摘要:【目的】克隆薄殼山核桃SQUAMOSA啟動子結(jié)合蛋白(SPL)轉(zhuǎn)錄因子基因CISPL2,并對其進(jìn)行亞細(xì)胞定位及表達(dá)分析,為探究該基因在薄殼山核桃雌花發(fā)育過程的分子機(jī)制提供理論依據(jù)?!痉椒ā扛鶕?jù)薄殼山核桃基因組數(shù)據(jù),采用RT-PCR方法克隆CiSPL2基因編碼區(qū)(CDS)序列,利用生物信息學(xué)軟件分析其序列特征和蛋白理化性質(zhì),構(gòu)建pCAMBIA1300-CiSPL2-GFP融合表達(dá)載體,瞬時轉(zhuǎn)化煙草后觀察熒光信號確定亞細(xì)胞定位情況。基于轉(zhuǎn)錄組數(shù)據(jù)和實時熒光定量PCR檢測CiSPL2基因在不同組織及不同雌花芽分化時期的表達(dá)模式?!窘Y(jié)果】薄殼山核桃CiSPL2基因CDS長度為1398bp,共編碼465個氨基酸殘基,相對分子量為51.78kD,理論等電點(pI)為8.28,不穩(wěn)定系數(shù)為49.89,脂肪酸氨基酸指數(shù)為64.62,平均親水性平均值(GRAVY)為-0.617,為不穩(wěn)定的親水性蛋白,含有SBP結(jié)構(gòu)域(位于第183~257位氨基酸),亞細(xì)胞定位于細(xì)胞核。CiSPL2蛋白的二級結(jié)構(gòu)主要由α-螺旋(17.42%)、延伸鏈(13.55%)、β-轉(zhuǎn)角(1.72%)和無規(guī)則卷曲(67.31%)組成。薄殼山核桃CiSPL2蛋白與核桃JrSPL2蛋白氨基酸序列的相似性最高,為95.05%,其次是光皮樺BISPL2蛋白,相似性為70.83%。CiSPL2蛋白與核桃JrSPL2蛋白親緣關(guān)系最近。CiSPL2基因啟動子中含有植物激素響應(yīng)、干旱脅迫響應(yīng)和分生組織表達(dá)元件。CiSPL2基因在雌花和果實中的表達(dá)水平顯著高于其他組織(Plt;0.05),在雌花芽分化各階段均有表達(dá),在雌花序形成期表達(dá)水平最高?!窘Y(jié)論】CiSPL2基因含有SPL轉(zhuǎn)錄因子家族典型的SBP保守結(jié)構(gòu)域,推測其參與調(diào)控薄殼山核桃雌花芽分化和發(fā)育過程。
關(guān)鍵詞:薄殼山核桃;CiSPL2基因;系統(tǒng)發(fā)育分析;亞細(xì)胞定位;基因表達(dá)
中圖分類號:S664.1文獻(xiàn)標(biāo)志碼:A文章編號:2095-1191(2024)01-0047-10
Cloning,subcellular localization and expression analysis of CiSPL2gene in pecan
WANG Min'·2,XI Dong3,MO Zheng-hai1,ZHANG Shi-jie',ZHU Can-can!*
('Institute of Botany,Jiangsu Province and Chinese Academy of Sciences,Nanjing,Jiangsu210095,China;2Horticul-ture Research Institute,Shanghai Academy ofAgricultural Sciences,Shanghai201403,China;3Qingpu District Agricultural Technology Extension Service Center in Shanghai,Shanghai201700,China)
Abstract:[Objective]This study conducted the gene cloning of the pecan SQUAMOSA promoter binding protein(SPL)transcription factor gene CiSPL2,subcellular localization and expression analysis were also conducted,in order to provide atheoretical basis for exploring the molecular mechanism of this gene during the female flower bud differentiation in pecan.【Method]The coding region(CDS)sequence of CiSPL2gene was cloned using RT-PCR based on the pecan ge-nome data,and the bioinformatics software was used to analyze its sequence characteristics and protein physical and chemical properties.The pCAMBIA1300-CiSPL2-GFP fusion expression vector was constructed,and subcellular localiza-tion was determined by observing fluorescence signals after transient transformation of tobacco.The expression patterns of CiSPL2gene in different tissues and female flower bud differentiation stages were studied based on the transcriptome data and real-time fluorescence quantitative PCR.【Result]The CDS length of the CiSPL2gene in pecan was1398bp,enco-ding atotal of465amino acids residues with arelative molecular weight of51.78kD.The theoretical isoelectric point(pI)was8.28,the instability coefficient was49.89,the fatty acid amino acid index was64.62,and the grand average of hydropathicity(GRAVY)was-0.617,indicating the protein was an unstable hydrophilic protein.The CiSPL2protein se-quence contained an SBP domain between the183and257amino acids.Subcellular localization showed that CiSPL2protein was located in the nucleus.The secondary structure of CiSPL protein was mainly composed of a-helix(17.42%),extended chain(13.55%),β-turn(1.72%)and random coil(67.31%).CiSPL2protein in pecan had the highest similarity with JrSPL2protein in walnut(95.05%),followed by Betula platyphylla BISPL2protein with asimilarity of70.83%CiSPL2protein had theclosest genetic relationship with thewalnut JrSPL2protein.The CiSPL2gene promoter contained plant hormone response,drought stress response,and meristem expression elements.Theexpression level of CiSPL2gene in female flowers and fruits was significantly higher than that in other tssues(Plt;0.05).The CiSPL2gene was expressed at all stages of female flower bud differentiation,with the highest expression level during the formationof female inflores-cence.【Conclusion]The CiSPL2gene contains atypical SBP conserved domain of the SPL transcription factor family,which maybe involved in regulating differentiation and development of female flower buds in pecan.
