【摘 要】食欲素是下丘腦分泌的重要神經(jīng)肽,參與多種大腦活動(dòng)。帕金森病是常見(jiàn)的神經(jīng)退行性疾病,其發(fā)生與黑質(zhì)致密部中的多巴胺神經(jīng)元進(jìn)行性喪失、下丘腦中路易小體的形成相關(guān)。研究發(fā)現(xiàn)食欲素系統(tǒng)通過(guò)直接作用于大量多巴胺神經(jīng)元所在的腹側(cè)被蓋區(qū)內(nèi)的食欲素受體來(lái)調(diào)節(jié)多巴胺功能,而多巴胺也參與到食欲素神經(jīng)元的電生理活動(dòng)調(diào)節(jié)中。文中探討了下丘腦食欲素系統(tǒng)對(duì)帕金森病的神經(jīng)保護(hù)作用,并從食欲素對(duì)帕金森病的運(yùn)動(dòng)癥狀、非運(yùn)動(dòng)癥狀的作用和機(jī)制作簡(jiǎn)要綜述。
【關(guān)鍵詞】食欲素;帕金森;神經(jīng)保護(hù);研究進(jìn)展
【中圖分類號(hào)】R114 【文獻(xiàn)標(biāo)志碼】A 【收稿日期】2023-10-16
食欲素(orexin)是大腦下丘腦外側(cè)分泌的一種神經(jīng)遞質(zhì),由2 種異構(gòu)體OrexinA(OXA)和OrexinB(OXB)組成,主要參與睡眠-覺(jué)醒周期、獎(jiǎng)勵(lì)和壓力處理、警覺(jué)性、警惕性和認(rèn)知功能等過(guò)程[1]。中樞和外周食欲素水平的變化與發(fā)作性睡病、神經(jīng)性厭食癥、與年齡相關(guān)的認(rèn)知能力下降和神經(jīng)退行性疾病等疾病有關(guān)。帕金森?。≒arkinson’s disease,PD)是臨床中常見(jiàn)的神經(jīng)退行性病變,其發(fā)生與黑質(zhì)致密部中的多巴胺(dopamine,DA)神經(jīng)元進(jìn)行性喪失、下丘腦中路易小體的形成相關(guān)[2-3]。研究顯示食欲素可以通過(guò)調(diào)控腹側(cè)被蓋區(qū)的食欲素受體來(lái)調(diào)節(jié)DA功能而參與到PD的病理生理中。本文將從食欲素的特點(diǎn)、與PD的運(yùn)動(dòng)及非運(yùn)動(dòng)癥狀的關(guān)系及參與PD發(fā)生的機(jī)制進(jìn)行綜述。
1 食欲素簡(jiǎn)介
1998年,2個(gè)獨(dú)立研究小組在研究mRNA和下丘腦蛋白時(shí)發(fā)現(xiàn)兩種新的下丘腦神經(jīng)肽,分別命名為下丘腦分泌素和食欲素,下丘腦分泌素又稱為食欲素[4-5]。食欲素是由穹隆周圍區(qū)域和下丘腦外側(cè)的食欲素能神經(jīng)元釋放,下丘腦外側(cè)的食欲素能神經(jīng)元與獎(jiǎng)賞功能相關(guān)。大腦中存在50 000~80 000 個(gè)食欲素能神經(jīng)元,分為2 種食欲素亞體:OXA 和OXB,兩者具有50% 的相似性,OXA 由33 個(gè)氨基酸組成,OXB由28個(gè)氨基酸組成,兩者都是通過(guò)蛋白水解處理從相同的前體衍生而來(lái)的[6-7],作用于由G蛋白偶聯(lián)的食欲素1受體(OX1R)和食欲素2受體(OX2R)。OXA 作用于OX1R 和OX2R,而OXB主要作用于OX2R[8]。OX1R主要在杏仁核和藍(lán)斑中表達(dá),OX2R主要在下丘腦中表達(dá)(圖1),2種受體的表達(dá)在大多數(shù)大腦區(qū)域是重疊的。
OXA和OXB遍布中樞神經(jīng)系統(tǒng)的大部分區(qū)域,處于不同的位置發(fā)揮不同的作用,分布于下丘腦、基底前腦、結(jié)節(jié)乳頭核、導(dǎo)水管周圍灰質(zhì)、中縫背側(cè)和藍(lán)斑的主要參與調(diào)節(jié)睡眠-覺(jué)醒狀態(tài)并促進(jìn)覺(jué)醒。而海馬和前額葉皮層區(qū)域的則支持記憶和認(rèn)知功能[1]。食欲素還通過(guò)交感神經(jīng)激活調(diào)節(jié)棕色脂肪組織的活性,促進(jìn)脂肪生成并刺激脂聯(lián)素的釋放[9]。食欲素可通過(guò)激活乙酰膽堿、組胺、去甲腎上腺素和多巴胺神經(jīng)元來(lái)增強(qiáng)清醒度,也可被單胺能神經(jīng)元和γ-氨基丁酸(γ-aminobutyric acid,GABA)能神經(jīng)元調(diào)節(jié)進(jìn)而在反饋循環(huán)中協(xié)調(diào)警惕和覺(jué)醒[10]。
2 食欲素與DA
