【摘要】 骨關(guān)節(jié)炎(osteoarthritis,OA)是一種臨床上常見的逐漸進(jìn)展的慢性骨關(guān)節(jié)病變,是以關(guān)節(jié)軟骨損害為主的非炎性退行性關(guān)節(jié)病,常常累及整個(gè)關(guān)節(jié)面組織,最終導(dǎo)致關(guān)節(jié)疼痛、活動(dòng)障礙,甚至畸形。三維(three-dimensional,3D)打印技術(shù)是快速成型技術(shù)工藝中的一種,指以數(shù)字模型的數(shù)據(jù)文件為基礎(chǔ),粘合粉末狀的各類金屬及塑料顆粒等物質(zhì),并通過逐層打印制作的方式,來構(gòu)建數(shù)字模型所設(shè)計(jì)的物體結(jié)構(gòu)的技術(shù)。近年來,3D打印技術(shù)在醫(yī)學(xué)領(lǐng)域應(yīng)用相對(duì)廣泛,特別是等比例打印骨與關(guān)節(jié)模型在骨關(guān)節(jié)炎治療過程中體現(xiàn)了其獨(dú)特優(yōu)勢(shì)。骨與關(guān)節(jié)模型的制作,不僅能更加直觀詳細(xì)地展現(xiàn)骨與關(guān)節(jié)的解剖結(jié)構(gòu)、明確破壞部位及程度,而且能明顯縮短手術(shù)時(shí)間、減少術(shù)中出血量及縮短術(shù)后恢復(fù)時(shí)間。因此,本文通過近年來3D打印技術(shù)在骨關(guān)節(jié)炎中的應(yīng)用研究進(jìn)行綜述。
【關(guān)鍵詞】 3D打印技術(shù) 骨關(guān)節(jié)炎 關(guān)節(jié)置換 髖關(guān)節(jié) 膝關(guān)節(jié)
Research Progress of 3D Printing Technology in Osteoarthritis/JIANG Yulin, LAN Fengjun, TIAN Zhiyong, DENG Jin. //Medical Innovation of China, 2024, 21(28): -174
[Abstract] Osteoarthritis (OA) is a common and progressive chronic osteoarthropathy in clinical practice. It is a non-inflammatory degenerative joint disease mainly involving articular cartilage damage, which often involves the entire articular surface tissue and eventually leads to joint pain, mobility impairment, and even deformity. Three-dimensional (3D) printing technology is one of the rapid prototyping technology process, refers to the data file of digital model as the basis, bonding various powdery metals and plastic particles, and through the way of layer by layer printing, to build the object structure of the digital model design technology. In recent years, 3D printing technology has been widely used in the medical field, especially the equal proportion printing of bone and joint models has reflected its unique advantages in the treatment of osteoarthritis. The production of bone and joint models can not only display the anatomical structure of bone and joint more intuitively and in detail, determine the location and degree of damage, but also can significantly shorten the operation time, reduce the intraoperative blood loss and shorten the postoperative recovery time. Therefore, this paper reviews the application of 3D printing technology in osteoarthritis in recent years.