Keywords:pecan;CiSPL2gene;phylogenetic analysis;subcellular localization;geneexpression
Foundation items:National Natural Science Foundation of China(32001350);Jiangsu Natural Science Foundation(BK20210166)
0引言
【研究意義】薄殼山核桃[Carya illinoinensis(Wangehn.)K.Koch]是胡桃科山核桃屬植物,是一種重要的木本油料樹種,種仁中油脂含量在70%以上,其中不飽和脂肪酸含量高達(dá)97%(Huang et al.,2017)。薄殼山核桃為雌雄同株異花,雌花生于新梢頂端,雄花為菜荑花序。根據(jù)薄殼山核桃雌雄花開放時間分為3種類型:雌蕊先熟型、雄蕊先熟型和雌雄同熟型(Wood,2000)。薄殼山核桃產(chǎn)量與雌花數(shù)量、雌雄花比例、天氣狀況、授粉等因素有密切關(guān)系(姚小華等,2004)。目前,薄殼山核桃雌雄花發(fā)育研究多集中在外部形態(tài)、內(nèi)部解剖結(jié)構(gòu)和轉(zhuǎn)錄組表達(dá)模式分析,但成花基因克隆和功能鑒定方面的研究較少。SQUAMOSA啟動子結(jié)合蛋白(SQUAMOSA promoter-binding protein-like,SPL)轉(zhuǎn)錄因子是植物特有的一類基因家族,該家族均含有高度保守的SBP結(jié)構(gòu)域,由80個氨基酸殘基組成,包括2個Zn2+離子結(jié)合位點和1個核定位信號序列(Yamasaki et al.,2004)。2個Zn2+結(jié)合位點由Cys-Cys-His-Cys和Cys-Cys-Cys-His所組成,是鋅指結(jié)合基序,Zn2+離子在SPL蛋白與DNA結(jié)合過程中不可或缺(Cai et al.,2018)。核定位信號序列位于SBP結(jié)構(gòu)域的C末端,與第2個Zn2+結(jié)合位點部分重疊。SBP保守區(qū)域能結(jié)合順式作用元件TNCGTACAA,其中GTAC是核心序列(Shao et al.,2019)。SPL轉(zhuǎn)錄因子在植物成花轉(zhuǎn)變和花發(fā)育過程中發(fā)揮重要調(diào)控作用。對克隆薄殼山核桃SPL基因(CiSPL2),并進(jìn)行亞細(xì)胞定位及表達(dá)分析,有助于闡明SPL轉(zhuǎn)錄因子在薄殼山核桃成花轉(zhuǎn)變過程中的作用機(jī)制,對促進(jìn)提早開花、加快育種進(jìn)程具有重要意義?!厩叭搜芯窟M(jìn)展】SPL基因最早從金魚草中分離出來,而后陸續(xù)在擬南芥(Klein et al.,1996)、水稻(Yang et al.,2008)、番木瓜(Xu et al.,2020)、小麥(Zhu et al.,2020)、獼猴桃(Jing et al.,2021)、甜橙(Song et al.,2021)、菊花(Li et al.,2022a)和藍(lán)莓(Feng et al.,2023)中被發(fā)現(xiàn)。越來越多的研究發(fā)現(xiàn),SPL基因在植物生長和生理的各個方面發(fā)揮關(guān)鍵作用。OsSPL14基因可通過影響水稻地上部分生長素的極性運(yùn)輸,從而影響水稻側(cè)生分生組織中生長素分布,最終調(diào)節(jié)水稻分蘗芽的生長(Li et al.,2022b)。Shao等(2019)研究發(fā)現(xiàn),在水稻中OsmiR156-OsSPL3/OsSPL12模塊直接激活OsMADS50基因來調(diào)節(jié)水稻根冠發(fā)育。SPL轉(zhuǎn)錄因子在花發(fā)育過程中發(fā)揮重要調(diào)控作用。小麥TaSPL?3和TaSPL15基因在穗和籽粒中特異高表達(dá),與野生型相比,TaSPL13-2B轉(zhuǎn)基因小麥的每穗小花和籽粒顯著增加(Liet al.,2020)。水稻OsSPL2、OsSPL4、OsSPL16和OsSPL17基因通過microRNA156-SPL模塊響應(yīng)溫度變化進(jìn)而影響雌花育性(Sun et al., 2022)。過表達(dá)MsSPL20的轉(zhuǎn)基因苜蓿開花時間延遲,其延遲機(jī)制是MsSPL20基因通過調(diào)控參與小花發(fā)育基因HD3A、FTIP1、TEM1和HST1的表達(dá)來延遲開花時間;MsSPL13基因在苜蓿營養(yǎng)和生殖發(fā)育中起著至關(guān)重要的調(diào)節(jié)作用(Gao et al.,2018)。菊花年齡依賴的SPL轉(zhuǎn)錄因子被miR156調(diào)節(jié)影響的開花事件是通過NF-YB8的表達(dá)調(diào)控實現(xiàn)(Wei et al.,2017)。擬南芥中miR156和SPL家族將環(huán)境信號與開花進(jìn)程連接起來,SPL能整合光周期和赤霉素2條開花誘導(dǎo)途徑。光周期誘導(dǎo)能影響擬南芥AtSPL3、AtSPL4和AtSPL5基因的表達(dá),同時過表達(dá)CO或FT基因可提高AtSPL3基因的表達(dá)水平,促進(jìn)植物開花(Wang et al.,2009;Jung et al.,2011,2016)。短日照條件下赤霉素能通過SUPPRESSOR OF OVEREXPRESSION OF CONSTANSI(SOC1)及其靶基因AtSPL3、AtSPL4和AtSPL5來調(diào)控植物成花的轉(zhuǎn)變(Jung et al.,2012)。赤霉素開花途徑與SPL蛋白家族內(nèi)源途徑存在信號互作,SPL蛋白與DELLA蛋白之間的相互作用被認(rèn)為是開花年齡途徑和GA相關(guān)途徑的交叉(Yu et al.,2012)。EjSPL3、EjSPL4、EjSPL5和EjSPL9基因過表達(dá)促進(jìn)擬南芥植株早開花(Jiang et al.,2019)。