摘 要: 旨在研究Lactobacillus plantarum對腹瀉羔羊血清抗氧化能力和空腸菌群及空腸黏膜屏障損傷的調(diào)控作用。本試驗選用24只剛斷奶的羔羊,采用完全隨機試驗設(shè)計隨機分為4組,分別為對照組(C組)、腹瀉組(D組)、腹瀉+抗生素處理組(DA組)、腹瀉+植物乳桿菌處理組(DL組),每組6個重復(fù),在正式試驗第1天開始對D組、DA組和DL組羔羊分別灌服20 mL ETEC K99菌液,持續(xù)8 d。在第9天早上,DA組羔羊注射氟苯尼考進行調(diào)控,DL組羔羊灌服植物乳桿菌菌液進行調(diào)控,持續(xù)4 d。試驗第1、9、13天空腹采集羔羊血液用于檢測羔羊血清抗氧化指標以及二胺氧化酶(DAO)和D-乳酸(D-LA)濃度;屠宰后采集羔羊空腸內(nèi)容物以測定菌群組成,采集空腸組織用于檢測腸道黏膜屏障相關(guān)蛋白和黏膜蛋白,阿利新藍(AB)染色研究酸性黏液的變化。結(jié)果表明:1)大腸桿菌處理8 d后,D、DA和DL三組羔羊糞便均不成形,且三組羔羊血清中DAO和D-LA濃度顯著高于C組(Plt;0.05),說明腹瀉模型構(gòu)建成功;2)在第9天,與C組相比,D、DA和DL組羔羊血清中T-AOC、SOD顯著降低(Plt;0.05),MDA含量顯著升高(Plt;0.05);與第9天相比,DA和DL組羔羊在第13天時其抗氧化能力顯著增加(Plt;0.05),DAO、D-LA濃度和MDA顯著降低(Plt;0.05);3)與C組相比,D組羔羊空腸組織Occludin、Claudin1和MUC2蛋白表達量顯著下降(Plt;0.05),MUC2蛋白表達量顯著降低(Plt;0.05);與D組相比,DA組羔羊空腸組織Occludin蛋白表達量顯著提高(Plt;0.05),但Claudin1蛋白和MUC2蛋白的表達量有所降低(Pgt;0.05);DL組羔羊空腸組織Occludin蛋白、Claudin1蛋白以及MUC2蛋白表達量顯著高于DA組;4)與C組相比,D和DA組羔羊空腸內(nèi)容物中菌群Chao值和 Shannon值均顯著降低(Plt;0.05),DL羔羊空腸內(nèi)容物中菌群Chao值和Shannon值有所增加(Pgt;0.05)。C、D和DL組羔羊空腸中Firmicutes豐度均顯著高于DA組(Plt;0.05)。C、D和DA組Actinobacteriota豐度都顯著高于DL組(Plt;0.05)。D組羔羊空腸中Proteobacteria豐度略高于C和DL組(Pgt;0.05),DA組羔羊空腸中Proteobacteria豐度顯著高于C、D和DL組(Plt;0.05)。經(jīng)相關(guān)性分析發(fā)現(xiàn),與MUC2表達相關(guān)的微生物較多,Proteobacteria與空腸MUC2的表達顯著負相關(guān)(Plt;0.05),F(xiàn)irmicutes和Verrucomicrobiota與空腸MUC2的表達顯著正相關(guān)(Plt;0.05),NK4A214_group 與MUC2表達量顯著正相關(guān)(Plt;0.05),Escherichia-Shigella與MUC2的表達顯著負相關(guān)(Plt;0.05)。綜上表明,ETEC K99誘發(fā)羔羊腹瀉,腹瀉羔羊血清抗氧化能力和空腸內(nèi)容物微生物多樣性降低、空腸黏膜屏障蛋白表達量降低。相比于抗生素治療,灌服Lactobacillus plantarum增加了空腸內(nèi)容物菌群多樣性,促進空腸酸性黏液及黏膜組織屏障蛋白的表達??傮w而言,Lactobacillus plantarum對羔羊腹瀉改善效果更佳。
關(guān)鍵詞: 植物乳桿菌;羔羊;抗氧化能力;腸道黏膜屏障;腸道菌群
中圖分類號:S858.26
文獻標志碼:A
文章編號:0366-6964(2024)08-3552-18
收稿日期:2024-01-25
基金項目:山西省高等學(xué)??萍紕?chuàng)新項目(2021L175);山西省博士畢業(yè)生、博士后研究人員來晉工作獎勵資金科研項目(SXBYKY2021037);山西農(nóng)業(yè)大學(xué)科技創(chuàng)新基金項目(2020BQ53);山西省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)(2023CYJSTX14)
作者簡介:李碧波(1988-),男,山西晉城人,博士,主要從事反芻動物胃腸道健康研究,E-mail: libibo1988@126.com;吳 克(1993-),男,河南商丘人,碩士生,主要從事動物環(huán)境生理與健康養(yǎng)殖研究,E-mail:wuke1227@163.com。李碧波與吳克為同等貢獻作者
通信作者:任有蛇,主要從事動物生殖生理研究,E-mail: rys925@126.com;張春香,主要從事動物生殖生理研究,E-mail: chunxiangzhang@sxau.edu.cn
Sheep-derived Lactobacillus plantarum Regulates the Bacterial Community and Mucosal
Barrier in Jejunum of Diarrheic Lambs
LI" Bibo, WU" Ke, SHI" Xiaolong, YAN" Yining, LI" Jiahao, DUAN" Guoqing, LI" Xiong, REN" Yanpeng, DONG" Jianing, ZHANG" Chunxiang*, REN" Youshe*
(College of Animal Science, Shanxi Agricultural University, Taigu 030801, China)
Abstract: The aim of the experiment was to investigate the mitigatingregulating effect of Lactobacillus plantarum on diarrhea lambs in indexes including the damage of anti-oxidative capacity in serum, jejunal microbiota, and jejunal mucosal barrier damagein diarrhea lambs.[Methods]" Twenty-four newly weaned lambs were selected and distributed into four groups using a completely randomized experimental design: the control group (C), the diarrhea group (D), the group of antibiotic-treated under diarrhea (DA), and the group of Lactobacillus plantarum-treated under diarrhea (DL), with six replicates in each group. Lambs in groups D, DA and DL were dosed with 20 mL of ETEC K99 starting on the first day of the formal trial for 8 d consecutively. On the morning of the ninth day, lambs in group DA were injected regulated with florfenicol, and lambs in group DL were regulated by dosinggavaged with Lactobacillus plantarum, and the regulationabove treatment lasted for 4 consecutive days. The blood was collected fasting on days 1, 9 and 13 of the trial for the detection of serum antioxidant indexes as well as diamine oxidase (DAO) and D-lactic acid (D-LA) concentration in lambs. After slaughter the jejunal content was collected to determine the composition of bacterial community. The jejunal mucosal were collected to explore the expression of intestinal mucosal barrier-associated proteins and mucus proteins.