食欲素神經(jīng)元與DA神經(jīng)元不屬于同一類型的神經(jīng)元,存在于不同的神經(jīng)系統(tǒng)中,但兩者之間存在相互作用。首先,多巴胺能神經(jīng)元上同時(shí)存在食欲素受體和多巴胺受體,在側(cè)被蓋區(qū)(ventral tegmental area,VTA)中,食欲素可以直接作用于OXRs進(jìn)而增加VTA中DA能神經(jīng)元的強(qiáng)直和爆發(fā)性放電,也可誘導(dǎo)VTA 內(nèi)突觸N-甲基-D-天冬氨酸(Nmethyl-D-aspartic acid receptor,NMDA)受體的增加而增強(qiáng)DA神經(jīng)元的谷氨酸能興奮性[11-12],進(jìn)而調(diào)節(jié)DA功能。動(dòng)物實(shí)驗(yàn)表明,在中樞系統(tǒng)注射食欲素會(huì)增加前額皮質(zhì)的DA表達(dá),增加DA自受體的放電頻率,可增加麻醉大鼠的清醒時(shí)間[13],并誘導(dǎo)伏隔核(nucleus accumben,NAc)釋放DA 及其代謝物[14]。反之,抑制食欲素會(huì)減少DA自受體細(xì)胞放電,且也會(huì)限制NAc中安非他命和可卡因誘導(dǎo)的DA釋放[15]。在對(duì)大鼠VTA 涂片的DA 細(xì)胞全電記錄模式下發(fā)現(xiàn),應(yīng)用OXA后,1組細(xì)胞并沒(méi)有發(fā)生變化,而這可能與OXA選擇性激活DA相關(guān)。另1組細(xì)胞持續(xù)放電并伴隨去極化,而且去極化作用沒(méi)有被電壓門(mén)控鈉通道阻滯劑河豚毒素阻斷,因此很可能代表OXA對(duì)DA神經(jīng)元有直接影響[16]。
此外,DA也參與到食欲素神經(jīng)元的電生理活動(dòng)調(diào)節(jié)中,涉及多種模式活動(dòng)。研究發(fā)現(xiàn),20~50 mmol/L的DA可降低小鼠食欲素神經(jīng)元的動(dòng)作電位放電和超極化膜電位,而這種作用可被D2受體拮抗劑依替必利阻斷[17]。但DA對(duì)食欲素神經(jīng)元的直接超極化作用可能不是由DA受體介導(dǎo),而是由A2腎上腺素能受體介導(dǎo):由300 mmol/L DA誘導(dǎo)的小鼠食欲素神經(jīng)元的超極化受到A2受體拮抗劑咪唑克生的抑制[18]。此外,在對(duì)大鼠下丘腦切片的研究中揭示了DA對(duì)食欲素神經(jīng)元的興奮性輸入的雙向作用[19]。使用D1 樣激動(dòng)劑A-77636或D2樣激動(dòng)劑喹吡羅,以及混合多巴胺激動(dòng)劑阿撲嗎啡,可誘導(dǎo)大鼠食欲素神經(jīng)元中的c-Fos表達(dá)[20]。但在食欲素神經(jīng)元集中的下丘腦外側(cè)區(qū)域和穹窿周圍區(qū)域沒(méi)有表現(xiàn)出現(xiàn)DA受體的表達(dá)。因此,阿撲嗎啡的作用可能是跨突觸介導(dǎo)的,而不是通過(guò)對(duì)食欲素神經(jīng)元的直接作用[20]??偟膩?lái)說(shuō),DA受體的刺激可以改變食欲素神經(jīng)元的活動(dòng),但動(dòng)作的方向可以是興奮性或抑制性的。
3 食欲素參與PD的發(fā)生發(fā)展
3.1 食欲素參與PD的運(yùn)動(dòng)癥狀
3.1.1 食欲素與PD的軀體運(yùn)動(dòng)障礙 PD的運(yùn)動(dòng)癥狀往往是病人就診的首要癥狀,主要表現(xiàn)為靜止性震顫、肌強(qiáng)直、姿勢(shì)不穩(wěn)、行動(dòng)遲緩等。而人體大多數(shù)中樞運(yùn)動(dòng)控制結(jié)構(gòu)均受食欲素支配[21],DA神經(jīng)元向紋狀體發(fā)送軸突投射,黑質(zhì)致密部(compact part of substantia nigra,SNpc)神經(jīng)區(qū)域中DA 神經(jīng)元的喪失,紋狀體的DA供應(yīng)不足,導(dǎo)致蒼白球活動(dòng)減退,過(guò)度抑制基底神經(jīng)節(jié),從而導(dǎo)致錐體外系系統(tǒng)的直接和間接途徑之間的不平衡,出現(xiàn)運(yùn)動(dòng)不能、僵硬和震顫等[22]。而食欲素可將軸突終末發(fā)送到包括蒼白球在內(nèi)的眾多腦區(qū)以改善運(yùn)動(dòng)功能。體內(nèi)細(xì)胞外單元記錄發(fā)現(xiàn)PD小鼠的蒼白球神經(jīng)元基礎(chǔ)自發(fā)放電率低于正常小鼠,雙側(cè)蒼白球注射OXA和OXB通過(guò)激活L型Ca2+通道Ca2+內(nèi)流誘導(dǎo)蒼白球興奮而增加PD小鼠的基礎(chǔ)放電率,且OXA誘導(dǎo)的PD小鼠蒼白球自發(fā)放電高于正常小鼠[22]。有研究報(bào)道,OXA 可以導(dǎo)致MPTP誘導(dǎo)的PD小鼠模型黑質(zhì)DA神經(jīng)元的減少,腦神經(jīng)元營(yíng)養(yǎng)因子表達(dá)上調(diào),改善PD小鼠在爬桿測(cè)試、曠場(chǎng)實(shí)驗(yàn)、水迷宮實(shí)驗(yàn)中行為學(xué)表現(xiàn),提示OXA對(duì)帕金森小鼠的運(yùn)動(dòng)協(xié)調(diào)有神經(jīng)保護(hù)作用[23]。在全身使用氟哌啶醇的情況下,單側(cè)蒼白球顯微注射OXA會(huì)導(dǎo)致PD大鼠對(duì)側(cè)偏轉(zhuǎn)[24],腦室內(nèi)注射OXA 增加PD 大鼠在桿上奔跑的時(shí)間和下落潛伏期[25]。綜上可見(jiàn),OXA是未來(lái)治療PD運(yùn)動(dòng)缺陷的潛在治療靶點(diǎn)。
