時抑制ERS能夠提高脂多糖(LPS)處理的肺泡上皮細(xì)胞活力,并抑制其凋亡[3-4]。因此,ERS可能是膿毒癥及其并發(fā)癥臨床治療的新靶點(diǎn)。也有研究顯示,增強(qiáng)線粒體自噬可以減輕膿毒癥誘導(dǎo)的ALI[5]。γ-氨基丁酸(GABA)是哺乳動物中樞神經(jīng)系統(tǒng)中最重要的抑制性神經(jīng)遞質(zhì),但在呼吸系統(tǒng)中GABA信號通路卻是抵抗外來損傷和炎性反應(yīng)的興奮性介質(zhì),增加GABA A型受體(GABAAR)可降低ALI[6]。目前,鮮見有關(guān)GABA信號通路對于膿毒癥大鼠ALI影響的研究。本研究旨在探討GABA信號通路對膿毒癥大鼠ALI后ERS和線粒體自噬的影響。
1 材料與方法
1.1 主要材料 7周齡SPF級雄性SD大鼠33只,體質(zhì)量250~270 g,購自湖北貝恩特生物科技有限公司,生產(chǎn)許可證號:SCXK(鄂)2021-0027。本實(shí)驗(yàn)獲得湖北中醫(yī)藥大學(xué)第一臨床醫(yī)學(xué)院動物倫理委員會的批準(zhǔn)。GABA信號通路抑制劑荷包牡丹堿(BIC)、GABA信號通路激活劑巴氯芬、兔抗鼠GABAAR抗體、兔抗鼠葡萄糖調(diào)節(jié)蛋白78(GRP78)抗體、兔抗鼠C/EBP環(huán)磷酸腺苷反應(yīng)元件結(jié)合轉(zhuǎn)錄因子同源蛋白(CHOP)和兔抗鼠GAPDH抗體購自英國Abcam公司;大鼠超氧化物歧化酶(SOD)酶聯(lián)免疫吸附試驗(yàn)(enzyme-linked immunosorbent assay,ELISA)試劑盒、大鼠丙二醛(MDA)ELISA試劑盒、大鼠細(xì)胞色素C(Cyt.C)ELISA試劑盒購自上海酶聯(lián)生物科技有限公司;煙酰胺腺嘌呤二核苷酸磷酸(NADPH)ELISA試劑盒購自上海韻泰信息科技有限公司。
1.2 研究方法
1.2.1 造模及分組 隨機(jī)抽取9只大鼠作為CON組,余大鼠參照文獻(xiàn)[7],通過盲腸結(jié)扎和穿刺構(gòu)建膿毒癥大鼠模型。戊巴比妥鈉麻醉大鼠,剃掉腹部毛發(fā),通過腹部中線切口2 cm暴露盲腸。將盲腸分離并結(jié)扎在回盲瓣下方,使用21號針刺穿2次。將糞便擠出穿刺傷口。最后,將盲腸放回腹腔,縫合腹部切口。CON組和造模組各隨機(jī)抽取3只大鼠進(jìn)行HE染色,參照文獻(xiàn)[8]模型評判標(biāo)準(zhǔn),將剩余造模成功的18只大鼠隨機(jī)均分為Model組、巴氯芬組、BIC組。CON組大鼠僅接受剖腹手術(shù)和遠(yuǎn)端盲腸分離。巴氯芬組腹腔注射5 mg/kg的巴氯芬[9],每日1次,連續(xù)處理2周。BIC組腹腔注射1 mg/kg BIC[10],CON組和Model組腹腔注射等量生理鹽水,每日1次,連續(xù)處理2周。
1.2.2 ELISA法檢測血清中氧化S因子 藥物治療結(jié)束后,腹腔注射1%戊巴比妥鈉麻醉大鼠,腹主動脈采血3 mL,? ? ? ?3 000 r/min離心10 min,取上清液,按照ELISA試劑盒說明書檢測大鼠血清SOD、MDA水平。
1.2.3 ELISA法檢測大鼠支氣管肺泡灌洗液(BALF)中Cyt.C、NADPH水平 藥物治療結(jié)束后,收集BALF,并在4 ℃下以? 3 000 r/min離心10 min,按照ELISA試劑盒說明書檢測大鼠BALF中Cyt.C和NADPH水平。處死大鼠,分離肺組織,一部分肺組織透射電子顯微鏡(TEM)觀察及HE染色、TUNEL染色,余肺組織于-80 ℃中凍存。
1.2.4 TEM觀察肺組織細(xì)胞超微形態(tài) 3%戊二醛固定肺組織后,1%四氧化鋨再固定,丙酮脫水,Epon812包埋,半薄切片定位后制備70 nm超薄切片,醋酸鈾及枸櫞酸鉛雙重染色,每組隨機(jī)讀取3個視野,觀察大鼠組織顯微照片。
