国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

紫色蕓薹屬蔬菜花青素合成調(diào)控研究進(jìn)展

2014-12-23 03:27李益張一卉李化銀
山東農(nóng)業(yè)科學(xué) 2014年11期
關(guān)鍵詞:花青素

李益+張一卉+李化銀

摘 要:本文主要利用擬南芥、玉米、牽?;ê徒痿~(yú)草的類(lèi)黃酮合成途徑推測(cè)并繪制了蕓薹屬花青素合成途徑;紫色蕓薹屬花青素合成結(jié)構(gòu)基因CHS、F3′5′H、DFR和ANS的高水平轉(zhuǎn)錄是蕓薹屬著色的直接原因;調(diào)控花青素合成途徑中后期合成基因的R2R3-MYB類(lèi)轉(zhuǎn)錄因子啟動(dòng)子突變并高水平轉(zhuǎn)錄是蕓薹屬蔬菜組織中花青素大量積累的關(guān)鍵。

關(guān)鍵詞:蕓薹屬;花青素;結(jié)構(gòu)基因;R2R3-MYB;bHLH

中圖分類(lèi)號(hào):S312:Q946.83+6 文獻(xiàn)標(biāo)識(shí)號(hào):A 文章編號(hào):1001-4942(2014)11-0137-06

蕓薹屬蔬菜味道鮮美、營(yíng)養(yǎng)豐富,備受大家的喜愛(ài)。中國(guó)白菜和甘藍(lán)都是世界衛(wèi)生組織推薦的營(yíng)養(yǎng)蔬菜,尤其是中國(guó)白菜是中國(guó)北方冬季主要蔬菜[1]。蕓薹屬蔬菜中有多個(gè)紫色物種,如紫菜薹、紫甘藍(lán)、紫色花椰菜和紫色白菜等(圖1),它們之所以顯示艷麗紅紫色是因?yàn)楹写罅康幕ㄇ嗨?。目前,越?lái)越多資料證明花青素及其與糖等配基結(jié)合物能很好清除體內(nèi)的自由基[2],在抗氧化衰老、抗癌與抗動(dòng)脈硬化等方面具有很強(qiáng)的醫(yī)療保健作用[3]。紫色蕓薹屬蔬菜花青素含量都很高,因此是非常有價(jià)值的天然色素資源。

1 紫色蕓薹屬花青素的種類(lèi)和分布

花青素是構(gòu)成植物顏色的主要水溶性色素之一[8],形成于細(xì)胞質(zhì)而儲(chǔ)存于液泡[9]?;ㄇ嗨鼐哂蠧6-C3-C6基本碳架結(jié)構(gòu),它基環(huán)的3、5、7位羥基可以通過(guò)糖苷鍵結(jié)合不同種類(lèi)的單糖或多糖形成不同種類(lèi)的花色苷。花色苷的羥基還可以結(jié)合一個(gè)或幾個(gè)分子的香豆酸、阿魏酸、咖啡酸、丙二酸、芥子酸和琥珀酸等有機(jī)酸形成穩(wěn)定的花色苷結(jié)構(gòu)[10]?;ㄇ嗨氐念伾饕Q于羥基在B環(huán)上的位置,也因所帶羥基、甲基及醣基的種類(lèi)、數(shù)目以及連接位置不同而產(chǎn)生差異[11]?;ㄇ嗨氐姆N類(lèi)主要有橙紅色花葵色素(Pelargonidin)、紫紅色矢車(chē)菊色素(Cyanidin)、藍(lán)色飛燕草色素(Delphinidin)、紅色芍藥花色素(Peonidin)、藍(lán)紫色牽牛花色素(Petunnidin)、藍(lán)紫色錦葵色素

化合成無(wú)色矢車(chē)菊素,進(jìn)而由無(wú)色花青素二氧化酶(leucoanthocyanidin dioxygenase, LDOX)或花青素合酶(anthocyanidin synthase, ANS)形成顯色的矢車(chē)菊花青素(在紫白菜[6,17]、紫甘藍(lán)[18~20]和紫色花椰菜[4]中大量存在),再進(jìn)一步由葡萄糖-類(lèi)黃酮糖基轉(zhuǎn)移酶[uridine diphosphate (UDP)- glucose: flavonoid- O- glycosyltransferase, UFGT]和轉(zhuǎn)甲基酶(methyltransferases, MT)催化形成芍藥色素(紫白菜[17]和紫甘藍(lán)[18]中測(cè)出);二氫黃酮醇還可經(jīng)類(lèi)黃酮-3′,5′-羥化酶(flavonoid-3′,5′-hydroxylase, F3′5′H)、DFR、ANS/LDOX生成飛燕草色素(紫白菜[17]中測(cè)出),然后經(jīng)UFGT和MT生成牽牛花色素 (紫白菜[17]中測(cè)出),最后經(jīng)過(guò)MT催化生成錦葵素(紫甘藍(lán)[17]、紫白菜[18]中測(cè)出);另外,二氫黃酮醇可直接經(jīng)DFR、ANS/LDOX和UFGT生成花葵素(紫甘藍(lán)[21]中測(cè)出)。