柳枝稷SPL7和SPL8基因過表達(dá)能促進(jìn)開花,單獨下調(diào)SPL7或SPL8基因的表達(dá)能在一定程度上延遲開花(Gou et al.,2019)。SPL基因也參與調(diào)控果實發(fā)育,如水稻OsSPL13和OsSPL16基因調(diào)控谷粒大小和形狀(Wang et al.,2012;Si et al.,2016);櫻桃果實發(fā)育過程中,9個PavSPLs基因在青果期高表達(dá),在果實成熟初期的表達(dá)量急劇下降,表明這9個基因在果實發(fā)育和成熟過程中起重要調(diào)控作用(Sun et al.,2023)?!颈狙芯壳腥朦c】本課題組前期利用轉(zhuǎn)錄組測序(RNA-Seq)技術(shù)檢測分析薄殼山核桃雌花發(fā)育不同階段的表達(dá)差異,結(jié)果顯示,CiSPL2基因在雌花芽發(fā)育過程中有較高的表達(dá)(Wang et al.,2021)。目前尚未見有關(guān)薄殼山核桃SPL家族基因克隆、亞細(xì)胞定位及表達(dá)分析的研究報道。【擬解決的關(guān)鍵問題】以薄殼山核桃品種波尼為試驗材料,對其CiSPL2基因編碼區(qū)(CDS)序列進(jìn)行克隆,對其進(jìn)行生物信息學(xué)分析,通過構(gòu)建pCAMBIA1300-CiSPL2-GFP融合表達(dá)載體,瞬時轉(zhuǎn)化煙草后進(jìn)行亞細(xì)胞定位,并采用實時熒光定量PCR檢測CiSPL2基因在不同雌花芽分化時期的表達(dá)情況,為深入研究SPL家族基因在薄殼山核桃雌花芽分化和發(fā)育中的作用機(jī)制提供理論參考。
1材料與方法
1.1試驗材料
供試的薄殼山核桃品種為波尼(Pawnee)7年生成年樹,種植于江蘇省常州市薄殼山核桃基地,于薄殼山核桃FB1(雌花分化初期)、FB2(雌花序形成期)、FB3(雌花總苞形成期)和FL1(花蕾期,柱頭為青綠色原點)時期采集雌花芽,采樣具體時間和取樣部位參考Wang等(2019)的方法,樣品經(jīng)液氮冷卻后于-80℃保存,用于后續(xù)實時熒光定量PCR檢測。TransZol Up Plus RNA Kit購自北京全式金生物技術(shù)股份有限公司。PrimeScriptTMRT reagent Kit、TB Green Premix Ex TaqTM II、pMD19-T Vector Cloning Kit、Kpn I和Xba I購自寶日醫(yī)生物技術(shù)(北京)有限公司。DNA Polymerase(Vazyme,P505)購自南京諾唯贊生物科技股份有限公司。主要儀器設(shè)備:PCR梯度擴(kuò)增儀(ABI,美國)、凝膠成像系統(tǒng)(北京東勝創(chuàng)新生物科技有限公司)和實時熒光定量PCR儀(Quant Studio3,美國)。
1.2CiSPL2基因克隆
采用TransZol Up Plus RNA Kit試劑盒提取薄殼山核桃雌花芽總RNA,按照PrimeScriptTMRT reagent Kit反轉(zhuǎn)錄試劑盒的步驟將雌花芽RNA反轉(zhuǎn)錄為cDNA第一鏈?;诒ど胶颂一蚪M公布的CiSPL2(CIL1486S0026)基因的CDS序列,設(shè)計擴(kuò)增引物,上游引物CiSPL2-F:5'-ATGAGTTCAGTCTT GCTGATGG-3';下游引物CiSPL2-R:5'-TCAATTCA ACTGGTTGGGATG-3'。反應(yīng)體系50.0μL:2×Buffer25.0μL,10mmol/L dNTP Mixture1.0μL,50ng/uL DNA模板2.0μL,10μmol/L上、下游引物各1.0μL,1U/μLPhanta Max Super-Fidelity DNA聚合酶1.0μL,加水補(bǔ)足至50.0μL。擴(kuò)增程序:94℃預(yù)變性3min;94℃15s,60℃15s,72℃1min,進(jìn)行35個循環(huán);72℃延伸5min。PCR產(chǎn)物用1%瓊脂糖凝膠電泳檢測,在凝膠成像系統(tǒng)中拍照。切取目標(biāo)條帶,利用膠回收試劑盒對目的片段進(jìn)行回收和純化,將其連接至pMD19-T載體后轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞,挑取陽性克隆進(jìn)行測序。
1.3生物信息學(xué)分析
利用ExPASy分析CiSPL2蛋白的理化性質(zhì)等。通過NCBI數(shù)據(jù)庫的Conserved Domain Search(CDD)在線工具預(yù)測蛋白保守結(jié)構(gòu)域。使用SOPMA和SWISS-MODEL預(yù)測蛋白二級和三級結(jié)構(gòu)。在NCBI數(shù)據(jù)庫BLAST搜索CiSPL2蛋白的同源序列,采用Bioedit進(jìn)行氨基酸序列多重比對。利用MEGA5.0的鄰接法(Neighbor-joining,NJ)(Bootstrap=1000)構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹。從薄殼山基因組數(shù)據(jù)提取CiSPL2基因翻譯起始密碼子(ATG)上游2000bp基因序列作為啟動子片段。利用在線軟件PlantCARE識別CiSPL2基因順式作用元件的種類和數(shù)目(Lescot et al.,2002)。通過TBtools對啟動子順式作用元件分布進(jìn)行可視化(Chen et al.,2020)。
1.4亞細(xì)胞定位分析