1.2.5 HE染色觀察肺組織損傷情況 取肺組織,在4%多聚甲醛中浸泡24 h 并用磷酸鹽緩沖液(PBS)洗滌,制備石蠟切片4 μm并經(jīng)蘇木精染色5 min,自來水沖洗3 s,1%鹽酸乙醇分化,5%伊紅染色3 min,二甲苯處理后中性樹脂封片,在光鏡下觀察肺組織病理變化。根據(jù)水腫、中性粒細(xì)胞浸潤、出血、細(xì)支氣管上皮脫屑和透明膜形成進(jìn)行肺損傷評分。肺損傷嚴(yán)重程度評分參照文獻(xiàn)[11-12],評分范圍為0~4分,評分越高損傷越重。
1.2.6 TUNEL染色檢測肺組織細(xì)胞凋亡情況 取固定在4%多聚甲醛中的肺組織切片,常規(guī)脫蠟、脫水,3%過氧化氫處理切片,蛋白酶K分離,放入濕盒中室溫標(biāo)記2 h,在37 ℃與1% Tris緩沖鹽溶液(TBS)反應(yīng)60 min。TUNEL標(biāo)記后,用二氨基聯(lián)苯胺(DAB)作為顯色劑對肺組織進(jìn)行復(fù)染。光學(xué)顯微鏡下凋亡細(xì)胞染色為深棕色和黃棕色。凋亡指數(shù)=凋亡細(xì)胞數(shù)/細(xì)胞總數(shù)×100%。
1.2.7 Western blot檢測肺組織GABAAR、GRP78、CHOP蛋白表達(dá) 收集每組大鼠的肺組織樣品。使用RIPA裂解液從肺組織中提取總蛋白。蛋白質(zhì)濃度通過BCA方法測定。將蛋白質(zhì)樣品經(jīng)8%十二烷基磺酸鈉-聚丙烯酰胺凝膠電泳分離,并轉(zhuǎn)移到硝酸纖維素膜上,分別加入GABAAR、GRP78、CHOP和GAPDH(均1∶1 000)一抗,4 ℃孵育過夜,將膜與辣根過氧化物酶標(biāo)記的IgG二抗(1∶5 000)在室溫孵育2 h。ECL化學(xué)發(fā)光試劑顯色,Image J軟件分析灰度值。
1.3 統(tǒng)計學(xué)方法 采用GraphPad Prism 8.0軟件進(jìn)行數(shù)據(jù)分析。符合正態(tài)分布的計量資料用[x] ±s表示,多組間比較采用單因素方差分析,組間多重比較采用SNK-q檢驗(yàn)。P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 各組大鼠氧化應(yīng)激指標(biāo)水平比較 與CON組比較,Model組大鼠SOD水平降低,MDA水平增加(P<0.05);與Model組比較,巴氯芬組SOD水平增加,MDA水平降低(P<0.05),而BIC組SOD水平降低,MDA水平增加(P<0.05),見表1。
2.2 各組大鼠BALF中Cyt.C和NADPH水平的比較 與CON組相比,Model組BALF中Cyt.C和NADPH水平增加(P<0.05);與Model組相比,巴氯芬組BALF中Cyt.C和NADPH水平降低,而BIC組BALF中Cyt.C和NADPH水平增加(P<0.05),見表2。
2.3 各組大鼠肺損傷比較 CON組肺組織結(jié)構(gòu)正常;與CON組相比,Model組肺組織炎性細(xì)胞浸潤嚴(yán)重,有明顯的肺泡充血、肺泡隔增厚、結(jié)構(gòu)損傷和間質(zhì)性中性粒細(xì)胞滲透現(xiàn)象,肺損傷評分增加(P<0.05),吞噬線粒體的自噬性空泡數(shù)量降低;與Model組相比,巴氯芬組肺組織腫脹、充血、炎性細(xì)胞浸潤現(xiàn)象改善,肺損傷評分降低(P<0.05),吞噬線粒體的自噬性空泡數(shù)量增加;而BIC組肺損傷加重,肺損傷評分增加(P<0.05),吞噬線粒體的自噬性空泡數(shù)量降低,見圖1、2,表3。
2.4 各組大鼠肺組織細(xì)胞凋亡比較 與CON組相比,Model組大鼠細(xì)胞凋亡指數(shù)增加(P<0.05);與Model組相比,巴氯芬組細(xì)胞凋亡指數(shù)降低,BIC組細(xì)胞凋亡指數(shù)增加(P<0.05),見表3、圖3。
2.5 各組大鼠肺組織GABAAR、GRP78、CHOP蛋白水平比較 與CON組相比,Model組GABAAR蛋白水平降低,GRP78、CHOP蛋白水平增加(P<0.05);與Model組相比,巴氯芬組GABAAR蛋白水平增加,GRP78、CHOP蛋白水平降低(P<0.05),而BIC組GABAAR蛋白水平降低,GRP78、CHOP蛋白水平增加(P<0.05),見圖4、表4。
3 討論