[Results] Alisin Blue staining was uesd to study the changes of acidic mucus. The results showed that: 1) After 8 d of ETEC K99 treatment, the feces of lambs in D, DA and DL were all shapeless, and the concentrations of DAO and D-LA in the serum of lambs in the three groups were significantly higher than those in group C (Plt;0.05), which indicated that the model of diarrhea had been successfully constructed; 2) On the 9th day, compared with that of group C, the T-AOC and SOD in serum of lambs in D, DA and DL groups decreased significantly (Plt;0.05), and the MDA content increased significantly (Plt;0.05). Compared to on the 9th day, the antioxidant capacity of lambs in DA and DL groups increased significantly on the 13th day (Plt;0.05), but there were significant decrease on the concentration of DAO, D-LA and MDA in serum of lambs in these two groups (Plt;0.05); 3) Compared to group C, the expression of Occludin ,Claudin1 and MUC2 protein in group D decreased significantly (Plt;0.05). Compared with group D, the expression of Occludin protein in jejunal tissues of DA lambs was significantly higher (Plt;0.05), but the expression of Claudin1 and MUC2 proteins reduced slightly (Pgt;0.05). The expression of Occludin, Claudin1 and MUC2 protein in DL group were significantly higher than that of DA group (Plt;0.05). 4) Compared with group C, the Chao and Shannon values of the bacterial community in the jejunal content of lambs in D and DA decreased significantly (Plt;0.05), and while increased in DL group (Pgt;0.05).The abundances of Firmicutes in the jejunum of lambs from C, D and DL groups were significantly higher than in DA group (Pgt;0.05). The abundances of Actinobacteriota in the jejunum of lambs was significantly higher in C, D and DA than in DL group (Plt;0.05). The abundances of Proteobacteria in the jejunum of lambs was a little higher in D group than in C and DL groups (Pgt;0.05), while the abundances of Proteobacteria in the jejunum of lambs in group DA was significantly higher than in C, D and DL groups(Plt;0.05). Correlation analysis revealed that more microorganisms associated with MUC2 expression and the phylum Proteobacteria abundance was significantly negatively correlated with the expression of MUC2 protein (Plt;0.05), while the phylaabundance of Firmicutes and Verrucomicrobiota were significantly positively correlated with the expression of MUC2 protein (Plt;0.05). NK4A214_group had a significant positive correlation with MUC2 expression (Plt;0.05) and Escherichia-Shigella was significantly negatively correlated with MUC2 expression (Plt;0.05). In conclusion, ETEC K99 induced diarrhea in lambs, decreased serum antioxidant capacity and microbial diversity of jejunal content, and inhibited the expression of jejunal mucus barrier protein. Compared to antibiotic therapy, gavaging Lactobacillus plantarum increases the diversity of jejunal contents flora and promotes the expression of jejunal acidic mucus and mucus tissue barrier proteins. Above all, Lactobacillus plantarum had a better effect in improving lamb diarrhea.
Key words: Lactobacillus plantarum; lambs; anti-oxidative capacity; mucosal barrier of jejunum; bacterial community