[Key words] 3D printing Osteoarthritis Joint replacement Hip joint Knee joint
First-author's address: Department of Orthopaedics, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
doi:10.3969/j.issn.1674-4985.2024.28.040
骨關(guān)節(jié)炎(osteoarthritis,OA)是一種漸進(jìn)性、以關(guān)節(jié)軟骨損害為主的慢性疾病,幾乎可以發(fā)生于任何關(guān)節(jié),但以膝關(guān)節(jié)和髖關(guān)節(jié)等負(fù)重關(guān)節(jié)常見,主要表現(xiàn)為關(guān)節(jié)疼痛、僵硬及活動(dòng)受限[1-2]。根據(jù)流行病學(xué)調(diào)查研究發(fā)現(xiàn),骨關(guān)節(jié)炎呈現(xiàn)明顯地域差異,且它是以老年性退行性改變?yōu)橹饕虏∫蛩氐墓顷P(guān)節(jié)病,發(fā)病率隨著年齡增長(zhǎng)而不斷增高[3-4]。骨關(guān)節(jié)炎常發(fā)生于大關(guān)節(jié),以膝關(guān)節(jié)及髖關(guān)節(jié)為主,脊柱及其他關(guān)節(jié)相對(duì)較少[5]。Verma等[6]研究也發(fā)現(xiàn),骨關(guān)節(jié)炎是全球各種肌肉骨骼疾病中最常見的疾病,且其發(fā)生率隨著年齡增長(zhǎng)而增加。
3D打印技術(shù)是一種使用計(jì)算機(jī)以數(shù)字文件為基礎(chǔ)制造各種結(jié)構(gòu)和不同幾何形狀物體的新興技術(shù)。1986年,美國(guó)科學(xué)家Charles Hull通過引入立體光刻技術(shù),成功研制出了世界第一臺(tái)商業(yè)3D印刷機(jī)[7]。隨著科學(xué)技術(shù)的不斷創(chuàng)新和進(jìn)步,3D打印技術(shù)逐漸在航天領(lǐng)域、軍事領(lǐng)域及醫(yī)學(xué)生物領(lǐng)域等發(fā)揮至關(guān)重要的作用[8-10]。在醫(yī)學(xué)領(lǐng)域,特別是骨科、神經(jīng)外科及心內(nèi)科,3D打印技術(shù)應(yīng)用廣泛[11-13],因3D打印技術(shù)能夠精準(zhǔn)地制作出組織的組成部件、空間結(jié)構(gòu)及相應(yīng)的分布位置,從而打印出目標(biāo)器官和組織的生物形狀和構(gòu)成結(jié)構(gòu)[14]。
近年來,國(guó)內(nèi)外關(guān)于3D打印技術(shù)在骨科中的應(yīng)用報(bào)道較多,特別是在骨關(guān)節(jié)病(膝關(guān)節(jié)、髖關(guān)節(jié))中的應(yīng)用。Hall等[15]研究發(fā)現(xiàn),膝關(guān)節(jié)骨關(guān)節(jié)炎和髖關(guān)節(jié)骨關(guān)節(jié)炎是全球?qū)е職埣驳闹饕蛑?。筆者查閱3D打印技術(shù)在膝關(guān)節(jié)骨關(guān)節(jié)炎和髖關(guān)節(jié)骨關(guān)節(jié)炎中的應(yīng)用的相關(guān)文獻(xiàn)發(fā)現(xiàn),參與研究的機(jī)構(gòu)和國(guó)家越來越多,且發(fā)表的文獻(xiàn)數(shù)量逐年增長(zhǎng)。本文通過闡述3D打印技術(shù)在骨關(guān)節(jié)炎診斷和治療中的作用,以期為3D打印技術(shù)在骨關(guān)節(jié)炎中的診治提供新的思路。
1 3D打印技術(shù)在膝關(guān)節(jié)骨關(guān)節(jié)炎中的應(yīng)用