3.1.2 食欲素與PD 的呼吸運(yùn)動(dòng)障礙 早在1817 年,詹姆斯·帕金森就發(fā)現(xiàn)PD患者存在呼吸系統(tǒng)的問(wèn)題,例如呼吸困難、上呼吸道癥狀或喘鳴等[26]。但是現(xiàn)代研究對(duì)此相關(guān)的發(fā)病機(jī)制仍知之甚少。PD患者的呼吸功能受損意味合并其他肺部疾病的風(fēng)險(xiǎn)會(huì)增加,肺炎是PD患者常見(jiàn)的死亡原因[27]。臨床研究發(fā)現(xiàn),在PD的早期階段,PD患者的最大呼氣壓力和最大吸氣壓力均低于正常值,提示患者出現(xiàn)呼吸肌無(wú)力,且隨著疾病的發(fā)展而逐漸加重[27]。在PD大鼠模型中,由于食欲素神經(jīng)元總數(shù)及其向后梯形核的投射減少,大鼠腦干腹側(cè)呼吸柱內(nèi)的神經(jīng)元數(shù)量減少,伴隨著對(duì)高碳酸血癥通氣反應(yīng)的降低,呼吸頻率受損,可能與黑暗階段的化學(xué)感受器功能受損有關(guān)[28]。
3.2 食欲素參與PD的非運(yùn)動(dòng)癥狀
3.2.1 睡眠障礙 PD除了具有典型的運(yùn)動(dòng)癥狀外,還存在多種非運(yùn)動(dòng)癥狀和神經(jīng)系統(tǒng)癥狀,一些非運(yùn)動(dòng)癥狀發(fā)生先于或同時(shí)于運(yùn)動(dòng)癥狀的出現(xiàn),并隨著疾病的進(jìn)展而惡化[29]。有研究表明15%~50%的PD患者合并睡眠障礙[30],以快速眼動(dòng)睡眠期肌肉弛緩消失并出現(xiàn)與夢(mèng)境相關(guān)的復(fù)雜運(yùn)動(dòng)為特征,而食欲素系統(tǒng)在快速眼動(dòng)睡眠調(diào)節(jié)中起著關(guān)鍵作用[31]。食欲素可能通過(guò)腹側(cè)被蓋核經(jīng)纖維投射到腦橋外側(cè)被蓋部,間接參與脊髓運(yùn)動(dòng)神經(jīng)元的神經(jīng)支配,食欲素缺乏可導(dǎo)致腦橋被蓋背外側(cè)下核中神經(jīng)元興奮性降低,從而導(dǎo)致快速眼動(dòng)睡眠中的肌肉無(wú)力[32]。研究發(fā)現(xiàn),PD的睡眠發(fā)作和嗜睡癥與腦脊液中食欲素的減少相關(guān)[33],在對(duì)PD患者的多重睡眠潛伏期檢查顯示,OXA的表達(dá)水平與無(wú)肌肉弛緩的快速眼動(dòng)睡眠呈正相關(guān)[31],PD睡眠障礙患者腦脊液中食欲素表達(dá)低于健康人群的對(duì)照組,但與白天過(guò)度嗜睡、快速眼動(dòng)睡眠行為障礙的臨床特征之間未見(jiàn)相關(guān)性[34]。這可能與PD睡眠障礙發(fā)病機(jī)制不唯一相關(guān)。腦脊液中食欲素水平作為PD的生物標(biāo)志物的功效有限,睡眠障礙也可能受到食欲素以外的神經(jīng)系統(tǒng)或PD中的DA治療的影響。
3.2.2 認(rèn)知功能障礙 PD患者在編碼、鞏固、存儲(chǔ)和提取記憶方面可能存在缺陷,食欲素存在于前額葉皮層(prefrontalcortex,PFC)中,內(nèi)側(cè)的PFC負(fù)責(zé)處理上下行的社會(huì)線索以指導(dǎo)復(fù)雜社會(huì)行為的處理。食欲素是內(nèi)側(cè)PFC功能的強(qiáng)調(diào)節(jié)劑,可直接或間接地激發(fā)PFC神經(jīng)元,從而改善注意力、短期記憶和空間記憶[35-36]。研究者運(yùn)用Morris水迷宮和物體識(shí)別的方法,對(duì)6-OHDA誘導(dǎo)的PD大鼠進(jìn)行工作記憶測(cè)試和空間記憶測(cè)試。結(jié)果發(fā)現(xiàn)雙側(cè)紋狀體注射6-OHDA破壞了大鼠的黑質(zhì)致密部、丘腦外側(cè)和穹隆周圍區(qū)的食欲素神經(jīng)元表達(dá)。食欲素標(biāo)記細(xì)胞數(shù)減少了28%,食欲素系統(tǒng)的耗竭削弱了大鼠在先前訓(xùn)練的水迷宮中尋找目標(biāo)的能力,使得PD大鼠的空間記憶、陳述性記憶受損[37]。由此可見(jiàn),帕金森病的記憶功能障礙與食欲素系統(tǒng)有關(guān)。
3.2.3 自主神經(jīng)功能障礙 在約80%的PD患者中出現(xiàn)胃腸功能障礙(胃輕癱),例如吞咽困難、胃排空障礙、腹脹和便秘,大部分癥狀主要與胃腸道功能相關(guān)[38],食欲素通過(guò)黑質(zhì)-下丘腦外側(cè)核-迷走神經(jīng)背側(cè)核通路作用于而迷走神經(jīng)背側(cè)核的OX1R改變胃動(dòng)力。當(dāng)黑質(zhì)中DA神經(jīng)元破壞引起胃輕癱時(shí),下丘腦外側(cè)核中多巴胺D1類受體和食欲素、迷走神經(jīng)背側(cè)核中OX1R和膽堿乙?;D(zhuǎn)移酶的表達(dá)均降低。黑質(zhì)DA 通過(guò)多巴胺D1 類受體調(diào)節(jié)食欲素的功能,并通過(guò)OX1R影響迷走神經(jīng)背側(cè)核中的運(yùn)動(dòng)神經(jīng)元,從而導(dǎo)致胃腸道功能障礙[39]。