膿毒癥引發(fā)的ALI具有肺部炎癥反應(yīng)和肺泡損傷等一系列病理特征[13-14]。本研究結(jié)果發(fā)現(xiàn),Model組肺組織較CON組有明顯的肺泡充血、肺泡隔增厚、結(jié)構(gòu)損傷和間質(zhì)性中性粒細(xì)胞滲透現(xiàn)象,且肺損傷評分顯著高于CON組,具有ALI的典型表征。
研究顯示過度氧化應(yīng)激和ERS在ALI發(fā)病機(jī)制中起關(guān)鍵作用[15]。氧化應(yīng)激可以增強(qiáng)促炎基因的表達(dá),炎性細(xì)胞可以誘導(dǎo)ROS的過度生成,從而形成惡性循環(huán),促進(jìn)包括ALI在內(nèi)的多種疾病的發(fā)生和發(fā)展。本研究發(fā)現(xiàn),ALI大鼠SOD水平顯著下降,MDA水平顯著增加,表明ALI大鼠存在氧化應(yīng)激。ERS是由內(nèi)質(zhì)網(wǎng)(ER)中未折疊或錯誤折疊的蛋白質(zhì)積累引起,是細(xì)胞對ER紊亂的適應(yīng)性反應(yīng),但持續(xù)的ERS可能會誘發(fā)細(xì)胞損傷及凋亡[16]。GRP78在正常生理?xiàng)l件下可結(jié)合ERS傳感器,在增強(qiáng)的ERS過程中以更穩(wěn)定的方式與錯誤折疊或未折疊的蛋白質(zhì)相互作用。因此,GRP78的增加通常被用作ERS標(biāo)志分子[17]。CHOP是評估ERS的另一個標(biāo)記分子,在ERS中作為一種凋亡轉(zhuǎn)錄因子[18]。在本研究中,ALI大鼠凋亡指數(shù)、GRP78、CHOP蛋白水平相較CON組顯著增加,證實(shí)了ALI大鼠存在ERS和細(xì)胞凋亡。
當(dāng)ALI發(fā)生后,線粒體受損會釋放出大量的氧化酶,由此會導(dǎo)致更嚴(yán)重的氧化應(yīng)激和線粒體損傷[19]。當(dāng)線粒體受損時,線粒體呼吸鏈產(chǎn)物,如Cyt.C和NADPH會被釋放出來。因此,Cyt.C和NADPH水平的增加反映了線粒體損傷[20]。線粒體自噬是線粒體損傷自我修復(fù)的機(jī)制。增加線粒體自噬會降低線粒體呼吸鏈產(chǎn)物(如Cyt.C和NADPH)的水平,而Cyt.C和NADPH是線粒體自噬的生物標(biāo)志物[21]。Zhao等[22]發(fā)現(xiàn),調(diào)節(jié)線粒體自噬來降低肺組織和肺泡上皮細(xì)胞的炎癥和線粒體損傷可以防止LPS誘導(dǎo)的ALI。本研究中,Model組的Cyt.C和NADPH水平較CON組顯著增加,且吞噬線粒體的自噬性空泡數(shù)量顯著降低,與上述研究一致,證實(shí)了ALI大鼠線粒體自噬被抑制。
GABA信號通路是研究ALI的常見通路,GABA僅由大鼠肺中的肺神經(jīng)內(nèi)分泌細(xì)胞產(chǎn)生[23]。激活GABA信號通路和增加GABAAR蛋白水平可改善肺功能,減輕肺損傷[6]。本研究結(jié)果亦顯示,Model組大鼠肺組織GABAAR蛋白低表達(dá),推測降低GABA信號通路可能促進(jìn)了膿毒癥大鼠ALI。為了驗(yàn)證該推測,筆者團(tuán)隊使用GABA信號通路激活劑巴氯芬以及抑制劑BIC處理ALI大鼠,結(jié)果發(fā)現(xiàn),巴氯芬可促進(jìn)線粒體自噬功能及降低ERS,改善ALI大鼠肺損傷,而BIC結(jié)果與巴氯芬組的相反,BIC加重了肺損傷。因此,筆者推測GABA信號通路可能為線粒體自噬與ERS的調(diào)控機(jī)制,GABA信號通路可通過調(diào)控ERS與線粒體自噬的平衡來減輕膿毒癥引發(fā)的ALI。
綜上所述,激活GABA信號通路可能通過促進(jìn)線粒體自噬及降低ERS,進(jìn)而對膿毒癥大鼠ALI起到治療作用。然而本研究缺少對藥物劑量的探究,這將是后續(xù)研究的重點(diǎn)。
參考文獻(xiàn)
[1] CINAR I,SIRIN B,AYDIN P,et al. Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats[J]. Life Sci,2019,221:327-334. doi:10.1016/j.lfs.2019.02.039.