由于社會(huì)人口老齡化程度日益加劇,骨關(guān)節(jié)炎的發(fā)病率呈現(xiàn)上升趨勢(shì)[16],而膝關(guān)節(jié)骨關(guān)節(jié)炎是目前臨床上最常見的骨關(guān)節(jié)炎之一[17]。膝關(guān)節(jié)骨關(guān)節(jié)炎是一種以膝關(guān)節(jié)骨關(guān)節(jié)面軟骨退行性改變和繼發(fā)性骨質(zhì)增生為特征的慢性骨關(guān)節(jié)病,主要表現(xiàn)為膝關(guān)節(jié)疼痛、活動(dòng)受限、腫脹或畸形、骨摩擦音,以及無力和肌肉萎縮等[18]。結(jié)合人體解剖,人體最大且最復(fù)雜的關(guān)節(jié)是膝關(guān)節(jié),其周圍韌帶組織及其他輔助結(jié)構(gòu)最多。故而,膝關(guān)節(jié)骨關(guān)節(jié)炎治療難度較大,特別是膝關(guān)節(jié)置換術(shù),需要對(duì)其解剖結(jié)構(gòu)足夠熟悉及大量的手術(shù)操作經(jīng)驗(yàn)才能實(shí)現(xiàn)手術(shù)的完美成功。3D打印技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用實(shí)現(xiàn)了膝關(guān)節(jié)個(gè)性化復(fù)刻,它不僅克服了傳統(tǒng)二維空間上的成像不足,還能選擇更優(yōu)的手術(shù)方式和模擬手術(shù)過程。膝關(guān)節(jié)置換主要分為全膝關(guān)節(jié)置換和單髁置換,結(jié)合3D打印技術(shù)不僅能提高手術(shù)的成功率和患者的生活質(zhì)量,還能促進(jìn)3D打印技術(shù)的發(fā)展。
1.1 3D打印技術(shù)在全膝關(guān)節(jié)置換中的應(yīng)用
全膝關(guān)節(jié)置換術(shù)(total knee arthroplasty,TKA)是指用人工膝關(guān)節(jié)假體與膝關(guān)節(jié)進(jìn)行表面置換,去除損毀嚴(yán)重的關(guān)節(jié)軟骨,達(dá)到治療疼痛、恢復(fù)關(guān)節(jié)穩(wěn)定性和活動(dòng)度、矯正關(guān)節(jié)畸形形態(tài)及改善患者生活質(zhì)量的目的。膝關(guān)節(jié)功能的完整性與解剖結(jié)構(gòu)、周圍韌帶及其他輔助結(jié)構(gòu)密切相關(guān)[19]。通過對(duì)膝關(guān)節(jié)骨結(jié)構(gòu)及軟組織功能的研究發(fā)現(xiàn),任何結(jié)構(gòu)單元發(fā)生功能失調(diào)或結(jié)構(gòu)異常都可導(dǎo)致膝關(guān)節(jié)骨關(guān)節(jié)炎的發(fā)生[20]。隨著3D打印技術(shù)在臨床工作中的不斷應(yīng)用,膝關(guān)節(jié)骨關(guān)節(jié)炎的治療方案也得到了優(yōu)化,使得全膝關(guān)節(jié)置換治療方案更加精細(xì)化、程序化及微創(chuàng)化。與此同時(shí),3D打印出的結(jié)構(gòu)模型與人體結(jié)構(gòu)一致,不僅可以為外科醫(yī)生提供立體可視化的詳細(xì)解剖結(jié)構(gòu),而且可使年輕外科醫(yī)生能夠更精確認(rèn)識(shí)相應(yīng)的病理結(jié)構(gòu)并縮短學(xué)習(xí)周期[21-22]。
近年來,TKA結(jié)合3D打印技術(shù)治療膝關(guān)節(jié)骨關(guān)節(jié)炎的方式逐漸得到廣大臨床醫(yī)生的認(rèn)可,并在治療過程中取得了良好的結(jié)果。通過3D打印技術(shù)制訂個(gè)體化手術(shù)程序、截骨模板,能夠真正做到個(gè)體化治療,從而使手術(shù)效果更佳并減少手術(shù)時(shí)間、術(shù)中出血量,降低手術(shù)并發(fā)癥風(fēng)險(xiǎn)[23-24]。Bonny等[25]應(yīng)用3D打印儀器空間聯(lián)動(dòng)裝置技術(shù)測(cè)量TKA在脛股關(guān)節(jié)的屈伸軸和旋轉(zhuǎn)軸的變化情況,驗(yàn)證了該方法的準(zhǔn)確性。Vaishya等[26]研究發(fā)現(xiàn),3D打印在TKA中的應(yīng)用意義重大,特別是在尺寸大小預(yù)測(cè)和膝關(guān)節(jié)力線機(jī)械性對(duì)準(zhǔn)方面。Niu等[27]通過對(duì)比研究結(jié)合3D打印技術(shù)的TKA與傳統(tǒng)手術(shù)發(fā)現(xiàn),3D打印技術(shù)在TKA中應(yīng)用可以簡(jiǎn)化手術(shù)過程,提高手術(shù)的精度和手術(shù)療效。隨著3D打印技術(shù)在醫(yī)學(xué)領(lǐng)域中的應(yīng)用越來越廣泛,使得術(shù)前談話更清晰可靠、更容易被接受,術(shù)前討論更有針對(duì)性、更能制訂出最佳手術(shù)方案,有利于手術(shù)順利進(jìn)行。而3D打印個(gè)性化的醫(yī)療策略不僅可以使復(fù)雜手術(shù)具有可重復(fù)性,還能提高患者的安全性和治療的有效性。Fernandes等[28]研究發(fā)現(xiàn)3D成像個(gè)性化骨骼重建技術(shù)不僅能用于術(shù)前談話、討論及制訂手術(shù)計(jì)劃,還能提高手術(shù)的精準(zhǔn)度,增加手術(shù)的可靠性。