3.3 食欲素參與PD的可能作用機(jī)制
3.3.1 維持黑質(zhì)多巴胺神經(jīng)元放電 黑質(zhì)致密部在參與中樞運(yùn)動(dòng)控制的基底神經(jīng)節(jié)回路中起著至關(guān)重要的作用[40]。研究發(fā)現(xiàn),PD的病理過(guò)程中黑質(zhì)DA神經(jīng)元的活躍性在逐漸下降[41],所以維持基礎(chǔ)黑質(zhì)多巴胺神經(jīng)元放電(nigrostriataldopamine discharge)和多巴胺張力可以使DA神經(jīng)元免于退化。形態(tài)學(xué)研究表明,食欲素神經(jīng)元及其受體在黑質(zhì)致密部中密集表達(dá)[42-43],食欲素神經(jīng)元支配大多數(shù)的大腦運(yùn)動(dòng)結(jié)構(gòu)中樞,如前庭復(fù)合體、小腦、運(yùn)動(dòng)皮層和基底神經(jīng)節(jié)結(jié)構(gòu)等[21,44]。在食欲素敲除小鼠模型中發(fā)現(xiàn),食欲素神經(jīng)元的整體缺失會(huì)導(dǎo)致運(yùn)動(dòng)缺陷發(fā)生,主要表現(xiàn)為肌張力的突然喪失[45]。而將食欲素施加于下丘腦喙側(cè)區(qū)域(發(fā)現(xiàn)食欲素神經(jīng)元核的區(qū)域)會(huì)增加大鼠的自發(fā)身體活動(dòng)[46-47]。微壓施用OXA和OXB顯著增加了黑質(zhì)DA神經(jīng)元的自發(fā)放電,與對(duì)照組(生理鹽水)相比,在記錄的36個(gè)神經(jīng)元中,25個(gè)神經(jīng)元的OXA 明顯增加黑質(zhì)DA 的基礎(chǔ)放電率,增幅約(65.87±7.73)%;在記錄的33個(gè)神經(jīng)元中,25個(gè)神經(jīng)元的OXB對(duì)基礎(chǔ)放電率增幅為(90.49±17.38)%[7]。但OXA和OXB之間誘導(dǎo)的放電率增加并無(wú)明顯差異。由此可見(jiàn),黑質(zhì)致密部食欲素缺乏可能會(huì)使DA神經(jīng)元退化。
3.3.2 增加腦源性神經(jīng)營(yíng)養(yǎng)因子的表達(dá) 腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor,BDNF)是在發(fā)育過(guò)程中促進(jìn)神經(jīng)元存活和分化的分泌因子[48],在神經(jīng)元的存活、生長(zhǎng)、分化和可塑性中具有重要作用,還是細(xì)胞凋亡介導(dǎo)的細(xì)胞死亡和神經(jīng)毒素誘導(dǎo)的多巴胺能神經(jīng)元變性的有效抑制劑[49]。此前多項(xiàng)研究揭露BDNF與PD的關(guān)系,但其結(jié)果互相矛盾。研究表明BDNF與PD的運(yùn)動(dòng)障礙之間存在負(fù)相關(guān)[50],但BDNF水平的降低會(huì)加重PD患者的認(rèn)知障礙和焦慮等癥狀[51-52],對(duì)BDNF表達(dá)的抑制導(dǎo)致黑質(zhì)致密部中多巴胺神經(jīng)元的缺失而推進(jìn)PD的發(fā)展[50]。臨床研究發(fā)現(xiàn)在PD早期,BDNF的水平降低,隨著疾病進(jìn)展,BDNF的表達(dá)水平升高,而這可能是該疾病晚期的一種補(bǔ)償機(jī)制[50]。OXA可增加黑質(zhì)多巴胺能神經(jīng)元中BDNF表達(dá)[53],減少黑質(zhì)中多巴胺能神經(jīng)元和酪氨酸羥化酶的喪失,使紋狀體正?;⒏纳七\(yùn)動(dòng)功能,而食欲素拮抗劑SB334867可逆轉(zhuǎn)這些作用[7]。通過(guò)激活食欲素神經(jīng)傳遞,增強(qiáng)BDNF的生物合成,可能是預(yù)防PD中DA變性的潛在治療方法。