[2] LIU F,PENG W,CHEN J,et al. Exosomes derived from alveolar epithelial cells promote alveolar macrophage activation mediated by mirR-92a-3p in sepsis-induced acute lung injury[J]. Front Cell Infect Microbiol,2021,11:646546. doi:10.3389/fcimb.2021.646546.
[3] CHEN X,WANG Y,XIE X,et al. Heme oxygenase-1 reduces sepsis-induced endoplasmic reticulum stress and acute lung injury[J]. Mediators Inflamm,2018,2018:9413876. doi:10.1155/2018/9413876.
[4] JIANG L,XU L,ZHENG L,et al. Salidroside attenuates sepsis-associated acute lung injury through PPP1R15A mediated endoplasmic reticulum stress inhibition[J]. Bioorg Med Chem,2022,71:116865. doi:10.1016/j.bmc.2022.116865.
[5] CHEN H,LIN H,DONG B,et al. Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy[J]. Inflamm Res,2021,70(8):915-930. doi:10.1007/s00011-021-01481-y.
[6] HUANG T,ZHANG Y,WANG C,et al. Propofol reduces acute lung injury by up-regulating gamma-aminobutyric acid type a receptors[J]. Exp Mol Pathol,2019,110:104295. doi:10.1016/j.yexmp.2019.104295.
[7] LI R,REN T, ZENG J. Mitochondrial coenzyme q protects sepsis-induced acute lung injury by activating PI3K/Akt/GSK-3β/mTOR pathway in rats[J]. Biomed Res Int,2019,2019:5240898. doi:10.1155/2019/5240898.
[8] SHEN K,WANG X,WANG Y,et al. miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury[J]. Redox Biol,2023,62:102655. doi:10.1016/j.redox.2023.102655.
[9] 周正,宋美慧,褚光輝,等. GABA_(B)受體激動劑巴氯芬對小鼠空間識別記憶能力的影響[J]. 生命科學(xué)研究,2022,26(3):213-218. ZHOU Z,SONG M H,CHU G H,et al. Effect of GABAB receptor agonist baclofen on spatial cognition in mice[J]. Life Science Research,2022,26(3):213-218. doi:10.16605/j.cnki.1007-7847.2021.02.0123.
[10] 劉乃紅,王佃卿,彭志鋒. 荷包牡丹堿聯(lián)合早期跑步運(yùn)動對大鼠腦損傷恢復(fù)的協(xié)同效應(yīng)[J]. 中國應(yīng)用生理學(xué)雜志,2022,38(6):700-704. LIU N H,WANG D Q,PENG Z F. Synergistic effect of dicentime combined with early running on brain injury recovery in rats[J]. Chinese Journal of Applied Physiology,2022,38(6):700-704. doi:10.12047/j.cjap.6379.2022.127.
[11] WANG Y,YANG Y,CHEN L,et al. Death-associated protein kinase 1 mediates ventilator-induced lung injury in mice by promoting alveolar epithelial cell apoptosis[J]. Anesthesiology,2020,133(4):905-918. doi:10.1097/ALN.0000000000003464.