*Corresponding authors: REN Youshe,E-mail: rys925@126.com;ZHANG Chunxiang,E-mail: chunxiangzhang@sxau.edu.cn
斷奶是羔羊、犢牛等哺乳動物生長發(fā)育的關(guān)鍵階段之一。斷奶時哺乳動物幼畜從以吸吮富含營養(yǎng)且易消化的母乳為主轉(zhuǎn)向以采食固體飼料為主,其消化道形態(tài)功能和微生物區(qū)系發(fā)生劇烈變化。斷奶期在飼料營養(yǎng)結(jié)構(gòu)改變、環(huán)境應(yīng)激和病原菌入侵等因素的綜合影響下,羔羊極易發(fā)生腹瀉,導(dǎo)致其生長滯后甚至死亡,造成羔羊生產(chǎn)效率低下,帶來巨大的經(jīng)濟損失[1]。大腸桿菌引起的腹瀉通常使用抗生素治療,但抗生素的應(yīng)用會產(chǎn)生許多副作用,如腸屏障功能障礙和耐藥細菌的出現(xiàn)等,這些副作用會降低抗生素的有效性[2-3]。益生菌被認為是抗生素的可持續(xù)替代品,可用于預(yù)防和緩解人和其他動物腹瀉[4]。
乳酸菌是益生菌中的一類。乳酸菌具有如下特性:產(chǎn)生各種抗菌肽,改善腸道內(nèi)環(huán)境;產(chǎn)生抗菌物質(zhì)抑制病原體繁殖,從而降低腸道通透性、炎癥和氧化損傷[5]。乳酸菌參與機體的抗氧化系統(tǒng),通過清除部分ROS,從而起到降低機體氧化損傷的效果[6]。Yue等[7]研究證明,植物乳桿菌通過下調(diào)促炎細胞因子、上調(diào)抗炎細胞因子和增加Short chain fatty acids(SCFAs)的產(chǎn)生,減輕了腸毒素性大腸桿菌誘導(dǎo)的腹瀉。體外和動物試驗表明,乳酸菌可能可以阻止大腸桿菌在腸道定植,并且可能產(chǎn)生對抗腸毒素的物質(zhì),且在體外試驗中還發(fā)現(xiàn)乳酸菌對細胞連接和黏膜完整性具有保護作用[8]。體內(nèi)研究表明,乳酸菌可以減少動物和人類腸道中大腸桿菌、腸球菌或輪狀病毒菌株的攻擊[9]。此外,乳酸菌定植能夠通過加強頂端連接復(fù)合體、恢復(fù)微絲結(jié)構(gòu)和降低過敏原特異性免疫球蛋白水平,改善腸道上皮屏障[10]。在腸道微生物方面,乳酸菌可以改善腸道菌群結(jié)構(gòu)增加厚壁菌門(Firmicutes)和產(chǎn)短鏈脂肪酸菌等有益菌[11],并且乳酸菌可以激活抑制炎癥反應(yīng)的受體(如PPAR-γ),抑制炎癥相關(guān)信號通路(如TLR4),從而降低促炎細胞因子的產(chǎn)生,緩解炎癥反應(yīng)[12-14]。此外,乳酸菌還可以促進緊密連接蛋白、黏蛋白和水通道蛋白表達,促進分泌黏液的細胞分化以保證腸道屏障的完整性[15]。因此,乳酸菌可以極大的改善腸道環(huán)境,促進動物健康生長。
目前,關(guān)于乳酸菌對羔羊腹瀉緩解機制的研究較少。本試驗選擇斷奶羔羊為試驗動物通過ETEC K99構(gòu)建腹瀉模型,利用從成年羊瘤胃內(nèi)篩選的植物乳桿菌來緩解腹瀉羔羊的癥狀,探究植物乳桿菌對ETEC K99誘發(fā)羔羊空腸損傷的調(diào)控作用,以及對空腸屏障及空腸菌群的影響,旨在為植物乳桿菌作為飼料添加劑在生產(chǎn)中的應(yīng)用提供理論基礎(chǔ)。
1 材料與方法
1.1 試驗材料
植物乳桿菌菌液:本試驗所用植物乳桿菌(Lactobacillus plantarum)菌株,來自本實驗室從羊瘤胃篩選出來的羊源植物乳桿菌G9。取活化三代培養(yǎng)至指數(shù)期的植物乳桿菌菌液按照1∶100的比例與新鮮的De Man, Rogosa 和 Sharpe(MRS)液體培養(yǎng)基混合,過夜培養(yǎng)使菌液中活菌數(shù)達到1×1010 CFU·mL-1。將篩選的另1株植物乳桿菌G10復(fù)蘇活化三代,兩株菌按相同操作步驟培養(yǎng)相同時間,通過分析兩株菌對ETEC K99的抑菌圈大小比較兩株菌的抑菌效果差異。
大腸桿菌凍干粉:Escherichia coli (E. coli)來自山西農(nóng)業(yè)大學(xué)動物醫(yī)學(xué)學(xué)院,將大腸桿菌菌液過夜培養(yǎng)后,經(jīng)冷凍離心機7 000×g離心20 min后得到菌體,將菌體制成凍干粉,使凍干粉的活菌數(shù)達到1×1011 CFU·g-1。
氟苯尼考注射液(FFC):在獸藥店購買由山東德信生物科技有限公司生產(chǎn)的氟苯尼考注射液,生產(chǎn)批號:20220501。
1.2 試驗設(shè)計與飼養(yǎng)管理
本試驗在山西農(nóng)業(yè)大學(xué)山西省肉羊繁育工程研究中心進行。選用24只剛斷奶的羔羊,采用完全隨機試驗設(shè)計隨機分為4組,分別為對照組(C組)、腹瀉組(D組)、腹瀉+抗生素處理組(DA組)、腹瀉+植物乳桿菌處理組(DL組),每組6個重復(fù)。每只羊每天飼喂300 g羔羊補充料,干草自由采食。通過糞便評分判斷羔羊是否腹瀉,糞便評分標準為0分:正常;1分:半成形;2分:松散,但停留在漏糞板上;3分:水性,通過漏糞板,糞便評分≥1被認為是腹瀉[16]。經(jīng)預(yù)試驗,當每只羔羊灌服ETEC K99菌液濃度達到1011 CFU·mL-1、每天3次、每次20 mL時可以致羔羊腹瀉。預(yù)飼期每天8:00、12:00、16:00飼喂代乳粉和羔羊補充料,代乳粉飼喂量為每只300 mL·次-1,每天3次,羔羊補充料每只羊300 g·d-1,為期8 d。正式試驗期間每天投喂羔羊補充料300 g,不飼喂代乳粉,第1天開始,于每天8:00、12:00和16:00對D、DA和DL組羔羊灌服20 mL由ETEC K99凍干粉制成的濃度為1×1011 CFU·mL-1的菌液,C組灌服20 mL生理鹽水,持續(xù)8 d。第9天DA組羔羊肌肉注射2 mL(8:00)氟苯尼考,每天1次,持續(xù)4 d;DL組羔羊灌服植物乳桿菌,每次20 mL,每天3次(8:00、12:00和16:00),C組繼續(xù)灌服生理鹽水20 mL每天3次(8:00、12:00和16:00),持續(xù)4 d。每天下午更換飲水,每周消毒1次。
1.3 樣品采集與指標測定
1.3.1 血液樣品采集與指標測定
正式試驗開始第1天早晨空腹采血并開始記錄羔羊糞便;在第8天中午開始對腹瀉組(D組)進行禁食不禁水,在第9天早上對當天羔羊糞便進行糞便評分并對羔羊進行空腹采血對D組羔羊進行屠宰;在試驗第12天對所有羔羊進行禁食不禁水,試驗第13天對所有羔羊進行空腹采血、屠宰。血液樣品進行37℃水浴靜置30 min后3 500×g離心15 min,分裝上層血清并保存在-80℃超低溫冰箱,用于檢測血清中抗氧化能力以及二胺氧化酶(DAO)和D-乳酸(D-LA)濃度。采用水溶性四氮唑-1(WST-1)法測定血清超氧化物歧化酶(SOD)活性,采用硫代巴比妥酸法測定丙二醛(MDA)含量,采用比色法檢測血清谷胱甘肽過氧化物酶(GSH-Px)活性和血清總抗氧化能力(T-AOC),上述指標中測定血清中SOD、T-AOC、GSH-Px和MDA指標所用試劑盒均購自南京建成生物工程研究所,具體操作參考試劑盒說明書。血清中DAO和D-LA濃度采用酶聯(lián)免疫法(ELISA)檢測,試劑盒購自上海酶聯(lián)生物科技有限公司,具體操作參考試劑盒說明書。上述所用測定儀器為全功能微孔板檢測儀(SynergyH1)。
1.3.2 空腸組織采集與指標測定
于試驗第9天空腹采血后對D組羔羊進行屠宰,于試驗第13天對其余組羔羊空腹采血后進行屠宰。屠宰后,采集羔羊空腸組織,空腸組織剪至大小為0.5 cm×0.5 cm,直接放入卡諾氏固定液內(nèi)放在4℃保存用于后續(xù)空腸黏液染色檢測,每個組4只羊,每只羊做1張切片,利用阿利新藍(AB)染色后,酸性黏液被染成藍色,在10倍鏡下非連續(xù)挑選5個視野進行拍照,在ImageJ軟件中進行測量統(tǒng)計[15,17]。取空腸組織大小為0.5 cm×0.5 cm,經(jīng)蒸餾水清洗2次后用去RNA酶水沖洗后放入2 mL無菌無酶凍存管立即放入液氮速凍,將速凍的凍存管分揀后放入超低溫冰箱內(nèi),用于后續(xù)Western blot檢測蛋白表達量。將0.2 g凍存的空腸組織、1 mLRIPA裂解液、10 μL蛋白酶抑制劑和10 μL廣譜磷酸酶抑制劑混合于1.5 mL離心管后,加入鎬珠在均漿機中均漿80 s,在低溫高速離心機中4 ℃ 12 000×g離心20 min,上清即為提取的蛋白原液,采用Western blot檢測蛋白原液中的Claudin1、Occludin、MUC2和β-actin蛋白表達量。