當(dāng)然,對(duì)于復(fù)雜的TKA,特別是全膝關(guān)節(jié)置換翻修術(shù)(revision total knee arthroplasty,rTKA),常常出現(xiàn)脛骨近端骨缺損或丟失并導(dǎo)致固定不牢固或內(nèi)固定裝置脫落等可能[29]。故而,需要開發(fā)新的植入物或手術(shù)方式來提高植入物的穩(wěn)定性和時(shí)效性。Dion等[30]發(fā)現(xiàn)生物力學(xué)結(jié)合3D打印脛骨缺損部位的rTKA手術(shù)優(yōu)于傳統(tǒng)骨水泥型rTKA,同時(shí)發(fā)現(xiàn)3D打印的修復(fù)體能促進(jìn)骨內(nèi)向生長(zhǎng),有利于關(guān)節(jié)的穩(wěn)定性和可靠性。Savov等[31]研究發(fā)現(xiàn),通過3D打印技術(shù)制訂個(gè)性化的rTKA內(nèi)植入物,提高了rTKA的安全性,降低了致殘率。TKA后假體周圍感染(prosthetic joint infection,PJI)是rTKA最主要的原因[32]。骨水泥間隔器常用于關(guān)節(jié)置換感染后二期翻修,但由于藥物釋放效能較差,導(dǎo)致翻修手術(shù)有效性不足。Kong等[33]通過對(duì)比3D打印輔助抗生素釋放的關(guān)節(jié)間隔器與傳統(tǒng)骨水泥間隔器發(fā)現(xiàn),前者手術(shù)時(shí)間、術(shù)中失血量及術(shù)后骨質(zhì)丟失顯著縮短、降低,膝關(guān)節(jié)功能和患者滿意度明顯增加。Allen等[34]研究發(fā)現(xiàn)3D打印含有儲(chǔ)存層的墊片,通過調(diào)整儲(chǔ)存參數(shù)如藥物釋放通道的長(zhǎng)度、直徑及數(shù)量,可以長(zhǎng)期且有效地釋放抗生素來治療假體周圍感染。
綜上所述,3D打印技術(shù)在全膝關(guān)節(jié)置換中發(fā)揮著舉足輕重的作用。對(duì)于患者,不僅能夠清晰直觀地了解病變部位、手術(shù)部位及手術(shù)方式,而且還能增強(qiáng)患者對(duì)手術(shù)的信心,減輕手術(shù)心理應(yīng)激反應(yīng)。對(duì)于術(shù)者,不僅可以詳細(xì)了解解剖結(jié)構(gòu)、制訂最佳手術(shù)方案、模擬手術(shù),還能降低手術(shù)難度、縮短手術(shù)時(shí)間及提高手術(shù)成功率。
1.2 3D打印技術(shù)在單髁置換中的應(yīng)用
膝單髁置換術(shù)(unicompartmental knee arthroplasty,UKA)主要目的是重建患肢膝關(guān)節(jié)形態(tài)和解剖結(jié)構(gòu),以更好地維持膝關(guān)節(jié)的原生物力學(xué)力線。UKA是一種新興的手術(shù)理念,通過人工膝關(guān)節(jié)假體與部分膝關(guān)節(jié)進(jìn)行表面置換,主要應(yīng)用于膝關(guān)節(jié)單側(cè)間室的年輕骨關(guān)節(jié)炎患者。由于膝關(guān)節(jié)外側(cè)髁和內(nèi)側(cè)髁在生物力學(xué)和解剖學(xué)上不同,而目前常用的標(biāo)準(zhǔn)化單髁植入物,其貼合度可能未能達(dá)到最佳。隨著3D打印技術(shù)的不斷應(yīng)用,3D打印截骨導(dǎo)板在UKA中得到了廣泛的應(yīng)用,不僅截骨準(zhǔn)確、創(chuàng)傷小、出血少,而且近期療效好[35-36]。