3.3.3 誘導(dǎo)缺氧誘導(dǎo)因子-1(hypoxia-inducible factor-1,HIF-1)的表達(dá) HIF-1是1種重要的轉(zhuǎn)錄因子,可對(duì)機(jī)體的氧濃度做出反應(yīng),在缺氧環(huán)境中參與重要的生物反應(yīng)。例如將缺氧環(huán)境中細(xì)胞的葡萄糖代謝從三羧酸循環(huán)轉(zhuǎn)化為糖酵解,從而使細(xì)胞在缺氧狀態(tài)下處于持續(xù)分化狀態(tài)。此外,HIF-1 可通過(guò)觸發(fā)血管內(nèi)皮生長(zhǎng)因子(vascular endothelialgrowth factor,VEGF)的產(chǎn)生來(lái)刺激血管生成[54]。線粒體功能障礙(mitochondrial dysfunction)可能是加重PD進(jìn)展的原因,線粒體由雙層膜包圍,存在于細(xì)胞質(zhì)中,可調(diào)節(jié)多種細(xì)胞功能,如細(xì)胞內(nèi)鈣穩(wěn)態(tài)、三磷酸腺苷(adenosine triphosphate,ATP)生成、活性氧(reactive oxygen species,ROS)生成和凋亡信號(hào)的傳導(dǎo)[55],它們以ATP的形式產(chǎn)生能量,并且調(diào)節(jié)穩(wěn)態(tài)以滿足神經(jīng)元的高能量需求[56]。為了維持細(xì)胞的存活和興奮性,神經(jīng)元對(duì)能量的需求相當(dāng)高,大腦中的神經(jīng)信號(hào)傳導(dǎo)非常容易受到線粒體的影響,且多巴胺能神經(jīng)元的能量需求更高(20倍),因此,多巴胺能神經(jīng)元更容易發(fā)生神經(jīng)變性[57]。線粒體功能障礙可導(dǎo)致O2消耗減少并激活脯氨酰羥化酶,從而導(dǎo)致HIF-1水平降低。在用MPP[+]處理的PD細(xì)胞模型中,OXA可作為HIF-1誘導(dǎo)劑來(lái)誘導(dǎo)HIF-1的產(chǎn)生,并激活HIF-1的下游靶標(biāo),例如VEGF和促紅細(xì)胞生成素(erythro?poietin,EPO),以減弱MPP[+]誘導(dǎo)的細(xì)胞損傷和突觸核蛋白聚集物的形成,并且當(dāng)HIF-1 被抑制時(shí)這種保護(hù)作用被阻斷[58]。
3.3.4 維持線粒體功能和抗細(xì)胞凋亡 研究發(fā)現(xiàn),6-OHDA可通過(guò)降低SH-SY5Y細(xì)胞模型的細(xì)胞活力、Nrf2和熱激蛋白70(heatshockprotein 70,HSP70)蛋白表達(dá),增加線粒體膜電位、細(xì)胞內(nèi)鈣和COX-2蛋白進(jìn)而促進(jìn)線粒體損傷以及細(xì)胞凋亡,而OXA可減少6-OHDA誘導(dǎo)的細(xì)胞損傷并降低線粒體膜電位,與OXA 150 pmol/L濃度組相比,OXA 250 pmol/L濃度組(Plt;0.05)、OXA 500 pmol/L濃度組(Plt;0.05)明顯減弱了6-OHDA誘導(dǎo)的細(xì)胞損傷并阻止了6-OHDA對(duì)SH-SY5Y細(xì)胞的上述影響[59]。
4 結(jié)語(yǔ)
PD是1種進(jìn)行性神經(jīng)退行性疾病,由黑質(zhì)中多巴胺能神經(jīng)元退化引起。食欲素是一種神經(jīng)肽,可調(diào)節(jié)覺(jué)醒、內(nèi)臟功能、能量消耗和食欲等,與帕金森病的發(fā)病機(jī)制密切相關(guān)。PD中食欲素的喪失是隨著多巴胺能神經(jīng)元的退化而開(kāi)始的,與PD的運(yùn)動(dòng)和非運(yùn)動(dòng)癥狀的發(fā)生息息相關(guān)。BDNF表達(dá)減少、DA神經(jīng)元變性、線粒體功能障礙會(huì)導(dǎo)致PD的發(fā)生發(fā)展(圖1),但食欲素通過(guò)維持黑質(zhì)DA放電、增加BDNF表達(dá)、誘導(dǎo)HIF-1α、抗凋亡和抗氧化等機(jī)制發(fā)揮對(duì)PD的神經(jīng)保護(hù)作用,表明食欲素可作為PD的潛在治療靶點(diǎn)。但僅目前的研究來(lái)看,把食欲素作為PD的生物標(biāo)志物的臨床依據(jù)有限,且食欲素與其它神經(jīng)遞質(zhì)的相互作用尚不明確,需要更深入的研究來(lái)揭示食欲素治療PD的各種新機(jī)制,有助于開(kāi)發(fā)治療PD的新藥物。
參 考 文 獻(xiàn)
[1] Toor B,Ray LB,Pozzobon A,et al. Sleep,orexin and cognition[J].
Front Neurol Neurosci,2021,45:38-51.
[2] Sackner-Bernstein J. Estimates of intracellular dopamine in Par?
kinson’s disease:a systematic review and meta-analysis[J]. J Parkin?
sons Dis,2021,11(3):1011-1018.
[3] Pennington C,Duncan G,Ritchie C. Altered awareness of cogni?
tive and neuropsychiatric symptoms in Parkinson’s disease and Demen?
tia with Lewy Bodies:a systematic review[J]. Int J Geriatr Psychiatry,
2021,36(1):15-30.
[4] Sakurai T,Amemiya A,Ishii M,et al. Orexins and orexin recep?