1.3.3 空腸內(nèi)容物采集與指標測定
采集羔羊空腸中段內(nèi)容物分裝于2 mL無菌無酶凍存管后立即放入液氮內(nèi)速凍,內(nèi)容物用后續(xù)空腸菌群檢測。根據(jù)OMG-soil試劑盒(E. Z.N.A. Soil DNA Kit Omega Bio-Tek 美國)說明書進行微生物群落總基因組DNA抽提,使用1%的瓊脂糖凝膠鑒定抽提的基因組DNA的質(zhì)量,使用NanoDrop2000(美國Thermo Scientific公司)測定DNA濃度和純度,DNA擴增和回收參考Liu等[12]的方法。
使用NEXTFLEX Rapid DNA-Seq Kit對純化后的PCR產(chǎn)物進行建庫:1)接頭鏈接;2)使用磁珠篩選去除接頭自連片段;3)利用PCR擴增進行文庫模板的富集;4)磁珠回收PCR產(chǎn)物得到最終的文庫。利用Illumina平臺進行測序(上海美吉生物醫(yī)藥科技有限公司)。測序結(jié)束在美吉生物云平臺進行分析。
使用Fastp軟件[18]對原始序列進行質(zhì)控后,利用FLASH軟件[19]質(zhì)控后的序列進行拼接,拼接完成后利用Qiime2流程中的DADA2插件對拼接的序列進行降噪處理,降噪后的序列即為ASVs[20-21]。為使每個樣本的平均序列覆蓋率達到99.09%,將所有樣本序列抽平至2 000,并基于 silva138/16S_bacteria物種注釋庫以classify-sklearn(Naive Bayes)物種注釋方法對ASVs進行物種注釋分類學(xué)分析,利用美吉生物云平臺,采用Mothur軟件[22]通過Chao 、Shannon指標等計算Alpha多樣性;并采用one-way ANOVA進行Alpha多樣性的組間差異分析;基于Bray-curtis距離算法的PCoA分析檢驗樣本間菌群結(jié)構(gòu)的相似性。通過美吉生物云平臺將抗氧化指標、MDA含量、DAO和D-LA濃度與空腸內(nèi)容物優(yōu)勢菌群進行Spearman相關(guān)性分析。
1.4 數(shù)據(jù)統(tǒng)計分析
試驗數(shù)據(jù)經(jīng)Excel 2016初步處理后,應(yīng)用SPSS 26統(tǒng)計分析軟件進行分析。方差分析one-way ANOVA進行,并通過Duncan′s法進行多重比較,結(jié)果用平均數(shù)(Mean)和標準誤(SEM)表示。Plt;0.05 為差異顯著,0.05≤P≤0.1為有升高或降低趨勢,利用GraphPad Prism8進行作圖。
2 結(jié) 果
2.1 植物乳桿菌抑菌效果
通過對課題組篩選出來的兩株植物乳桿菌進行抑菌試驗發(fā)現(xiàn),兩株植物乳桿菌均可以有效地抑制ETEC K99的生長。植物乳桿菌G9和植物乳桿菌G10菌液抑菌效果均顯著高于植物乳桿菌G10菌液上清(Plt;0.05),且顯著高于兩株植物乳桿菌菌液的混合液的抑菌效果(Plt;0.05),但與植物乳桿菌G9菌液上清抑菌效果差異不顯著(Pgt;0.05,圖1)。相比植物乳桿菌G10,植物乳桿菌G9菌液抑制ETEC K99生長效果更佳。
2.2 羔羊腹瀉模型的建立
通過觀察所有羔羊糞便并對糞便進行評分,糞便評分表明D和DA組均有60%以上羔羊糞便評分gt;1,且DL組有80%以上羔羊糞便評分gt;1(圖2、表1)。檢測羔羊血清中DAO和D-LA濃度發(fā)現(xiàn),相比C組,D、DA和DL組在第9天羔羊血清中DAO和D-LA濃度顯著高于C組(Plt;0.05);第9天時,D、DA和DL組羔羊血清中DAO濃度顯著高于第1天時羔羊血清中DAO濃度(Plt;0.05),D組羔羊血清中D-LA濃度顯著高于第1天(Plt;0.05),第9天時,DA和DL組羔羊血清中D-LA濃度略高于第1天。C組羔羊血清中 DAO和D-LA濃度在3個時間點差異均不顯著(Pgt;0.05,表2)。通過以上結(jié)果可知,對羔羊持續(xù)8 d灌服ETEC K99菌液可以成功誘導(dǎo)羔羊腹瀉。
2.3 植物乳桿菌對大腸桿菌誘導(dǎo)腹瀉羔羊血清抗氧化能力的影響
由表3可知,在第9天,與C組相比,D、DA和DL組羔羊血清中T-AOC和SOD顯著降低(Plt;0.05),且DA和DL組羔羊血清中MDA顯著升高(Plt;0.05),GSH-Px差異不顯著(Pgt;0.05)。在第
13天,DA和DL組羔羊血清中GSH-Px、SOD、MDA、T-AOC差異不顯著(Pgt;0.05),但DL組羔羊血清中GSH-Px、SOD和T-AOC指標均略高于DA組(Pgt;0.05)。第9天時,D、DA和DL組羔羊血清中SOD顯著低于第1天(Plt;0.05),而三組羔羊血清中MDA顯著高于第1天(Plt;0.05);而對于T-AOC,D和DL組羔羊在第9天顯著低于第1天(Plt;0.05);在第13天,DA組和DL組羔羊血清中T-AOC、SOD顯著高于第9天 (Plt;0.05),MDA顯著低于第9天(Plt;0.05)。抗生素和植物乳桿菌均可以改善因腹瀉引起的血清抗氧化能力降低。
2.4 植物乳桿菌對大腸桿菌誘導(dǎo)腹瀉羔羊空腸緊密連接蛋白及黏蛋白(MUC2)的影響
通過阿利新藍(AB)染色對空腸組織中酸性黏液進行染色,結(jié)果如圖3所示,酸性黏液被染成藍色,相比C組,D組酸性黏膜蛋白占比差異不顯著(Pgt;0.05);相比D組,DA組和DL組酸性黏液增多但不顯著(Pgt;0.05)。對各組空腸黏膜組織中緊密連接蛋白和黏蛋白2(MUC2)檢測發(fā)現(xiàn),相比C組,D組羔羊空腸黏膜組織Occludin、Claudin1和MUC2蛋白表達量顯著下降(Plt;0.05),且DA組和DL組Occludin蛋白表達量顯著高于D組(Plt;0.05);但DA和DL組羔羊空腸黏膜組織Claudin1和MUC2蛋白表達量顯著低于C組(Plt;0.05)。相比DA組,DL組羔羊空腸黏膜組織Claudin1、Occludin和 MUC2蛋白表達量顯著增加(Plt;0.05)(圖4)。ETEC K99誘發(fā)的羔羊腹瀉會降低空腸緊密連接蛋白和MUC2蛋白的表達量,降低酸性黏液占比;相比于抗生素,植物乳桿菌可以顯著提高緊密連接蛋白和MUC2蛋白表達量,且促進酸性黏液增加效果更佳。
2.5 植物乳桿菌對大腸桿菌誘導(dǎo)腹瀉羔羊空腸菌群結(jié)構(gòu)的影響
由表4可知,與C組相比,D組羔羊空腸內(nèi)容物中菌群Chao值顯著降低(Plt;0.05),Shannon值降低但不顯著(Pgt;0.05),說明腹瀉顯著降低了菌群豐度。DL組羔羊空腸菌群Chao值和Shannon值與C組差異不顯著(Pgt;0.05)。相比于D組,DA組羔羊空腸中菌群Chao和 Shannon顯著下降,但DL組Chao值顯著升高(Plt;0.05),Shannon值差異不顯著(Pgt;0.05)。相比DA組,DL組羔羊空腸中菌群Chao值和Shannon值顯著高于DA組(Plt;0.05)。各組的空腸內(nèi)容物菌群的Coverage指數(shù)均在0.99以上,說明各樣品測序深度足夠。PCOA和ANOSIM分析表明,C、D和DL組不能完全分開,DA組與其他三組完全分開,其物種組成與其他三組有顯著差異(Plt;0.05)(圖5)。相比抗生素,植物乳桿菌提高空腸菌群豐富度和多樣性更佳。