3D打印技術(shù)在UKA中的應(yīng)用包括特制截骨導(dǎo)板和個(gè)性化單髁植入物,其中關(guān)于3D打印截骨導(dǎo)板在UKA中的應(yīng)用報(bào)道越來越多,取得的臨床療效有目共睹。Gu等[37]通過對(duì)比研究發(fā)現(xiàn),在行UKA時(shí)結(jié)合3D打印特制的截骨導(dǎo)板能夠縮短手術(shù)時(shí)間、減少失血量、提高手術(shù)臨床效果。Jiao等[38]發(fā)現(xiàn),3D打印技術(shù)在UKA中的應(yīng)用展現(xiàn)了精準(zhǔn)、高效和安全等特點(diǎn),經(jīng)驗(yàn)不足的醫(yī)生通過導(dǎo)板引導(dǎo)能有效提高內(nèi)植入物放置的精確度。定制膝單髁置換術(shù)(custom unicompartmental knee arthroplasty,C-UKA)是利用3D打印技術(shù)根據(jù)個(gè)體情況制作的特定植入物,目前在臨床應(yīng)用中相對(duì)較少。Demange等[39]進(jìn)行前瞻性研究發(fā)現(xiàn),3D打印的定制外側(cè)髁置換假體與標(biāo)準(zhǔn)化的外側(cè)髁置換假體相比,貼合度及覆蓋面明顯更優(yōu),短期臨床治療效果更佳。Pumilia等[40]通過臨床研究發(fā)現(xiàn),C-UKA根據(jù)個(gè)體解剖結(jié)構(gòu)制作的植入物更加符合膝關(guān)節(jié)的功能結(jié)構(gòu),療效、術(shù)后關(guān)節(jié)功能及膝關(guān)節(jié)使用時(shí)間均明顯優(yōu)于傳統(tǒng)手術(shù)。根據(jù)以上研究表明,3D打印技術(shù)的可靠性、模型結(jié)構(gòu)的可重復(fù)及實(shí)用性、3D假體的穩(wěn)定性均呈積極表現(xiàn)。
隨著3D打印技術(shù)不斷成熟及流程模塊化后,所需時(shí)間和耗材成本不斷降低,有利于提高患者的認(rèn)可度。同時(shí),3D打印技術(shù)設(shè)計(jì)的個(gè)體化截骨導(dǎo)板用于指導(dǎo)術(shù)中截骨定位和截骨操作過程,可使截骨過程依據(jù)客觀數(shù)據(jù)進(jìn)而降低人為誤差,提高截骨的精確度和手術(shù)操作過程的準(zhǔn)確性。
2 3D打印技術(shù)在髖關(guān)節(jié)骨關(guān)節(jié)炎中的應(yīng)用
髖關(guān)節(jié)骨關(guān)節(jié)炎是指由一種或多種因素引起的髖關(guān)節(jié)退行性改變,導(dǎo)致上下關(guān)節(jié)面軟骨和周圍骨結(jié)構(gòu)進(jìn)行性損害。然而,目前髖關(guān)節(jié)骨關(guān)節(jié)炎的病因尚不明確,可能與年齡、創(chuàng)傷、代謝、遺傳、關(guān)節(jié)發(fā)育異常及感染等因素有關(guān),主要表現(xiàn)為關(guān)節(jié)疼痛和功能受限[41]。髖關(guān)節(jié)骨關(guān)節(jié)炎屬于退行性病變,目前臨床上暫無根治的方法,大多只能通過物理、藥物及手術(shù)治療等方法緩解癥狀、保持或改善關(guān)節(jié)功能。晚期髖關(guān)節(jié)骨關(guān)節(jié)炎治療多以藥物為輔、手術(shù)為主,手術(shù)治療主要包括關(guān)節(jié)置換術(shù)、關(guān)節(jié)成形術(shù)、骨融合術(shù)及截骨術(shù)等。晚期髖關(guān)節(jié)骨關(guān)節(jié)炎是人工關(guān)節(jié)置換的首選適應(yīng)證之一,手術(shù)方式主要包括全髖關(guān)節(jié)置換術(shù)和半髖關(guān)節(jié)置換術(shù)。當(dāng)然,隨著科技的不斷發(fā)展,3D打印技術(shù)的不斷優(yōu)化,使得髖關(guān)節(jié)手術(shù)方式也在向著微創(chuàng)化、精細(xì)化發(fā)展,為髖關(guān)節(jié)疾病的治療提供新的思考。
3D打印技術(shù)的不斷應(yīng)用,讓大家清晰地認(rèn)識(shí)到它不僅能夠展現(xiàn)精確的可視化解剖結(jié)構(gòu),而且還具備手術(shù)過程的可重復(fù)性,可降低手術(shù)風(fēng)險(xiǎn)、提高手術(shù)成功率[42]。Facco等[43]研究發(fā)現(xiàn),3D打印的髖關(guān)節(jié)模型可重復(fù)和持續(xù)地在術(shù)前談話和手術(shù)規(guī)劃過程中起到重要的作用。Paish等[44]通過實(shí)驗(yàn)研究發(fā)現(xiàn),3D打印可用于醫(yī)療領(lǐng)域金屬合金植入物的制造,可用于定制個(gè)性化關(guān)節(jié)置換模型。Xia等[45]通過研究3D打印技術(shù)在髖關(guān)節(jié)手術(shù)中的應(yīng)用發(fā)現(xiàn),它不僅可以3D打印等比例模型、定制植入物和定制特定器械,還能有效提高手術(shù)效率、減少輻射暴露次數(shù)、縮短手術(shù)時(shí)間??