根據(jù)CiSPL2基因序列設(shè)計帶有KpnI和Xba I酶切位點的引物,上游引物:5'-GAACACGGGGGACGAGCTCGGTACCATGAGTTCAGTCTTGCTG-3':下游引物:5'-CCTTGCTCACCATGTCGAC TCTAGAATTCAACTGGTTGGGA-3'(下劃線分別為Kpn I和Xba I酶切位點),以攜帶目的基因的克隆載體為模板進(jìn)行RT-PCR擴(kuò)增,對PCR產(chǎn)物進(jìn)行切膠回收純化。同時利用KpnI和Xba I雙酶切純化產(chǎn)物和攜帶有熒光蛋白基因的質(zhì)粒載體pCAMBIA1300-GFP,然后用T4連接酶進(jìn)行連接,連接產(chǎn)物轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞,陽性克隆測序驗證后,將測序結(jié)果正確的質(zhì)粒轉(zhuǎn)化GV3101農(nóng)桿菌感受態(tài)細(xì)胞。將農(nóng)桿菌侵染液從葉片下表皮注射到煙草葉片內(nèi),72h后取樣通過激光共聚交熒光顯微鏡檢測熒光信號。
1.5基因表達(dá)分析
從NCBI數(shù)據(jù)庫下載CiSPL2基因(登錄號:PRJNA799663)在薄殼山核桃不同組織中的表達(dá)數(shù)據(jù)(Zhu et al.,2022)?;虮磉_(dá)水平通過FPKM值(Fragments per kilobase million)進(jìn)行量化。每個階段的FPKM值為3個生物學(xué)重復(fù)的平均值。根據(jù)CiSPL2基因序列,設(shè)計實時熒光定量PCR特異引物,上游引物:5'-CCCAAAGGTCATTGTCGGTG-3';下游引物:5'-TCTGCTGCTTCCCATCATAAA-3'。選用薄殼山核桃actin為內(nèi)參基因(Mo et al.,2020)。實時熒光定量PCR反應(yīng)體系20.0μL:TB Green Premix Ex TaqTMⅡ熒光染料10.0μL,50ng/μL cDNA模板1.0μL,10μmol/L上、下游引物各0.4μL,ddH?O補(bǔ)足至20.0μL。擴(kuò)增程序:95℃預(yù)變性30s;95℃5s,60℃30s,40個循環(huán);熔解曲線擴(kuò)增程序:95℃15s;60℃1min,95℃15s。使用SPSS Statistics21.0進(jìn)行顯著性分析。
2結(jié)果與分析
2.1CiSPL2基因克隆及序列分析結(jié)果
以薄殼山核桃雌花芽cDNA為模板,采用高保真酶對CiSPL2基因進(jìn)行PCR擴(kuò)增,PCR產(chǎn)物用1.0%瓊脂糖凝膠電泳進(jìn)行檢測,結(jié)果如圖1所示。測序結(jié)果顯示,CiSPL2基因CDS序列大小為1398bp,編碼465個氨基酸殘基,與薄殼山核桃基因組數(shù)據(jù)庫中CiPaw.06G103300基因CDS序列完全一致(圖2)。
2.2生物信息學(xué)分析結(jié)果
CiSPL2蛋白的分子式為C?5H?s?N648O,S25,相對分子質(zhì)量為51.78kD,pI為8.28(gt;7.00),不穩(wěn)定系數(shù)為49.89,脂肪酸氨基酸指數(shù)為64.62,平均親水性指數(shù)(GRAVY)為-0.617,故推測其為不穩(wěn)定的親水性蛋白。CiSPL2蛋白的二級結(jié)構(gòu)預(yù)測結(jié)果顯示,CiSPL2蛋白的二級結(jié)構(gòu)較豐富,包含α-螺旋(17.42%)、延伸鏈(13.55%)、β-轉(zhuǎn)角(1.72%)和無規(guī)則卷曲(67.31%),以無規(guī)則卷曲居多(圖3-A)。通過SWISS-MODEL對CiSPL2蛋白進(jìn)行三級結(jié)構(gòu)同源建模,結(jié)果(圖3-B)顯示,該模型的全局模型質(zhì)量評估根數(shù)(GMQE)為0.45,且CiSPL2蛋白與SBP-box基因家族A0A2I6SEU0.1.A晶體結(jié)構(gòu)同源模型的相似性為73.71%,故推測CiSPL2蛋白具有典型的SBP結(jié)構(gòu)域。NCBI數(shù)據(jù)庫的CDD在線工具預(yù)測結(jié)果顯示,CiSPL2蛋白序列含有SBP結(jié)構(gòu)域,位于在第183~257位氨基酸(圖4)。
通過NCBI數(shù)據(jù)庫的BLASTp對CiSPL2蛋白進(jìn)行同源性比對(圖5),篩選出與CiSPL2氨基酸序列相似性較高的18個物種SPL蛋白,包括核桃(Jug-lans regia)JrSPL2(XP_035542434)、光皮樺(Betula luminifera)BISPL2(AUO16091.1)、白樺(Betula pla-typhylla)BpSPL2(AXB72467.1)、栓皮櫟(Quercus suber)QsSPL2(XP_023926742)、葡萄(Vitis vinifera)VvSPL2(RVW40048.1)、可可(Theobroma cacao)TcSPL2(XP_007043987)、板栗(Castanea mollissima)CmSPL2(KAF3944211)、番木瓜(Carica papaya)CpSPL2(XP_021899703.1)、木薯(Manihot esculenta)MeSPL2(XP_043805562.1)、楊梅(Morella rubra)MrSPL2(KAB1225828.1)、蘋果(Malus domestica)MdSPL2(RXH79909)、榴蓮(Durio zibethinus)DzSPL2(XP_022776332)、文冠果(Xanthoceras sorbifolium)XsSPL2(KAH7570508)、杏(Prunus armeniaca)PaSPL2(KAH0991931.1)、梅(Prumus mume)PmSPL2(XP_016647615)、甜橙(Citrus sinensis)CsSPL2(KDO81879)、柑橘(Citrus clementina)CcSPL2(ANJ43310)和中華獼猴桃(Actinidia chinensis var.Chinensis)AcSPL2(PSR84758)。其中CiSPL2蛋白與核桃JrSPL2蛋白的相似性最高,為95.05%,其次是光皮樺BISPL2蛋白,相似性為70.83%。不同物種SPL2蛋白的系統(tǒng)發(fā)育進(jìn)化樹結(jié)果(圖6)顯示,CiSPL2蛋白與核桃、光皮樺、白樺、栓皮櫟、板栗和楊梅聚為一簇,與核桃JrSPL2蛋白在同一小分支上,說明其與核桃親緣關(guān)系最近。