本試驗采集羔羊空腸內(nèi)容物,共計24個。對24個樣本進行16S rDNA測序發(fā)現(xiàn),空腸內(nèi)容物共發(fā)現(xiàn)19個菌門,F(xiàn)irmicutes(61.69%)、Actinobacteriota(20.67%)、Proteobacteria(7.48%)和Bacteroidetes(3.44%)是豐度最高的四大菌門。DL組羔羊空腸內(nèi)容物Firmicutes豐度顯著高于DA組(Plt;0.05),C、D和DL組之間差異不顯著(Pgt; 0.05)。DL組羔羊空腸內(nèi)容物Actinobacteriota豐度顯著低于C、D和DA組(Plt;0.05),且C、D和DA組之間差異不顯著(Pgt;0.05)。DA組羔羊空腸內(nèi)容物Proteobacteria豐度顯著高于C、D和DL組(Plt;0.05),且C、D和DL組之間差異不顯著(Pgt;0.05)。各組羔羊空腸Bacteroidetes豐度差異不顯著(Pgt;0.05),但DL組略高于其他組(Pgt;0.05,圖6)。在屬水平上TOP5的物種包括:Bifidobacterium、Aeriscardovia、Christensenellaceae_R-7_group、Escherichia-Shigella、Saccharofermentans。進行比較后發(fā)現(xiàn)D和DA組Escherichia-Shigella顯著高于C和DL組(Plt;0.05)。DA組羔羊空腸內(nèi)容物中Aeriscardovia豐度顯著低于C、D和DL組(Plt;0.05),且D和DL組羔羊空腸內(nèi)容物中Aeriscardovia豐度顯著低于C組(Plt;0.05)。C、D和DL組羔羊空腸內(nèi)容物中Christensenellaceae_R-7_group豐度差異不顯著,且DA組羔羊空腸內(nèi)容物中Christensenellaceae_R-7_group豐度略低于D、DL和C組(Pgt;0.05)。DA組羔羊空腸內(nèi)容物中Bifidobacterium 豐度顯著高于C、D和DL組(Plt;0.05),且C、D和DL組之間差異不顯著(Pgt;0.05,圖7)。ETEC K99 誘發(fā)羔羊腹瀉,會引起羔羊空腸菌群多樣性降低,致病菌(如Escherichia-Shigella)顯著增加,益生菌減少(如Christensenellaceae_R-7_group);相比抗生素,植物乳桿菌降低Escherichia-Shigella,增加Christensenellaceae_R-7_group和Aeriscardovia豐度效果更佳。
2.6 主要優(yōu)勢菌與羔羊血清抗氧化指標、血清DAO和D-LA濃度以及空腸黏膜屏障蛋白相關(guān)性分析
將羔羊空腸內(nèi)容物中優(yōu)勢菌門和菌屬與血清中T-AOC、GSH-Px活性、SOD活力、MDA含量、 DAO濃度、 D-LA濃度以及空腸黏膜組織中蛋白Occludin、Claudin1和MUC2的表達量進行Spearman相關(guān)性分析可知(|R|gt;0.5,Plt;0.05)。Firmicutes和Verrucomicrobiota與空腸黏膜屏障蛋白蛋白MUC2顯著正相關(guān);Proteobacteria與空腸黏膜屏障蛋白MUC2顯著負相關(guān)。Spirochaetota與空腸黏膜屏障蛋白Occludin顯著正相關(guān)。Synergistota與羔羊血清中SOD顯著正相關(guān),Elusimicrobiota與羔羊血清中GSH-Px顯著負相關(guān)(圖8)。在屬水平上,進行相關(guān)性分析(|R|gt;0.5,Plt;0.05)發(fā)現(xiàn),Chlamydia、Marvinbryantia等菌屬與T-AOC顯著正相關(guān);Clostridium_sensu_stricto_1與T-AOC顯著負相關(guān),Chlamydia 和norank_f_norank_o_Claosridia_UCG-014與GSH-Px顯著負相關(guān),yntrophococcus、Marvinbryantia等屬與MDA顯著負相關(guān)。Syntrophococcus與D-LA顯著正相關(guān);Lachnospiraceae_NK3A20_group與DAO顯著正相關(guān)。NK4A214_group、Lachnospiraceae_XPB1014_group等屬與Occludin和MUC2表達量顯著正相關(guān),Erysipelotrichaceae_UCG-006與Claudin1顯著正相關(guān),Escherichia-Shigella、Erysipelotrichaceae_UCG-002、Solobacterium等菌屬與MUC2表達量顯著負相關(guān)。羔羊血清抗氧化能力以及空腸緊密連接蛋白和MUC2蛋白表達量與空腸菌群關(guān)系密切,且與MUC2蛋白表達量相關(guān)菌群較多(圖9)。
3 討 論
本試驗采用ETEC K99構(gòu)建羔羊腹瀉模型,主要研究植物乳桿菌對腹瀉羔羊血清抗氧化能力、空腸菌群變化和空腸黏膜屏障的影響。腸道組織損傷與氧化應(yīng)激密切相關(guān),而血清中SOD、T-AOC和GSH-Px等可以反映動物機體的抗氧化能力,血清中MDA含量是反映氧化應(yīng)激的重要指標[23-24]。SOD是一種重要的清除氧自由基的酶,可以阻止過氧化反應(yīng)[25]。GSH-Px可以清除細胞內(nèi)有害的代謝物從而保護細胞膜結(jié)構(gòu)和功能的完整性[26]。MDA是脂質(zhì)氧化的最終產(chǎn)物,其濃度間接反映了對膜系統(tǒng)的損傷程度[27]。本試驗發(fā)現(xiàn),D、DA和DL組羔羊血清中第9天時MDA含量顯著升高,SOD、T-AOC水平顯著降低,GSH-Px在三個組中均有所下降。因此,在第9天時,D、DA和DL組羔羊發(fā)生了氧化應(yīng)激。在第13天時,DA和DL組羔羊血清中MDA顯著低于第9天,并且SOD、T-AOC顯著升高,GSH-Px有所上升。植物乳桿菌可以通過激活Nrf2途徑增加抗氧化酶的分泌,并且有研究中指出植物乳桿菌提高血清抗氧化和體液免疫;促進腸道菌群代謝,這可能與乳酸菌自身酶系統(tǒng)和代謝產(chǎn)物有關(guān)[28-30]。GSH-Px保護腸道免受內(nèi)毒素和ROS等的損傷,并且GSH-Px的活性和一些微量元素有關(guān)[31] 。D-乳酸(D-LA)和二胺氧化酶(DAO)是檢測腸道完整性的重要指標[32],當腸道完整性受損時,D-乳酸和DAO被腸上皮細胞吸收到血液中,導(dǎo)致血清中D-乳酸和DAO濃度增加[33]。在本研究中發(fā)現(xiàn)在第9天時,相比于C組, D、DA和DL組羔羊血清中DAO濃度和D-LA濃度顯著升高,并且顯著高于第1天;相比第9天,第13天時,DA和DL組DAO濃度和D-LA濃度顯著降低,這些結(jié)果與Xu等[32]結(jié)果相似。Liu等[34]研究發(fā)現(xiàn),植物乳桿菌可以提高腸道完整性,這也可能是血清中DAO和D-乳酸濃度降低及抗氧化指標水平增加的原因之一。
腸道屏障功能一般由上皮細胞黏液層緊密連接(TJs)結(jié)構(gòu)調(diào)節(jié),TJs結(jié)構(gòu)由不同跨膜蛋白組裝,如Occludin、Claudin1等[35]。在本試驗中D組空腸緊密連接蛋白Occludin和Claudin1表達量顯著降低,DA和DL組Occludin蛋白表達顯著增加,DL組Claudin1蛋白的表達增加,這與Tang等[35]研究結(jié)果相似。植物乳桿菌分泌的一些代謝物和生物活性因子與腸道免疫受體相互作用調(diào)節(jié)上皮細胞功能促進腸道屏障完整[36]。但DA組Claudin1蛋白表達出現(xiàn)了下降,這可能是由于抗生素的使用損傷了腸道結(jié)構(gòu)引起的[32]。黏液層在保護腸道中起著重要作用,病原菌需通過黏液層達到上皮,黏液中的蛋白可以限制病原菌的生長和侵入[37]。MUC2是杯狀細胞分泌的一種主要腸道O-糖化蛋白,MUC2之間可以通過二硫鍵形成網(wǎng)狀聚合物,該聚合物是黏蛋白形成黏液層的主要框架,某些腸道疾病可以引起其表達異常[38]。本試驗結(jié)果顯示,相比D組,DA和DL組酸性黏液增加,并且DL組MUC2蛋白表達顯著增加,但DA組MUC2蛋白表達有所下降,這與王譽穎等[38]的研究結(jié)果相似。有研究同樣指出,乳桿菌可以促進黏液蛋白的分泌,促進腸道健康,這也可能是DL組比DA組酸性黏液蛋白較多的原因[39]。相比于抗生素,植物乳桿菌更利于促進腸道黏膜屏障蛋白的完整性。