梢姡ㄟ^術(shù)前建模更有利于術(shù)前評(píng)估和手術(shù)計(jì)劃方案的制訂。Ranzzi等[46]通過對(duì)兩個(gè)髖關(guān)節(jié)置換術(shù)后翻修的病例的研究發(fā)現(xiàn),術(shù)前使用3D打印技術(shù)制作等比例個(gè)性化置換物,有利于手術(shù)操作并縮短手術(shù)時(shí)間。雖然,單病例的對(duì)比研究不能代表整體,但是也間接表明3D打印技術(shù)在髖關(guān)節(jié)置換翻修術(shù)中應(yīng)用的可行性,有利于推進(jìn)該技術(shù)在髖關(guān)節(jié)置換術(shù)中的應(yīng)用。Liang等[47]研究發(fā)現(xiàn),3D打印技術(shù)在髖關(guān)節(jié)周圍疾病中的應(yīng)用主要包括打印骨骼模型、制訂手術(shù)方案、定制手術(shù)導(dǎo)航模板及定制特定器械。這間接證明了3D打印技術(shù)可以作為髖關(guān)節(jié)疾病治療的新選擇,具有良好的發(fā)展?jié)摿蛻?yīng)用前景。
綜上所述,3D打印技術(shù)在臨床上的應(yīng)用,為復(fù)雜的髖關(guān)節(jié)疾病治療方案的制訂提供了新的方向和思維。
3 小結(jié)與展望
3D打印技術(shù)是一種在各學(xué)科領(lǐng)域受到廣泛關(guān)注的新興技術(shù),特別是在航空、軍事及醫(yī)學(xué)領(lǐng)域[48-50]。在醫(yī)學(xué)領(lǐng)域,3D打印技術(shù)不僅能夠打印出個(gè)性化的器官組織,而且能夠精細(xì)地展現(xiàn)所需結(jié)構(gòu)組織的解剖結(jié)構(gòu)。目前3D打印技術(shù)在骨關(guān)節(jié)炎手術(shù)中的應(yīng)用非常廣泛并發(fā)揮著重要的作用,主要包括TKA、UKA、全髖關(guān)節(jié)置換術(shù)及半髖關(guān)節(jié)置換術(shù)等。根據(jù)3D打印技術(shù)在骨與關(guān)節(jié)領(lǐng)域的應(yīng)用頻率和取得的治療效果來看,成果一目了然。而且3D打印技術(shù)在骨與關(guān)節(jié)中的應(yīng)用,還體現(xiàn)了醫(yī)患溝通、術(shù)前的規(guī)劃模擬、手術(shù)方式的選擇、植入物的選擇、關(guān)節(jié)解剖結(jié)構(gòu)的展示、術(shù)中導(dǎo)航,以及術(shù)后并發(fā)癥的預(yù)測(cè)等的獨(dú)特優(yōu)勢(shì)。當(dāng)然,3D打印技術(shù)在骨科中的優(yōu)勢(shì)是顯而易見的,但也不是所有骨科疾病都適用,我們應(yīng)該在適用過程中發(fā)揚(yáng)它的優(yōu)勢(shì)、彌補(bǔ)不足,促進(jìn)3D打印技術(shù)在醫(yī)學(xué)領(lǐng)域的進(jìn)步,并不斷優(yōu)化改進(jìn)??傊?,伴隨著科學(xué)技術(shù)的進(jìn)步,3D打印技術(shù)不足之處將得到不斷改善和進(jìn)步,為全球醫(yī)療衛(wèi)生事業(yè)的各個(gè)領(lǐng)域帶來發(fā)展,越來越多的患者也將會(huì)因該技術(shù)的發(fā)展進(jìn)步而獲益。
參考文獻(xiàn)
[1] LIU Z,QIAN Z,WANG Y,et al.Necroptosis in pathogenesis of osteoarthritis and its therapeutic implications[J].Zhejiang Da Xue Xue Bao Yi Xue Ban,2022,51(2):261-265.
[2] KATZ J N,ARANT K R,LOESER R F.Diagnosis and treatment of hip and knee osteoarthritis: a review[J].JAMA,2021,325(6):568-578.
[3] YUE L,BERMAN J.What is osteoarthritis?[J].JAMA,2022,327(13):1300.
[4] ALLEN K D,THOMA L M,GOLIGHTLY Y M.Epidemiology of osteoarthritis[J].Osteoarthritis Cartilage,2022,30(2):184-195.
[5] CALLAHAN L F,CLEVELAND R J,ALLEN K D,et al.