tors:a family of hypothalamic neuropeptides and G protein-coupled re?
ceptors that regulate feeding behavior[J]. Cell,1998,92(5):696.
[5] de Lecea L,Kilduff TS,Peyron C,et al. The hypocretins:
hypothalamus-specific peptides with neuroexcitatory activity[J]. Proc
Natl Acad Sci U S A,1998,95(1):322-327.
[6] Couvineau A,Voisin T,Nicole P,et al. Orexins as novel therapeu?
tic targets in inflammatory and neurodegenerative diseases[J]. Front En?
docrinol,2019,10:709.
[7] Liu C,Xue Y,Liu MF,et al. Orexins increase the firing activity of
nigral dopaminergic neurons and participate in motor control in rats[J]. J
Neurochem,2018,147(3):380-394.
[8] Xu TR,Yang Y,Ward R,et al. Orexin receptors:multi-functional
therapeutic targets for sleeping disorders,eating disorders,drug addic?
tion,cancers and other physiological disorders[J]. Cell Signal,2013,25
(12):2413-2423.
[9] Sellayah D,Sikder D. Orexin restores aging-related brown adipose
tissue dysfunction in male mice[J]. Endocrinology,2014,155(2):485-
501.
[10] Jin JH,Chen QH,Qiao QC,et al. Orexin neurons in the lateral hy?
pothalamus project to the medial prefrontal cortex with a rostro-caudal
gradient[J]. Neurosci Lett,2016,621:9-14.
[11] Brodnik ZD,Alonso IP,Xu W,et al. Hypocretin receptor 1 in?
volvement in cocaine-associated behavior:therapeutic potential and
novel mechanistic insights[J]. Brain Res,2020,1731:145894.
[12] Morales-Mulia S,Magdaleno-Madrigal VM,Nicolini H,et al.
Orexin-a up-regulates dopamine D2 receptor and mRNA in the nucleus
accumbens shell[J]. Mol Biol Rep,2020,47(12):9689-9697.
[13] Li J,Li H,Wang D,et al. Orexin activated emergence from isoflu?
rane anaesthesia involves excitation of ventral tegmental area dopami?
nergic neurones in rats[J]. Br J Anaesth,2019,123(4):497-505.
[14] Quarta D,Smolders I. Rewarding,reinforcing and incentive sa?
lient events involve orexigenic hypothalamic neuropeptides regulating
mesolimbic dopaminergic neurotransmission[J]. Eur J Pharm Sci,2014,
57:2-10.
[15] Prince CD,Rau AR,Yorgason JT,et al. Hypocretin/Orexin regu?
lation of dopamine signaling and cocaine self-administration is medi?
ated predominantly by hypocretin receptor 1[J]. ACS Chem Neurosci,
2015,6(1):138-146.