2.3CiSPL2基因啟動子順式作用元件預(yù)測結(jié)果
通過薄殼山核桃基因組注釋信息,提取CiSPL2基因起始密碼子ATG上游2000bp的啟動子序列。經(jīng)PlantCARE預(yù)測發(fā)現(xiàn),CiSPL2基因啟動子除含有19個TATA-Box和39個CAAT-Box順式作用元件外,還含有7個光響應(yīng)元件(AE-box、CAG-motif、GATA-激素響應(yīng)元件[脫落酸響應(yīng)元件(ABRE)、生長素響應(yīng)元件(TGA-element)、赤霉素響應(yīng)元件(P-box)和水楊酸響應(yīng)元件(TCA-element)]和1個組織表達(dá)元件(CAT-box),以及逆境響應(yīng)元件,如厭氧誘導(dǎo)元件(ARE)、干旱誘導(dǎo)元件(MBS)等(圖7)。
2.4CiSPL2蛋白亞細(xì)胞定位結(jié)果
構(gòu)建pCAMBIA1300-CiSPL2-GFP融合表達(dá)載體,以pCAMBIA1300-GFP空載體為對照,利用注射器分別將農(nóng)桿菌菌液注射入煙草表皮細(xì)胞,過激光共聚交熒光顯微鏡檢測熒光信號,如圖8所示。對照在細(xì)胞核和細(xì)胞質(zhì)具有很強(qiáng)的綠色熒光信號,而pCAMBIA1300-CiSPL2-GFP僅在煙草表皮細(xì)胞的細(xì)胞核檢測到綠色熒光信號,表明CiSPL2蛋白定位于細(xì)胞核上,在細(xì)胞核中發(fā)揮功能作用。
2.5CiSPL2基因表達(dá)特性分析結(jié)果
CiSPL2基因在薄殼山核桃雌花、雄花、果實、種子、根和葉片的表達(dá)模式如圖9所示。CiSPL2基因在薄殼山核桃不同組織中均有表達(dá),其中在雌花和果實中的相對表達(dá)量顯著高于其他組織(Plt;0.05)。CiSPL2基因在不同雌花芽分化時期的表達(dá)模式如圖10所示。CiSPL2基因在FB1的相對表達(dá)量較低,在后續(xù)的FB2、FB3和FL1相對表達(dá)量升高,其中在FB2的相對表達(dá)量最高,說明CiSPL2基因在薄殼山核桃雌花芽分化過程中發(fā)揮重要作用。
3討論
SPL是植物特異性轉(zhuǎn)錄因子,參與植物葉片形態(tài)建成、花和果實發(fā)育、發(fā)育階段轉(zhuǎn)變及逆境脅迫應(yīng)答過程。隨著植物基因組的陸續(xù)發(fā)布,越來越多的SPL基因家族被識別和鑒定,但薄殼山核桃中SPL基因的功能研究鮮見報道。本研究從薄殼山核桃品種波尼雌花芽中克隆獲得CiSPL2基因CDS全長為1398bp,編碼465個氨基酸殘基,為不穩(wěn)定的親水性蛋白,具有SBP保守結(jié)構(gòu)域,是SPL轉(zhuǎn)錄因子家族典型的結(jié)構(gòu)特征,與森林草莓(Tian et al.,2020)和枸杞(張紅雨等,2021)等植物SPL蛋白的理化性質(zhì)和序列特征相似。CiSPL2蛋白定位在細(xì)胞核,與草地早熟禾(何春艷等,2017)和日本結(jié)縷草(羅紅松等,2018)SPL2蛋白的亞細(xì)胞定位結(jié)果一致。系統(tǒng)發(fā)育分析結(jié)果顯示,CiSPL2蛋白與核桃JrSPL2蛋白親緣關(guān)系最近,與其他木本植物聚為一簇,推測CiSPL2基因與其他木本植物的SPL2基因具有相似的調(diào)控功能。
SPL轉(zhuǎn)錄因子幾乎參與植物各個生育期的發(fā)育過程。蘋果MdSPLs基因在不同組織中呈多樣性的時空表達(dá)模式(Li et al.,2013)。藍(lán)莓VcSPL基因在不同組織中的表達(dá)模式分析結(jié)果顯示,VcSPL基因在花芽、莖尖和根中的表達(dá)水平較高(Feng et al.,2023)。牡丹PsSPL2、PsSPL3、PsSPL9、PsSPL10、PsSPL13和PsSPL13A是調(diào)控牡丹開花時間的重要基因,PsSPL2和PsSPL8是抑制側(cè)芽發(fā)育的調(diào)控基因,PsSPL2、PsSPL?3和PsSPL?4基因正調(diào)控籽粒大小和數(shù)量及莢分支(Wang et al.,2020)。石榴PgSPL2、PgSPL3、PgSPL6、PgSPLIl和PgSPL14在葉片中的相對表達(dá)量顯著高于芽和莖,PgSPL5、PgSPL12和PgSPL13在花蕾中的相對表達(dá)量顯著高于葉片和莖(Li et al.,2021)。Xu等(2015)研究也表明,大多數(shù)梅PmSPL基因在花芽和幼果中呈高表達(dá)水平。本研究轉(zhuǎn)錄組數(shù)據(jù)分析結(jié)果顯示,薄殼山核桃CiSPL2基因在雌花、果實、雄花、根、種子和葉片中均有表達(dá),在雌花中的表達(dá)水平最高,果實次之,推測CiSPL2基因主要參與薄殼山核桃雌花發(fā)育過程。SPL轉(zhuǎn)錄因子在花發(fā)育調(diào)控網(wǎng)絡(luò)中發(fā)揮重要作用。已從擬南芥中共鑒定出17個SPL轉(zhuǎn)錄因子,其中AtSPL3、AtSPL4和AtSPL5基因參與調(diào)控花分生組織身份轉(zhuǎn)變和開花,AtSPL2、AtSPL9、AtSPL?0、AtSPLHI、AtSPL?3和AtSPL15基因在從幼齡期到成年期的過渡(營養(yǎng)期變化)和營養(yǎng)期到生殖期的轉(zhuǎn)化(生殖期變化或開花)中發(fā)揮重要調(diào)控作用(Xu et al.,2016)。CiSPL2基因與AtSPL2、AtSPL10和AtSPLI1基因聚在同一分支。本研究通過實時熒光定量PCR檢測發(fā)現(xiàn),CiSPL2基因在雌花序形成期(FB2)的相對表達(dá)量最高,推測CiSPL2基因參與調(diào)控薄殼山核桃從營養(yǎng)生長到生殖生長的轉(zhuǎn)變。該基因與核桃大多數(shù)JrSBP基因的表達(dá)模式(Zhou et al.,2020)一致,均在花芽中的表達(dá)水平高于葉芽。