Racial/ethnic, socioeconomic, and geographic disparities in the epidemiology of knee and hip osteoarthritis[J].Rheum Dis Clin North Am,2021,47(1):1-20.
[6] VERMA D K,KUMARI P,KANAGARAJ S.Engineering aspects of incidence, prevalence, and management of osteoarthritis: a review[J].Ann Biomed Eng,2022,50(3):237-252.
[7] JAIN A,BANSAL K K,TIWARI A,et al.Role of polymers in 3d printing technology for drug delivery-an overview[J].Curr Pharm Des,2018,24(42):4979-4990.
[8] GHIDINI T.Regenerative medicine and 3D bioprinting for human space exploration and planet colonisation[J].J Thorac Dis,2018,10(S20):S2363-S2375.
[9] LI S Y,TURNER J,GOLIGHTLY S,et al.Potential impacts of 3D modeling and 3D printing in firearm toolmark examinations[J].
J Forensic Sci,2021,66(6):2201-2207.
[10] PRABHAKARAN P,PALANIYANDI T,KANAGAVALLI B,
et al.Prospect and retrospect of 3D bio-printing[J].Acta Histochem,2022,124(7):151932.
[11] FENG Y,ZHU S,MEI D,et al.Application of 3D printing technology in bone tissue engineering: a review[J].Curr Drug Deliv,2021,18(7):847-861.
[12] YU X,ZHANG T,LI Y.3D Printing and bioprinting nerve conduits for neural tissue engineering[J].Polymers (Basel),2020,12(8):1637.
[13] SEDLAKOVA V,MCTIERNAN C,CORTES D,et al.3D bioprinted cardiac tissues and devices for tissue maturation[J].Cells Tissues Organs,2022,211(4):406-419.
[14] HEINRICH M A,LIU W,JIMENEZ A,et al.3D Bioprinting: from benches to translational applications[J/OL].Small,2019,15(23):e1805510.https://pubmed.ncbi.nlm.nih.gov/31033203/.
[15] HALL M,VAN DER ESCH M,HINMAN R S,et al.How does hip osteoarthritis differ from knee osteoarthritis?[J].Osteoarthritis Cartilage,2022,30(1):32-41.
[16] HUNTER D J,BIERMA-ZEINSTRA S.Osteoarthritis[J].Lancet,2019,393(10182):1745-1759.
[17] SHARMA L.Osteoarthritis of the knee[J].N Engl J Med,2021,384(1):51-59.
[18] JANG S,LEE K,JU J H.Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee[J].Int J Mol Sci,2021,22(5):2619.
[19] WILSON K A.Human knee dissection[J].J Vis Commun Med,2019,42(3):126-127.
[20] YEOH P,LAI K W,GOH S L,et al.Emergence of deep learning in knee osteoarthritis diagnosis[J].Comput Intell Neurosci,2021,2021:4931437.
[21] MCMENAMIN P G,QUAYLE M R,MCHENRY C R,et al.
The production of anatomical teaching resources using three-dimensional (3D) printing technology[J].Anat Sci Educ,2014,7(6):479-486.
[22] MAHMOUD A, BENNETT M. Introducing 3-dimensional printing of a human anatomic pathology specimen: potential benefits for undergraduate and postgraduate education and anatomic pathology practice[J].Arch Pathol Lab Med,2015,139(8):1048-1051.
[23] FANG L,DONG R,JIN H T,et al.Application status of 3D printing patient-specific instrumentation in total knee arthroplasty[J].Zhongguo Gu Shang,2019,32(6):582-586.
[24] ZHOU F,XUE F,ZHANG S.The application of 3D printing patient specific instrumentation model in total knee arthroplasty[J].Saudi J Biol Sci,2020,27(5):1217-1221.
[25] BONNY D P,HULL M L,HOWELL S M.Design, calibration and validation of a novel 3D printed instrumented spatial linkage that measures changes in the rotational axes of the tibiofemoral joint[J].J Biomech Eng,2014,136(1):11003.
[26] VAISHYA R,VIJAY V,VAISH A,et al.Computed tomography based 3D printed patient specific blocks for total knee replacement[J].J Clin Orthop Trauma,2018,9(3):254-259.
[27] NIU M,MA F,MA J R,et al.Total knee arthroplasty with 3D printing technique versus conventional surgery: comparison of the outcomes[J].Nan Fang Yi Ke Da Xue Xue Bao,2017,37(11):1467-1475.
[28] FERNANDES L R,ARCE C,MARTINHO G,et al.Accuracy, reliability, and repeatability of a novel artificial intelligence algorithm converting two-dimensional radiographs to three-dimensional bone models for total knee arthroplasty[J].