[16] Korotkova TM,Eriksson KS,Haas HL,et al. Selective excitation
of GABAergic neurons in the substantia nigra of the rat by orexin/hypo?
cretin in vitro[J]. Regul Pept,2002,104(1/2/3):83-89.
[17] Li Y,van den Pol AN. Direct and indirect inhibition by catechol?
amines of hypocretin/orexin neurons[J]. J Neurosci,2005,25(1):
173-183.
[18] Yamanaka A,Muraki Y,Ichiki K,et al. Orexin neurons are di?
rectly and indirectly regulated by catecholamines in a complex manner
[J]. J Neurophysiol,2006,96(1):284-298.
[19] Alberto CO,Trask RB,Quinlan ME,et al. Bidirectional dopami?
nergic modulation of excitatory synaptic transmission in orexin neurons
[J]. J Neurosci,2006,26(39):10043-10050.
[20] Bubser M,F(xiàn)adel JR,Jackson LL,et al. Dopaminergic regulation
of orexin neurons[J]. Eur J Neurosci,2005,21(11):2993-3001.
[21] Hu B,Yang N,Qiao QC,et al. Roles of the orexin system in cen?
tral motor control[J]. Neurosci Biobehav Rev,2015,49:43-54.
[22] Wang Y,Chen AQ,Xue Y,et al. Orexins alleviate motor deficits
via increasing firing activity of pallidal neurons in a mouse model of
Parkinson’s disease[J]. Am J Physiol Cell Physiol,2019,317(4):800-
812.
[23] Liu MF,Xue Y,Liu C,et al. Orexin-a exerts neuroprotective ef?
fects via OX1R in Parkinson’s disease[J]. Front Neurosci,2018,12:835.
[24] Xue Y,Yang YT,Liu HY,et al. Orexin-a increases the activity of
globus pallidus neurons in both normal and parkinsonian rats[J]. Eur J
Neurosci,2016,44(5):2247-2257.
[25] Hadadianpour Z,F(xiàn)atehi F,Ayoobi F,et al. The effect of orexin-A
on motor and cognitive functions in a rat model of Parkinson’s disease
[J]. Neurol Res,2017,39(9):845-851.
[26] Pokusa M,Hajduchova D,Buday T,et al. Respiratory function
and dysfunction in parkinson-type neurodegeneration[J]. Physiol Res,
2020,69(Suppl 1):S69-S79.
[27] Guilherme EM,de Fátima Carreira Moreira R,de Oliveira A,et
al. Respiratory disorders in Parkinson’s disease[J]. J Parkinsons Dis,
2021,11(3):993-1010.
[28] Oliveira LM,F(xiàn)alquetto B,Moreira TS,et al. Orexinergic neurons
are involved in the chemosensory control of breathing during the
dark phase in a Parkinson’s disease model[J]. Exp Neurol,2018,309:
107-118.
[29] Ferrer I,López-Gonzalez I,Carmona M,et al. Neurochemistry
and the non-motor aspects of PD[J]. Neurobiol Dis,2012,46(3):508-
526.
[30] Suzuki K,Miyamoto M,Miyamoto T,et al. Sleep disturbances
associated with Parkinson’s disease[J]. Parkinsons Dis,2011,2011:
219056.
[31] Bridoux A,Moutereau S,Covali-Noroc A,et al. Ventricular
orexin-A(hypocretin-1) levels correlate with rapid-eye-movement
sleep without atonia in Parkinson’s disease[J]. Nat Sci Sleep,2013,5:
87-91.
[32] Yuan Y,Zhang YM,Cheng YY,et al. Cerebrospinal fluid TNF-α
and orexin in patients with Parkinson’s disease and rapid eye movement
sleep behavior disorder[J]. Front Neurol,2022,13:826013.
[33] Sakurai T. Orexin deficiency and narcolepsy[J]. Curr Opin Neuro?
biol,2013,23(5):760-766.
[34] Ogawa T,Kajiyama Y,Ishido H,et al. Decreased cerebrospinal
fluid orexin levels not associated with clinical sleep disturbance in
Parkinson’s disease:a retrospective study[J]. PLoS One,2022,17(12):
e0279747.
[35] Aitta-Aho T,Pappa E,Burdakov D,et al. Cellular activation of
hypothalamic hypocretin/orexin neurons facilitates short-term spatial
memory in mice[J]. Neurobiol Learn Mem,2016,136:183-188.
[36] Stanojlovic M,Pallais Yllescas JP Jr,Vijayakumar A,et al. Early
sociability and social memory impairment in the A53T mouse model of
Parkinson’s disease are ameliorated by chemogenetic modulation of
orexin neuron activity[J]. Mol Neurobiol,2019,56(12):8435-8450.
[37] Oliveira LM,Henrique E,Bustelli IB,et al. Depletion of hypotha?
lamic hypocretin/orexin neurons correlates with impaired memory in a
Parkinson’s disease animal model[J]. Exp Neurol,2020,323:113110.
[38] Zheng LF,Wang ZY,Li XF,et al. Reduced expression of choline
acetyltransferase in vagal motoneurons and gastric motor dysfunction in
a 6-OHDA rat model of Parkinson’s disease[J]. Brain Res,2011,1420:
59-67.