基因表達(dá)主要通過轉(zhuǎn)錄水平進(jìn)行調(diào)控,轉(zhuǎn)錄水平由多種順式作用元件和反式作用因子協(xié)調(diào)。本研究通過CiSPL2基因啟動子序列分析發(fā)現(xiàn),該啟動子區(qū)域含有組織特異性表達(dá)元件,推測CiSPL2基因調(diào)控薄殼山核桃組織分化。一些植物的SPL家族基因還可響應(yīng)植物激素脅迫,赤霉素處理顯著提高了板栗花芽發(fā)育過程中CmmiR156的表達(dá),從而顯著降低了其靶基因CmSPL6、CmSPL9和CmSPL16的表達(dá),SPL家族基因的表達(dá)可能受赤霉素的誘導(dǎo)(Chen et al.,2019)。施用多效唑(赤霉素合成抑制劑)后,PgSPL5和PgSPL13基因在石榴良性花和功能性雄花芽直徑為5.1~12.0mm階段顯著上調(diào)表達(dá)(Liet al.,2021)。本研究CiSPL2基因啟動子也含有赤霉素響應(yīng)元件,推測CiSPL2基因的表達(dá)受赤霉素誘導(dǎo)。
4結(jié)論
CiSPL2基因含有SPL轉(zhuǎn)錄因子家族典型的SBP保守結(jié)構(gòu)域,推測其參與調(diào)控薄殼山核桃雌花芽分化和發(fā)育過程。
參考文獻(xiàn):
何春艷,楊青青,劉海金,尹淑霞.2018.草地早熟禾PpSPL4基因的克隆、亞細(xì)胞定位及表達(dá)分析[J].分子植物育種,16(10):3135-3145.[He CY,Yang QQ,Liu HJ,YinS X.2018.Cloning,subcellular localization and expression analysis of PpSPL4gene in Poa pratensis[J].Molecular Plant Breeding,16(10):3135-3145.]doi:10.13271j.mpb.
016.003135.
羅紅松,劉海濤,劉海金,韓烈保.2018.日本結(jié)縷草ZSPL4基因的克隆、亞細(xì)胞定位及表達(dá)分析[J].分子植物育種,16(16):5290-5298.[Luo HS,Liu HT,Liu HJ,Han LB.2018.Cloning,subcellular localization and expression analysis of ZjSPL4gene in Zoysia japonica Steud[J]Molecular Plant Breeding,16(16):5290-5298.]doi:10.13271j.mpb.016.005290.
姚小華,王開良,任華東,徐永勤.2004.薄殼山核桃優(yōu)新品種和無性系開花物候特性研究[J].江西農(nóng)業(yè)大學(xué)學(xué)報,26(5):675-680.[Yao XH,Wang KL,Ren HD,XuYQ.2004.A study on flowering phenology of Carya illimoensis newvarietiesand clones in eastChina[J].Acta Agricul-turae Universitatis Jiangxiensis,26(5):675-680.]doi:10.13836/j.jjau.2004155.
張紅雨,梁新華,石晶.2021.枸杞LpSPL6基因的克隆及表達(dá)分析[J].西北植物學(xué)報,41(3):377-385.[Zhang HY,Liang XH,Shi J.2021.Cloning and expression analysis"of LbSPL6in Lycium barbarum[J].ActaBotanica Boreali-Occidentalia Sinica,41(3):377-385.]doi:10.7606/j.issn.1000-4025.
CaiC P,Guo WZ,Zhang BH.2018.Genome-wide identifica-tion and characterization of SPL transcription factor family and their evolution and expression profiling analysis in cot-ton[J].Scientific Reports,8(1):762.doi:10.1038/s41598-017-18673-4.
Chen CJ,Chen H,Zhang Y,Thomas HR,F(xiàn)rank MH,He YH,Xia R.2020.TBtools:An integrative toolkit developed for interactive analyses of big biologicaldata[J].Molecu-lar Plant,13(8):1194-1202.doi:10.1016/j.molp.2020.06.009.
Chen GS,LiJT,Liu Y,ZhangQ,GaoYR,F(xiàn)ang KF,CaoQ Q,Qin L,Xing Y.2019.Roles of the GA-mediated SPL gene family and miR156in the floral development of Chi-nese chestnut(Castanea mollissima)[J].International Jour-nal of Molecular Sciences,20(7):1577.doi:10.3390/jms20071577.
Feng X,Zhou BJ,Wu XL,Wu HL,Zhang SL,Jang Y,Wang YP,Zhang YQ,Cao M,Guo BS,Su SC,Hou ZX.2023.Molecular characterization of SPL genefamily du-ring flower morphogenesis and regulation in blueberry[J].BMC Plant Biology,23(1):40.doi:10.1186/s12870-023-04044-x.