[12] 虢強(qiáng),朱美意,張杰,等. 紅景天苷調(diào)節(jié)CLP誘導(dǎo)的膿毒癥小鼠肺纖維化及JAK2/STAT3的活化[J]. 中國免疫學(xué)雜志,2022,38(10):1196-1200. GUO Q,ZHU M Y,ZHANG J,et al. Salidroside regulates pulmonary fibrosis and JAK2/STAT3 activation in CLP-induced sepsis mice[J]. Chinese Journal of Immunology,2022,38(10):1196-1200. doi:10.3969/j.issn.1000-484X.2022.10.008.
[13] 張昊,蘇乾,史佳,等. 電針通過NLRP3/caspase-1通路介導(dǎo)的細(xì)胞焦亡途徑減輕膿毒癥大鼠急性肺損傷[J]. 中國中西醫(yī)結(jié)合外科雜志,2023,29(6):814-818. ZHANG H,SU Q,SHI J,et al. Electroacupuncture attenuates acute lung injury induced by sepsis via NLRP3/caspase-1 pathway mediated pyrocytosis pathway[J]. Chinese Journal of Surgery of Integrated Traditional and Western Medicine,2023,29(6):814-818. doi:10.3969/j.issn.1007-6948.2023.06.017.
[14] 吳海濤,周洪禮,宋玉,等. 穿心蓮內(nèi)酯對盲腸結(jié)扎穿孔誘導(dǎo)的膿毒癥大鼠心肺功能和炎癥損傷的保護(hù)作用[J]. 天津醫(yī)藥,2022,50(1):67-73. WU H T,ZHOU H L,SONG Y,et al. Protective effects of andrographolide on cardiopulmonary function and inflammatory damage in sepsis rats induced by cecal ligation and perforation[J]. Tianjin Med J,2022,50(1):67-73.doi:10.11958/20210462.
[15] YOUSSEF N S,ELZAITONY A S,ABDEL BAKY N A. Diacerein attenuate LPS-induced acute lung injury via inhibiting ER stress and apoptosis: impact on the crosstalk between SphK1/S1P, TLR4/NFκB/STAT3,and NLRP3/IL-1β signaling pathways[J]. Life Sci,2022,308:120915. doi:10.1016/j.lfs.2022.120915.
[16] PAO H P,LIAO W I,TANG S E,et al. Suppression of endoplasmic reticulum stress by 4-PBA protects against hyperoxia-induced acute lung injury via up-regulating claudin-4 expression[J]. Front Immunol,2021,12:674316. doi:10.3389/fimmu.2021.674316.
[17] ZHANG Z K,ZHOU Y,CAO J,et al. Rosmarinic acid ameliorates septic-associated mortality and lung injury in mice via GRP78/IRE1α/JNK pathway[J]. J Pharm Pharmacol,2021,73(7):916-921. doi:10.1093/jpp/rgaa033.
[18] AHMAD S,ZAKI A,MANDA K,et al. Vitamin-D ameliorates sepsis-induced acute lung injury via augmenting miR-149-5p and downregulating ER stress[J]. J Nutr Biochem,2022,110:109130. doi:10.1016/j.jnutbio.2022.109130.
[19] SANG A,WANG Y,WANG S,et al. Quercetin attenuates sepsis-induced acute lung injury via suppressing oxidative stress-mediated ER stress through activation of SIRT1/AMPK pathways[J]. Cell Signal,2022,96:110363. doi:10.1016/j.cellsig.2022.110363.
[20] WANG T,ZHANG J,WEI H,et al. Matrine-induced nephrotoxicity via GSK-3β/nrf2-mediated mitochondria-dependent apoptosis[J]. Chem Biol Interact,2023,378:110492. doi:10.1016/j.cbi.2023.110492.
[21] LIU W,LI C C,LU X,et al. Overexpression of transcription factor EB regulates mitochondrial autophagy to protect lipopolysaccharide-induced acute lung injury[J]. Chin Med J(Engl),2019,132(11):1298-1304. doi:10.1097/CM9.0000000000000243.
[22] ZHAO R,WANG B,WANG D,et al. Oxyberberine prevented lipopolysaccharide-induced acute lung injury through inhibition of mitophagy[J]. Oxid Med Cell Longev,2021,2021:6675264. doi:10.1155/2021/6675264.
[23] JULIANA B,ALVIN T K,LINH A,et al. Pulmonary neuroendocrine cells secrete γ-Aminobutyric Acid to Induce Goblet Cell Hyperplasia in Primate Models[J]. Am J Respir Cell Mol Biol,2019,60(6):687-694. doi:10.1165/rcmb.2018-0179OC.
(2023-09-05收稿 2023-11-22修回)
(本文編輯 陸榮展)