[39] Yang YL,Ran XR,Li Y,et al. Expression of dopamine receptors
in the lateral hypothalamic nucleus and their potential regulation of gas?
tric motility in rats with lesions of bilateral substantia nigra[J]. Front
Neurosci,2019,13:195.
[40] Vernier P,Moret F,Callier S,et al. The degeneration of dopamine
neurons in Parkinson’s disease:insights from embryology and evolution
of the mesostriatocortical system[J]. Ann N Y Acad Sci,2004,1035:231-
249.
[41] Douhou A,Troadec JD,Ruberg M,et al. Survival promotion of
mesencephalic dopaminergic neurons by depolarizing concentrations of
K+ requires concurrent inactivation of NMDA or AMPA/kainate recep?
tors[J]. J Neurochem,2001,78(1):163-174.
[42] Hrabovszky E,Molnár CS,Borsay Bá,et al. Orexinergic input to
dopaminergic neurons of the human ventral tegmental area[J]. PLoS
One,2013,8(12):e83029.
[43] Bensaid M,Tandé D,F(xiàn)abre V,et al. Sparing of orexin-A and
orexin-B neurons in the hypothalamus and of orexin fibers in the sub?
stantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated
macaques[J]. Eur J Neurosci,2015,41(1):129-136.
[44] Schmitt O,Usunoff KG,Lazarov NE,et al. Orexinergic innerva?
tion of the extended amygdala and basal Ganglia in the rat[J]. Brain
Struct Funct,2012,217(2):233-256.
[45] Chemelli RM,Willie JT,Sinton CM,et al. Narcolepsy in orexin
knockout mice:molecular genetics of sleep regulation[J]. Cell,1999,98
(4):437-451.
[46] Kiwaki K,Kotz CM,Wang CF,et al. Orexin A(hypocretin 1) in?
jected into hypothalamic paraventricular nucleus and spontaneous physi?
cal activity in rats[J]. Am J Physiol Endocrinol Metab,2004,286(4):
551-559.
[47] Kotz CM,Wang C,Teske JA,et al. Orexin A mediation of time
spent moving in rats:neural mechanisms[J]. Neuroscience,2006,142(1):
29-36.
[48] Pagnussat AS,Kleiner AFR,Rieder CRM,et al. Plantar stimulation
in parkinsonians:from biomarkers to mobility-randomized-controlled
trial[J]. Restor Neurol Neurosci,2018,36(2):195-205.
[49] Cagni FC,Campêlo CLDC,Coimbra DG,et al. Association of
BDNF Val66MET polymorphism with Parkinson’s disease and depres?
sion and anxiety symptoms[J]. J Neuropsychiatry Clin Neurosci,2017,
29(2):142-147.
[50] Scalzo P,Kümmer A,Bretas TL,et al. Serum levels of brainderived
neurotrophic factor correlate with motor impairment in Parkin?
son’s disease[J]. J Neurol,2010,257(4):540-545.
[51] Park H,Poo MM. Neurotrophin regulation of neural circuit devel?
opment and function[J]. Nat Rev Neurosci,2013,14(1):7-23.
[52] Wang Y,Liu H,Du XD,et al. Association of low serum BDNF
with depression in patients with Parkinson’s disease[J]. Parkinsonism
Relat Disord,2017,41:73-78.
[53] Berhe DF,Gebre AK,Assefa BT. Orexins role in neurodegenera?
tive diseases:from pathogenesis to treatment[J]. Pharmacol Biochem Be?
hav,2020,194:172929.
[54] Kierans SJ,Taylor CT. Regulation of glycolysis by the hypoxiainducible
factor(HIF):implications for cellular physiology[J]. J Physiol,
2021,599(1):23-37.
[55] Palikaras K,Lionaki E,Tavernarakis N. Balancing mitochondrial
biogenesis and mitophagy to maintain energy metabolism homeostasis
[J]. Cell Death Differ,2015,22(9):1399-1401.
[56] Rani L,Mondal AC. Emerging concepts of mitochondrial dysfunc?
tion in Parkinson’s disease progression:pathogenic and therapeutic im?
plications[J]. Mitochondrion,2020,50:25-34.
[57] Mamelak M. Parkinson’s disease,the dopaminergic neuron and
gammahydroxybutyrate[J]. Neurol Ther,2018,7(1):5-11.
[58] Feng Y,Liu T,Li XQ,et al. Neuroprotection by Orexin-a via
HIF-1α induction in a cellular model of Parkinson’s disease[J]. Neuro?
sci Lett,2014,579:35-40.
[59] Pasban-Aliabadi H,Esmaeili-Mahani S,Abbasnejad M. Orexin-a
protects human neuroblastoma SH-SY5Y cells against 6-hydroxydopamine-
induced neurotoxicity:involvement of PKC and PI3K signaling
pathways[J]. Rejuvenation Res,2017,20(2):125-133.
(責(zé)任編輯:李青穎)
重慶醫(yī)科大學(xué)學(xué)報(bào)2024年11期