腸道菌群由數(shù)以百萬計的微生物組成,通過各種代謝物,對宿主的營養(yǎng)吸收、代謝和免疫等生理過程起著關(guān)鍵作用[40]。腸道菌群失衡被普遍認為是腹瀉的主要原因,在牛的研究中發(fā)現(xiàn)牛腹瀉時腸道菌群發(fā)生了變化[41-42]。在本研究中發(fā)現(xiàn),相比C組,D組羔羊空腸內(nèi)容物菌群的Chao值和 Shannon值顯著降低,說明腹瀉羔羊空腸內(nèi)容物菌群豐富度和多樣性降低,ETEC K99破壞了羔羊空腸微生物的動態(tài)平衡,這一結(jié)果和Kim E T等[43]的試驗結(jié)果一致??股匾驯粡V泛用于治療大腸桿菌引起的腹瀉,但是抗生素的過度使用和誤用會引起腸道菌群失衡,而且動物源性的大腸桿菌表現(xiàn)出對各種抗生素的耐藥性[4,44]。本研究發(fā)現(xiàn),抗生素調(diào)節(jié)腹瀉羔羊?qū)ζ淇漳c菌群豐富度和多樣性沒有改善作用,但DA組中Bifidobacterium 豐度增加,原因可能是在此抗生素下該菌屬可以大量繁殖生長。
益生菌可定居在腸道以多種方式抑制腸道疾病,多數(shù)益生菌可以發(fā)酵產(chǎn)酸降低腸道內(nèi)酸堿度,從而降低一些病原體的含量[45-46]。有報告證實,使用益生菌可以通過腸道菌群保持腸道屏障完整性,避免腸道結(jié)構(gòu)和功能的紊亂[47],并且研究表明添加益生菌可以下調(diào)炎癥因子的表達[48]。在菌群與腸道屏障的研究中指出,腸道黏膜屏障的完整性和Proteobacteria的豐度有關(guān),Proteobacteria豐度的增加可以破壞原有的腸道黏膜屏障,增加腸道的通透性,引發(fā)腸道炎癥[49]。本研究結(jié)果表明:相比C組,D和DA組Proteobacteria豐度增加,DL組Proteobacteria豐度減少。通過將抗氧化指標、DAO和D-LA濃度和空腸黏膜屏障蛋白表達量與空腸菌群進行相關(guān)性分析發(fā)現(xiàn),空腸黏膜屏障蛋白MUC2與Firmicutes和Verrucomicrobiota顯著正相關(guān),與Proteobacteria顯著負相關(guān)。空腸黏膜屏障蛋白Occludin與Spirochaetota顯著正相關(guān)。羔羊血清中SOD活力與Synergistota顯著正相關(guān),GSH-Px與Elusimicrobiota顯著負相關(guān)。Yang等[50]研究發(fā)現(xiàn)Proteobacteria的增加與降低腸道屏障完整性和機體抗氧化能力聯(lián)系密切,李嘉輝等[51]研究指出Proteobacteria的增加不利于腸道形態(tài)健康。Firmicutes的增加與腸道免疫密切相關(guān)[52],植物乳桿菌屬于Firmicutes,植物乳桿菌可以提高MUC2的表達水平[28];對Verrucomicrobiota研究發(fā)現(xiàn),Verrucomicrobiota不僅與多糖降解有關(guān),還可改善代謝狀態(tài)和黏液層厚度[53-54],這也可能是MUC2蛋白與Firmicutes和Verrucomicrobiota相關(guān)性高的原因。在屬水平上,Aeriscardovia、NK4A214_group、Lachnospiraceae_XPB1014_group、DNF00809 等有利于腸道屏障健康,Escherichia-Shigella 等屬的存在會嚴重損傷腸道屏障。先前研究表明Aeriscardovia屬于放線菌門,參與促進腸道屏障完整性,提高免疫功能和代謝[55]。Aeriscardovia可以與 Bifidobacterium協(xié)同,且大量試驗證明其能夠通過碳水化合物發(fā)酵產(chǎn)生大量短鏈脂肪酸(SCFAs)和乳酸,從而促進腸上皮細胞代謝和MUC2的表達[56-57]。有研究表明Lachnospiraceae_XPB1014_group 和DNF00809分別與丁酸產(chǎn)生和乙酸產(chǎn)生正相關(guān)[58-59]。Demirtas等[58]的研究報告中指出DNF00809和Acetitomaculum與異戊酸鹽的產(chǎn)生呈正相關(guān)。NK4A214_group于瘤胃球菌科參與結(jié)構(gòu)碳水化合物和淀粉的降解,且NK4A214_group有助于揮發(fā)酸(SCFAs)和IL-10的產(chǎn)生,降低炎癥因子[60-61]。研究表明SCFAs可以促進TJ蛋白的表達,降低腸道通透性,并且SCFAs可以幫助其他抗菌因子更容易地進入病原體細胞發(fā)揮抗菌作用,促進腸道健康[28,62]。
綜上所述,一方面植物乳桿菌提高腹瀉羔羊的抗氧化能力,增加酸性黏液產(chǎn)生,提高緊密連接蛋白和黏膜蛋白MUC2的表達,改善空腸腸道屏障。另一方面,相比抗生素,植物乳桿菌可以調(diào)控腹瀉引起的羔羊空腸菌群結(jié)構(gòu)失衡,降低了Proteobacteria的數(shù)量,增加Firmicutes,增加菌群的豐富度和多樣性,增加有益菌群的豐度。因此,植物乳桿菌調(diào)節(jié)羔羊腹瀉很可能是通過調(diào)控腸道菌群結(jié)構(gòu),促進腸道菌群多樣性及其代謝,從而緩解腹瀉引起的機體抗氧化能力下降和腸道屏障損傷,并且相比抗生素更有利于保護腸道健康。
4 結(jié) 論
植物乳桿菌和抗生素都能夠提高羔羊血清抗氧化能力,降低DAO和D-LA濃度,但相比抗生素,植物乳桿菌能更好地促進緊密連接蛋白和黏膜蛋白MUC2的表達,提高菌群豐富度和多樣性。因此,植物乳桿菌不僅能改善ETEC K99誘導(dǎo)的羔羊腹瀉,緩解腹瀉對空腸屏障的損傷,保護腸道健康,并且在提高腸道完整性和改善菌群結(jié)構(gòu)要優(yōu)于抗生素,本試驗的菌株或許可以成為抗生素的代替品。
參考文獻(References):
[1] 楊檸芝,李 婷,王 燕,等.斷奶前后非特異病原性腹瀉羔羊生長生理及腸道菌群差異性比較[J].中國農(nóng)業(yè)科學(xué),2021,54(2):422-434.
YANG N Z,LI T,WANG Y,et al.Comparison of growth physiology and gut microbiota between healthy and diarrheic lambs in pre-and post-weaning period[J].Scientia Agricultura Sinica,2021,54(2):422-434.(in Chinese)
[2] RAHEEM A,LIANG L,ZHANG G Z,et al.Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation[J].Front Immunol,2021,12:616713.
[3] SUNDERLAND S J,SARASOLA P,ROWAN T G,et al.Efficacy of danofloxacin 18% injectable solution in the treatment of Escherichia coli diarrhoea in young calves in Europe[J].Res Vet Sci,2003,74(2):171-178.
[4] WU Y Y,NIE C X,LUO R Q,et al.Effects of multispecies probiotic on intestinal microbiota and mucosal barrier function of neonatal calves infected with E. coli K99[J].Front Microbiol,2022,12:813245.