J Arthroplasty,2023,38(10):2032-2036.
[29] LEI P F,HU R Y,HU Y H.Bone defects in revision total knee arthroplasty and management[J].Orthop Surg,2019,11(1):15-24.
[30] DION C,YAMOMO G,HOWARD J,et al.Revision total knee arthroplasty using a novel 3D printed titanium augment: a biomechanical cadaveric study[J].J Mech Behav Biomed Mater,2020,110:103944.
[31] SAVOV P,TUECKING L R,WINDHAGEN H,et al.
Individual revision knee arthroplasty is a safe limb salvage procedure[J].J Pers Med,2021,11(6):572.
[32] POSTLER A,LüTZNER C,BEYER F,et al.Analysis of total knee arthroplasty revision causes[J].BMC Musculoskelet Disord,2018,19(1):55.
[33] KONG L,MEI J, GE W,et al.Application of 3D printing-assisted articulating spacer in two-stage revision surgery for periprosthetic infection after total knee arthroplasty: a retrospective observational study[J].Biomed Res Int,2021,2021:3948638.
[34] ALLEN B,MOORE C,SEYLER T,et al.Modulating antibiotic release from reservoirs in 3D-printed orthopedic devices to treat periprosthetic joint infection[J].J Orthop Res,2020,38(10):2239-2249.
[35]樊宗慶,聶宇,符東林,等.3D打印截骨導(dǎo)板在膝關(guān)節(jié)單髁置換中的應(yīng)用[J].中華全科醫(yī)學(xué),2018,16(7):1085-1087.
[36] BELZILE E L,ANGERS M,BéDARD M.Custom unicompartmental knee arthroplasty[M].Berlin:Springer,2020:221-231.
[37] GU F,LI L,ZHANG H,et al.Three-dimensional-printed guiding template for unicompartmental knee arthroplasty[J].Biomed Res Int,2020,2020:7019794.
[38] JIAO X F,AN S,CAO G L,et al.Research progress of three-dimensional printed guides in unicompartmental knee arthroplasty[J].Zhonghua Wai Ke Za Zhi,2021,59(6):550-554.
[39] DEMANGE M K,VON KEUDELL A,PROBST C,et al.
Patient-specific implants for lateral unicompartmental knee arthroplasty[J].Int Orthop,2015,39(8):1519-1526.
[40] PUMILIA C A,SCHROEDER L,SARPONG N O,et al.
Patient satisfaction, functional outcomes, and implant survivorship in patients undergoing customized unicompartmental knee arthroplasty[J].J Pers Med,2021,11(8):753.
[41] FLOUZAT L C.Hip osteoarthritis[J].Rev Prat,2019,69(10):1131-1135.
[42] GANGULI A,PAGAN-DIAZ G J,GRANT L,et al.3D printing for preoperative planning and surgical training: a review[J].Biomed Microdevices,2018,20(3):65.
[43] FACCO G,GRECO L,MANDOLINI M, et al.Assessing 3-D printing in hip replacement surgical planning[J].Radiol Technol,2022,93(3):246-254.
[44] PAISH A,NIKOLOV H N,WELCH I D,et al.Image-based design and 3D-metal printing of a rat hip implant for use in a clinically representative model of joint replacement[J].J Orthop Res,2020,38(7):1627-1636.
[45] XIA R Z,ZHAI Z J,CHANG Y Y,et al.Clinical applications of 3-dimensional printing technology in hip joint[J].Orthop Surg,2019,11(4):533-544.
[46] RANZZI A,LUCENA R L,SCHWARTSMANN C R,et al.
Comparative study with and without the use of 3D prototyping of an unconventional technique in the surgical planning of revision of total hip arthroplasty[J].Rev Bras Ortop (Sao Paulo),2022,57(5):884-890.
[47] LIANG S,XIE J,WANG F,et al.Application of three-dimensional printing technology in peripheral hip diseases[J].Bioengineered,2021,12(1):5883-5891.
[48] WONG J Y.3D Printing applications for space missions[J].Aerosp Med Hum Perform,2016,87(6):580-582.
[49] BIRD D T,RAVINDRA N M.Additive manufacturing of sensors for military monitoring applications[J].Polymers (Basel),2021,13(9):1455.
[50] VAZ V M,KUMAR L.3D Printing as a promising tool in personalized medicine[J].AAPS PharmSciTech,2021,22(1):49.
(收稿日期:2024-02-02) (本文編輯:陳韻)