GouJQ,Tang CR,Chen NC,WangH,Debnath S,Sun L,F(xiàn)la-nagan A,Tang YH,Jiang QZ,Allen RD,Wang ZY.2019.SPL7and SPL8represent anovel flowering regula-tion mechanism in switchgrass[J].New Phytologist,222(3):1610-1623.doi:10.1111/nph.15712.
Gao RM,Gruber MY,Amyot L,Hannoufa A.2018.SPL13regulates shoot branching and flowering time in Medicago sativa[J].Plant Molecular Biology,96(1-2):119-133.doi:10.1007/s11103-017-0683-8.
Huang RM,Huang YJ,Sun ZC,Huang JQ,Wang ZJ.2017.Transcriptome analysisof genes involved in lipid biosyn-thesis in the developing embryo of pecan(Carya illinoinen-sis)[J].Journal of Agricultural and Food Chemistry,65(20):4223-4236.doi:10.1021/acs.,jafc.7b00922.
Jiang YY,Peng JR,Wang M,Su WB,Gan XQ,Jing Y,Yang XH,Lin SQ,Gao YS.2019.The role of EjSPL3,EjSPL4,EjSPL5,and EjSPL9in regulating flowering in"loquat(Eriobotrya japonica Lindl.)[J].International Jour-nal of Molecular Sciences,21(1):248.doi:10.3390/jms21010248.
Jing ZB,Qi XN,Zhang LS.2021.Identification,evolution,"and expression analysis of SBP-box gene family in kiwi-fruit(Actinidia chinensis Planch.)[J].European Journal of"Horticultural Science,86(2):103-121.doi:10.17660/eJHS. 2021/86.2.1.
Jung JH,LeeH J,RyuJY,Park CM.2016.SPL3/4/5inte-grate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering[J].Molecular Plant,9(12):1647-1659.doi:10.1016/j.molp.2016.10.014.
Jung JH,JuY,Seo PJ,Lee JH,Park CM.2012.The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis[J].The Plant Journal,69(4):577-588.doi:10.1111/j.1365-313X.2011.04813.x
Jung JH,Seo PJ,Kang SK,Park CM.2011.MiR172signals are incorporated into the miR156signaling pathway at the"SPL3/4/5genes in Arabidopsis developmental transitions"[J].Plant Molecular Biology,76(1-2):35-45.doi:10.1007/s11103-011-9759-z.
LiB B,Zhao YJ,Wang S,Zhang XH,Wang YW,Shen Y,Yuan ZH.2021.Genome-wide identification,gene clo-ning,subcellular location and expression analysis of SPL"gene family in Pgranatum L[J].BMC Plant Biology,21(1):400.doi:10.1186/s12870-021-03171-7.
Li J,Hou HM,LiXQ,XiangJJ,Yin XJ,Gao H,Zheng Y,"Bassett CL,Wang XP.2013.Genome-wide identification"and analysis of the SBP-box family genes in apple(Malus×Domestica Borkh)[J].Plant Physiology and Biochemis-try,70:100-114.doi:10.1016/j.plaphy.2013.05.021.
LiL,Shi F,Wang YQ,Yu XF,Zhi JJ,Guan YB,Zhao HY,Chang JL,Chen MJ,Yang GX,WangYS,He GY.2020.TaSPL13regulates inflorescence architecture and develop-ment in transgenic wheat(Triticum aestivm L.)[J].Plant Science,296:110516.doi:10.1016/j.plantsci.2020.110516.
LiY,He YZ,Liu ZX,Qin T,Wang L,Chen ZH,Zhang BM,Zhang HT,Li HT,Liu L,Zhang J,Yuan WY.2022b.OsSPL14acts upstream ofOsPIN1b and PILS6b to modu-late axillary bud outgrowth by fine-tuning auxin transport"in rice[J].The Plant Journal:For Cell and Molecular Bio-logy,111(4):1167-1182.doi:10.1111/tpj.15884.
Li ZW,Yang YJ,Chen B,Xia B,Li HY,Zhou YW,He M.2022a.Genome-wide identification and expression analysis of SBP-box gene family reveal their involvement in hormone response and abiotic stresses in Chrysanthe-mum nankingense[J].PeerJ,10:e14241.doi:10.7717/peerj.14241.
Klein J,Saedler H,Huijser P.1996.A new family of DNA bin-ding proteins includes putative transcriptional regulators of"the Antirrhimum majus floral meristem identity gene"SQUAMOSA[J].Molecular General Genetics,250(1):7-16.doi:10.1007/BF02191820.
Mo ZH,Chen YQ,Lou WR,Jia XD,ZhaiM,Xuan JP,Guo ZR,Li YR.2020.Identification of suitable reference genes for normalization of real-time quantitative PCR data"in pecan(Carya illinoinensis)[J].Trees,34(5):1233-1241doi:10.1007/s00468-020-01993-w.
Shao YL,Zhou HZ,Wu YR,Zhang H,Lin J,Jiang XY,He QJ,Zhu JS,LiY,Yu H,Mao CZ.2019.OsSPL3,an SBP-domain protein,regulates crown root development in rice[J].The Plant Cell,31(6):1257-1275.doi:10.1105/tpc.19.00038.
SiLZ,Chen JY,Huang XH,Gong H,Luo JH,Hou QQ Zhou TY,Lu TT,Zhu JJ,Shangguan YY,Chen EW,Gong CX,ZhaoQ,Jing YF,Zhao Y,LiY,Cui LL,F(xiàn)an DL,Lu YQ,Weng QJ,Wang YC,Zhan QL,Liu KY,Wei XH,An K,An G,Han B.2016.OsSPL13controls grain size in cultivated rice[J].Nature Genetics,48(4):447-456.doi:10.1038/ng.3518.
SongN,Cheng YL,Peng WY,Peng EP,Zhao ZL,Liu TT,YiTY,Dai LY,WangB,Hong YY.2021.Genome-wide characterization and expression analysis of the SBP-Box"gene family in sweet orange(Citrus sinensis)[J].Interna-tional Journal of Molecular Sciences,22(16):8918.doi:10.3390/jms22168918.