[5] ERGINKAYA Z,KONURAY-ALTUN G.Potential biotherapeutic properties of lactic acid bacteria in foods[J].Food Biosci,2022,46:101544.
[6] 李 維,孫開濟,孫玉麗,等.乳酸菌緩解腸道氧化應(yīng)激研究進展[J].動物營養(yǎng)學(xué)報,2016,28(1):9-14.
LI W,SUN K J,SUN Y L,et al.Research progress in relieve effect of lactobacillus in intestinal oxidative stress[J].Chinese Journal of Animal Nutrition,2016,28(1):9-14.(in Chinese)
[7] YUE Y,HE Z J,ZHOU Y H,et al.Lactobacillus plantarum relieves diarrhea caused by enterotoxin-producing Escherichia coli through inflammation modulation and gut microbiota regulation[J].Food Funct,2020,11(12):10362-10374.
[8] CLEMENTS M L,LEVINE M M,BLACK R E,et al.Lactobacillus prophylaxis for diarrhea due to enterotoxigenic Escherichia coli[J].Antimicrob Agents Chemother,1981,20(1):104-108.
[9] FERNáNDEZ S,F(xiàn)RAGA M,CASTELLS M,et al.Effect of the administration of Lactobacillus spp. strains on neonatal diarrhoea,immune parameters and pathogen abundance in pre-weaned calves[J].Benef Microbes,2020,11(5):477-488.
[10] ZHANG Z W,LV J L,PAN L,et al.Roles and applications of probiotic Lactobacillus strains[J].Appl Microbiol Biotechnol,2018,102(19):8135-8143.
[11] LIU S,ZHAO W J,LAN P,et al.The microbiome in inflammatory bowel diseases:from pathogenesis to therapy[J].Protein Cell,2021,12(5):331-345.
[12] LIU B,WANG C J,HUASAI S,et al.Compound probiotics improve the diarrhea rate and intestinal microbiota of newborn calves[J].Animals (Basel),2022,12(3):322.
[13] ROCHA-RAMíREZ L M,PéREZ-SOLANO R A,CASTAóN-ALONSO S L,et al.Probiotic Lactobacillus strains stimulate the inflammatory response and activate human macrophages[J].J Immunol Res,2017,2017:4607491.
[14] ROUDSARI N M,LASHGARI N A,ZANDI N,et al.PPARγ:a turning point for irritable bowel syndrome treatment[J].Life Sci,2020,257:118103.
[15] ZHAO J F,ZHAO R F,CHENG L,et al.Peroxisome proliferator-activated receptor gamma activation promotes intestinal barrier function by improving mucus and tight junctions in a mouse colitis model[J].Dig Liver Dis,2018,50(11):1195-1204.
[16] CHENG Y,YANG C,TAN Z L,et al.Changes of intestinal oxidative stress,inflammation,and gene expression in neonatal diarrhoea kids[J].Front Vet Sci,2021,8:598691.
[17] GUO W L,MAO B Y,CUI S M,et al.Protective effects of a novel probiotic Bifidobacterium pseudolongum on the intestinal barrier of colitis mice via modulating the Pparγ/STAT3 pathway and intestinal microbiota[J].Foods,2022,11(11):1551.
[18] CHEN S F,ZHOU Y Q,CHEN Y R,et al.fastp:an ultra-fast all-in-one FASTQ preprocessor[J].Bioinformatics,2018,34(17):i884-i890.
[19] MAGOCACˇG T,SALZBERG S L.FLASH:fast length adjustment of short reads to improve genome assemblies[J].Bioinformatics,2011,27(21):2957-2963.
[20] CALLAHAN B J,MCMURDIE P J,ROSEN M J,et al.DADA2:high-resolution sample inference from Illumina amplicon data[J].Nat Methods,2016,13(7):581-583.
[21] BOLYEN E,RIDEOUT J R,DILLON M R,et al.Reproducible,interactive,scalable and extensible microbiome data science using QIIME 2[J].Nat Biotechnol,2019,37(8):852-857.
[22] SCHLOSS P D,WESTCOTT S L,RYABIN T,et al.Introducing mothur:open-source,platform-independent,community-supported software for describing and comparing microbial communities[J].Appl Environ Microbiol,2009,75(23):7537-7541.
[23] CHEN X S,KONG Q H,ZHAO X X,et al.Sodium acetate/sodium butyrate alleviates lipopolysaccharide-induced diarrhea in mice via regulating the gut microbiota,inflammatory cytokines,antioxidant levels,and NLRP3/Caspase-1 signaling[J].Front Microbiol,2022,13:1036042.
[24] MEHMOOD K,ZHANG H,YAO W Y,et al.Protective effect of Astragaloside IV to inhibit thiram-induced tibial dyschondroplasia[J].Environ Sci Pollut Res Int,2019,26(16):16210-16219.
[25] LIU H C,ZHANG X J,DU Y Y,et al.Leonurine protects brain injury by increased activities of UCP4,SOD,CAT and Bcl-2,decreased levels of MDA and Bax,and ameliorated ultrastructure of mitochondria in experimental stroke[J].Brain Res,2012,1474:73-81.
[26] TAZUKE Y,WASA M,SHIMIZU Y,et al.Alanyl-glutamine-supplemented parenteral nutrition prevents intestinal ischemia-reperfusion injury in rats[J].J Parenter Enteral Nutr,2003,27(2):110-115.
[27] GAO Y Z,ZHAO L F,MA J,et al.Protective mechanisms of wogonoside against Lipopolysaccharide/D-galactosamine-induced acute liver injury in mice[J].Eur J Pharmacol,2016,780:8-15.
[28] LIU Y H,LIU G,F(xiàn)ANG J.Progress on the mechanisms of Lactobacillus plantarum to improve intestinal barrier function in ulcerative colitis[J].J Nutr Biochem,2024,124:109505.
[29] IZUDDIN W I,LOH T C,F(xiàn)OO H L,et al.Postbiotic L. plantarum RG14 improves ruminal epithelium growth,immune status and upregulates the intestinal barrier function in post-weaning lambs[J].Sci Rep,2019,9(1):9938.
[30] 葉正豪.抗生素通過調(diào)節(jié)腸道菌群膽汁酸代謝抑制小鼠結(jié)腸炎癥的研究[J].武漢:華中科技大學(xué),2020.
YE Z H.Antibiotic-modulated microbiome suppresses colon inflammation in mice by modulating the intestinal bile acids metabolism[D].Wuhan:Huazhong University of Science and Technology,2020.(in Chinese)
[31] 阿拉騰珠拉,劉文慧,馬 露,等.裂壺藻和乳鐵蛋白對大腸桿菌K99攻毒哺乳犢牛腹瀉、生長性能、糞便評分及血清抗氧化指標的影響[J].動物營養(yǎng)學(xué)報,2020,32(9):4166-4176.
ALATENGZHULA,LIU W H,MA L,et al.Effects of Schizochytrium sp. and lactoferrin on diarrhea,growth performance,fecal score and serum antioxidant indices of sucking calves challenged with Escherichia coli K99[J].Chinese Journal of Animal Nutrition,2020,32(9):4166-4176.(in Chinese)
[32] XU B F,LIANG S N,ZHAO J Y,et al.Bifidobacterium animalis subsp. lactis XLTG11 improves antibiotic-related diarrhea by alleviating inflammation,enhancing intestinal barrier function and regulating intestinal flora[J].Food Funct,2022,13(11):6404-6418.