SunY J,F(xiàn)u M,Wang L,BaiYX,F(xiàn)ang XL,Wang Q,HeY,Zeng HL.2022.OsSPLs regulate male fertility in res-ponse to different temperatures by flavonoid biosynthesis and tapetum PCD in PTGMS rice[J].International Journal of Molecular Sciences,23(7):3744.doi:10.3390/ijms23073744
SunY T,Wang YY,Xiao YQ,ZhangX,Du BY,Turupu M,Wang C,Yao QS,Gai SL,Huang J,Tong S,Li TH.2023.Genome-wide identification of the SQUAMOSA promoter-binding protein-like(SPL)transcription factor family in sweet cherry fruit[J].International Jourmal of Molecular Sciences,24(3):2880.doi:10.3390/ijms24032880.
TianJ,Hu XQ,Zhang Y,XinQ Q,LiD,Zhao LH,Liu XM.2020.Molecular cloning and functional analysis of the"BplSPLI gene from Betula platyphylla Suk[J].Trees,34:801-811.doi:10.1007/s00468-020-01959-y.
Wang JW,Czech B,Weigel D.2009.miR156-regulated SPL transcription factors define an endogenous flowering path-way in Arabidopsis thaliana[J].Cell,138(4):738-749.doi:10.1016/j.cell.2009.06.014.
Wang M,Mo ZH,Lin RZ,Zhu CC.2021.Characterization and expression analysisof the SPL gene family during flo-ral development and abiotic stress in pecan(Carya ilinoi-nensis)[J].PeerJ,9:e12490.doi:10.7717/peerj.12490.
Wang M,XiD,Chen Y,ZhuCC,Zhao YQ,Geng GM.2019.Morphological characterization and transcriptome analysis ofpistillate flowering in pecan(Carya illinoinensis)[J]Scientia Horticulturae,257:108674.doi:10.1016/j.scienta.2019.108674.
Wang SL,Ren XX,Xue JQ,Xue YQ,ChengXD,Hou XG,Zhang XX.2020.Molecular characterization and expres-sion analysis of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE gene family in Paeonia suffruticosa[J]Plant Cell Report,39(11):1425-1441.doi:10.1007/s00299-020-02573-5.
Wang SK,WuK,Yuan QB,Liu XY,Liu ZB,Lin XY,Zeng RZ,Zhu HT,Dong GJ,Qian Q,Zhang GQ,F(xiàn)u XD.2012.Controlof grainsize,shape and quality byOsSPL16in rice[J].Nature Genetics,44(8):950-954.doi:10.1038/ng.2327.
WeiQ,Ma C,Xu YJ,Wang TL,Chen YY,Lü J,Zhang LL,Jiang CZ,Hong B,Gao JP.2017.Control of chrysanthe-mum flowering through integration with an aging pathway[J].Nature Communications,8(1):829.doi:10.1038/s41467-017-00812-0.
Wood BW.2000.Pollination characteristics of pecan trees and orchards[J].Horttechnology,10(1):120-126.doi:10.21273/HORTTECH.10.1.120.
Xu YJ,Xu HX,Wall MM,Yang JZ.2020.Roes of transcrip-tion factor SQUAMOSA promoter binding protein-like gene family in papaya(Carica papaya)development and ripening[J].Genomics,112(4):2734-2747.doi:10.1016jygeno.2020.03.009
Xu M,Hu T,Zhao J,Park MY,Earley KW,Wu G,Yang L,Poethig RS.2016.Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SPL)genes in Arabidopsis thaliana[J].PLoS Genetics,12(8):e1006263.doi:10.1371journal.pgen.1006263
Xu ZD,Sun LD,Zhou YZ,Yang WR,Cheng TR,Wang J,Zhang QX.2015.Identification and expression analysis of the SQUAMOSA promoter-binding protein(SBP)-box gene family in Prums mume[J].Molecular Genetics and Genomics,290(5):1701-1715.doi:10.1007/s00438-015-1029-3.
Yamasaki K,Kigawa T,Inoue M,Tateno M,Yamasaki T,Yabuki T,Aoki M,Seki E,Matsuda T,Nunokawa E,Ishi-zuka Y,Terada T,Shirouzu M,Osanai T,Tanaka A,Seki M,Shinozaki K,Yokoyama S.2004.A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors[J].Journal of Molecular Biology,337(1):49-63.doi:10.1016/j.jmb.2004.01.015.
Yang ZF,Wang XF,Gu SL,Hu ZQ,Xu H,XuC W.2008Comparative studyof SBP-box gene family in Arabidopsis and rice[J].Gene,407(1-2):1-11.doi:10.1016/j.gene.2007.02.034.
Yu S,Galv?o VC,Zhang YC,HorrerD,Zhang TQ,HaoYH,F(xiàn)eng YQ,Wang S,Schmid M,Wang JW.2012.Gibberel-lin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors[J].The Plant Cell,24(8):3320-3332.doi:10.1105/tpc.112.101014.
Zhou L,Quan SW,Ma L,Xu H,Yang JP,Niu JX.2020.Molecular characterization of SBP-box gene family during floral induction in walnut(Juglans regia L.)[J].Tree Geneticsamp;Genomes,16:12.doi:10.1007/s11295-019-1402-1.
Zhu KK,F(xiàn)an PH,Liu H,Tan PP,Ma WJ,Mo ZH,Zhao J,ChuG L,Peng FR.2022.Insight into the CBL and CIPK gene families in pecan(Carya illinoinensis):Identifica-tion,evolution and expression patterns in drought response[J].BMC Plant Biology,22(1):221.doi:10.1186/s12870-022-03601-0.
Zhu T,Liu Y,Ma LT,Wang XY,Zhang DZ,Han YC,Ding Q,Ma LJ.2020.Genome-wide identification,phylogeny and expression analysis of the SPL gene family in wheat[J].BMC Plant Biology,20(1):420.doi:10.1186/s12870-020-02576-0.
(責(zé)任編輯 陳燕)