[33] CAI J R,CHEN H,WENG M L,et al.Diagnostic and clinical significance of serum levels of D-lactate and diamine oxidase in patients with crohn′s disease[J].Gastroenterol Res Pract,2019,2019:8536952.
[34] LIU Y S,GU W,LIU X Y,et al.Joint application of Lactobacillus plantarum and Bacillus subtilis improves growth performance,immune function and intestinal integrity in weaned piglets[J].Vet Sci,2022,9(12):668.
[35] TANG C E,XIE B J,ZONG Q,et al.Proanthocyanidins and probiotics combination supplementation ameliorated intestinal injury in Enterotoxigenic Escherichia coli infected diarrhea mice[J].J Funct,2019,62:103521.
[36] LEBEER S,VANDERLEYDEN J,DE KEERSMAECKER S C J.Genes and molecules of lactobacilli supporting probiotic action[J].Microbiol Mol Biol Rev,2008,72(4):728-764.
[37] OSWALD I P.Role of intestinal epithelial cells in the innate immune defence of the pig intestine[J].Vet Res,2006,37(3):359-368.
[38] 王譽穎,湯林杰,李 姣,等.干酪乳桿菌對發(fā)育期腹瀉模型大鼠回腸黏膜結(jié)構(gòu)及MUC2含量的影響[J].中國農(nóng)業(yè)大學(xué)學(xué)報,2019,24(8):94-101.
WANG Y Y,TANG L J,LI J,et al.Effect of Lactobacillus casei on the ileal mucosal structure and MUC2 content of rats with developmental diarrhea[J].Journal of China Agricultural University,2019,24(8):94-101.(in Chinese)
[39] OTTE J M,PODOLSKY D K.Functional modulation of enterocytes by gram-positive and gram-negative microorganisms[J].Am J Physiol Gastrointest Liver Physiol,2004,286(4):G613-G626.
[40] WEI H L,LI X,TANG L,et al.16S rRNA gene sequencing reveals the relationship between gut microbiota and ovarian development in the swimming crab Portunus trituberculatus[J].Chemosphere,2020,254:126891.
[41] KIM E T, LEE S J, KIM T Y, et al. Dynamic Changes in Fecal Microbial Communities of Neonatal Dairy Calves by Aging and Diarrhea.[J] Animals, 2021;11(4):1113.
[42] SCHMOELLER E,DE MATOS A D C,RAHAL N M,et al.Diarrhea duration and performance outcomes of pre-weaned dairy calves supplemented with bacteriophage[J].Can J Anim Sci,2022,102(1):165-174.
[43] KIM E T,LEE S J,KIM T Y,et al.Dynamic changes in fecal microbial communities of neonatal dairy calves by aging and diarrhea[J].Animals (Basel),2021,11(4):1113.
[44] XU C M,KONG L Q,LIAO Y H,et al.Mini-review:antibiotic-resistant escherichia coli from farm animal-associated sources[J].Antibiotics (Basel),2022,11(11):1535.
[45] 何利娜,敖日格樂,王純潔,等.添加酸馬奶源乳酸桿菌對犢牛腸道菌群和短鏈脂肪酸含量的影響[J].中國獸醫(yī)學(xué)報,2022,42(2):270-276.
HE L N,AORI G,WANG C J,et al.Effect of adding Lactobacillus from sour mare milk on intestinal flora and short chain fatty acid content of calves[J].Chinese Journal of Veterinary Science,2022,42(2):270-276.(in Chinese)
[46] 王曉成,張 明,陳善斌,等.副干酪乳桿菌L9對小鼠腸道短鏈脂肪酸含量的影響[J].食品科學(xué),2017,38(13):238-243.
WANG X C,ZHANG M,CHEN S B,et al.Effect of Lactobacillus paracasei L9 on the content of intestinal short chain fatty acids in healthy mice[J].Food Science,2017,38(13):238-243.(in Chinese)
[47] RéGNIER M,VAN HUL M,KNAUF C,et al.Gut microbiome,endocrine control of gut barrier function and metabolic diseases[J].J Endocrinol,2021,248(2):R67-R82.
[48] WANG Y,LIN" X,CHENG Z Y,et al.Bacillus coagulans TL3 inhibits LPS-induced caecum damage in rat by regulating the TLR4/MyD88/NF-κB and Nrf2 signal pathways and modulating intestinal microflora[J].Oxid Med Cell Longev,2022,2022:5463290.
[49] HAKANSSON A,MOLIN G.Gut microbiota and inflammation[J].Nutrients,2011,3(6):637-682.
[50] YANG C,ZHANG T X,TIAN Q H,et al.Supplementing mannan oligosaccharide reduces the passive transfer of immunoglobulin g and improves antioxidative capacity,immunity,and intestinal microbiota in neonatal goats[J].Front Microbiol,2022,12:795081.
[51] 李嘉輝,龔建剛,鄒 俊,等.白藜蘆醇對脂多糖刺激肉雞生長性能和腸道屏障功能的影響[J].飼料工業(yè),2023,44(3):45-52.
LI J H,GONG J G,ZOU J,et al.Effects of resveratrol on growth performance and intestinal barrier function of broiler chickens stimulated by lipopolysaccharide[J].Feed Industry,2023,44(3):45-52.(in Chinese)
[52] ZHANG J C,GUO Z,XUE Z S,et al.A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles,geography and ethnicities[J].ISME J,2015,9(9):1979-1990.
[53] YANG G,TIAN X L,DONG S L.Bacillus cereus and rhubarb regulate the intestinal microbiota of sea cucumber (Apostichopus japonicus Selenka):species-species interaction,network,and stability[J].Aquaculture,2019,512:734284.
[54] EVERARD A,BELZER C,GEURTS L,et al.Cross-talk between Akkermansia muciniphila and intestinal" epithelium controls diet-induced obesity[J].Proc Natl Acad Sci U S A,2013,110(22):9066-9071.
[55] LI Y J,HAN L L,LIU J,et al.Yeast peptides improve the intestinal barrier function and alleviate weaning stress by Changing the intestinal microflora structure of weaned lambs[J].Microorganisms,2023,11(10):2472.
[56] BINDA C,LOPETUSO L R,RIZZATTI G,et al.Actinobacteria:a relevant minority for the maintenance of gut homeostasis[J].Dig Liver Dis,2018,50(5):421-428.
[57] WILLEMSEN L E M,KOETSIER M A,VAN DEVENTER S J H,et al.Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts[J].Gut,2003,52(10):1442-1447.
[58] DEMIRTAS A,PACíFICO C,GRUBER T,et al.Sigla storax (Liquidambar orientalis) mitigates in vitro methane production without disturbances in rumen microbiota and nutrient fermentation in comparison to monensin[J].J Appl Microbiol,2023,134(8):lxad154.
[59] LEI H L,DU Q,LU N S,et al.Comparison of the microbiome-metabolome response to copper sulfate and copper glycinate in growing pigs[J].Animals (Basel),2023,13(3):345.
[60] LI Y,LV M,WANG J Q,et al.Dandelion (Taraxacum mongolicum Hand. -Mazz.) supplementation-enhanced rumen fermentation through the interaction between ruminal microbiome and metabolome[J].Microorganisms,2020,9(1):83.
[61] LI Z C,HE H,NI M K,et al.Microbiome-metabolome analysis of the immune microenvironment of the cecal contents,soft feces,and hard feces of hyplus rabbits[J].Oxid Med Cell Longev,2022,2022:5725442.
[62] JACOBSON A,LAM L,RAJENDRAM M,et al.A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection[J].Cell Host Microbe,2018,24(2):296-307.e7.
(編輯 范子娟)