蕓薹屬植物花青素在植物器官分布上具有組織特異性(圖3),紫羅蘭小白菜[6]的花青素僅分布于上表皮臨近的幾層葉肉細(xì)胞中(圖3C),而紫甘藍(lán)[22]上下表皮及臨近的幾層葉肉細(xì)胞中都含有花青素(圖3B)。段巖嬌等[7]用‘09S17與紫菜薹經(jīng)多代測(cè)交、自交選育獲得的紫心大白菜‘11S96(圖3A),花青素分布在上下表皮臨近的基礎(chǔ)葉肉細(xì)胞中?;ㄇ嗨卦谌~片上的分布不同表明它們的著色調(diào)控機(jī)理存在差異。

2 CHS、F3′5′H、DFR和ANS/LDOX的高水平轉(zhuǎn)錄是蕓薹屬蔬菜形成紫色性狀的直接原因 通過(guò)分析花青素合成途徑中酶基因功能與紫色性狀之間的關(guān)系發(fā)現(xiàn):結(jié)構(gòu)基因CHS、F3′5′H、DFR和ANS/LDOX高水平表達(dá)與紫色性狀形成關(guān)系最為密切。CHS是花青素合成啟動(dòng)酶,其基因反義表達(dá)可以使?fàn)颗;ㄗ仙誀钔巳?,邵莉等[23]認(rèn)為這種現(xiàn)象可能與共抑制有關(guān)。F3′5′H是形成飛燕草色素、牽?;ㄋ睾湾\葵素的關(guān)鍵酶(圖2),紫色馬鈴薯缺失F3′5′H基因則塊莖表皮失去紅色和紫色,且F3′5′H對(duì)紫色性狀產(chǎn)生的作用在月季花[24]、煙草[25]、美女櫻[26]、香石竹[27]中均通過(guò)異源表達(dá)得到證實(shí)。蕓薹屬蔬菜紫心白菜[17]和紫色甘藍(lán)[18]含有飛燕草和錦葵素,不過(guò)目前蕓薹屬蔬菜中還未有F3′5′H基因表達(dá)水平變化的報(bào)道。DFR特異地催化二氫黃酮醇還原成無(wú)色的花色素,是花青素合成的瓶頸[28],很多作物紫色性狀的形成與其有關(guān),洋蔥鱗莖缺失DFR時(shí)鱗莖失去紫色[29],而異源DFR在白色康乃馨中表達(dá),其花色由白變紫[24]。ANS在花色素苷合成過(guò)程中將無(wú)色花青素苷元氧化,產(chǎn)生有顏色的花青苷元,ANS缺失可以使藍(lán)豬耳花色由藍(lán)變白[30],使洋蔥表皮顏色由紫變黃[31],水稻轉(zhuǎn)入ANS種皮變紫紅色[32]。CHS、DFR和ANS在紫色蕓薹屬作物中的重要作用也逐漸得到驗(yàn)證,段巖嬌等[7]對(duì)紫心大白菜‘11S96中心著色葉和外葉綠色葉片花青素合成途徑中的結(jié)構(gòu)基因進(jìn)行了熒光定量PCR表達(dá)分析,發(fā)現(xiàn)著色葉片中全部花青素合成的結(jié)構(gòu)基因表達(dá)水平均上升,其中DFR和ANS基因轉(zhuǎn)錄水平上調(diào)萬(wàn)倍;張彬[5]對(duì)羽衣甘藍(lán)的顯紫色的‘紅鴿與不顯紫色‘白鴿、紫甘藍(lán)和普通甘藍(lán)以及紅菜薹和小青菜的花青素合成相關(guān)的結(jié)構(gòu)基因表達(dá)進(jìn)行了分析,發(fā)現(xiàn)ANS和DFR表達(dá)量明顯上升是顏色產(chǎn)生差異的原因。紫色花椰菜突變體Pr-D之所以顯色,DFR和LDOX轉(zhuǎn)錄水平顯著上調(diào)是其重要原因[4]。

3 轉(zhuǎn)錄調(diào)控是蕓薹屬蔬菜著色的關(guān)鍵

Gonzllez等[33]把擬南芥中花青素合成途徑中的結(jié)構(gòu)基因分為早期合成基因(Early biosynthesis genes,EBGs)CHS、CHI、F3H、F3′H和FLS1與后期合成基因(Late biosynthesis genes,LBGs)DFR和LDOX/ANS等(圖2)。這些結(jié)構(gòu)基因分別受特異的MYB轉(zhuǎn)錄因子調(diào)控,R2R3-MYB類(lèi)轉(zhuǎn)錄因子基因AtMYB11/PFG1、AtMYB12/PFG2和AtMYB111/PFG3調(diào)控?cái)M南芥所有組織中花青素合成途徑EBGs基因的表達(dá)[34],而DFR和ANS/LDOX等LBGs受AtMYB75/PAP1、AtMYB90/PAP2、AtMYB113和AtMYB114轉(zhuǎn)錄因子基因調(diào)控[33,35]。調(diào)控DFR和ANS/LDOX基因的MYB類(lèi)轉(zhuǎn)錄因子對(duì)植物組織著色作用更突出,因此,當(dāng)調(diào)控LBGs的轉(zhuǎn)錄因子表達(dá)水平發(fā)生變化時(shí)植物組織顏色會(huì)發(fā)生劇烈變化。例如,擬南芥中轉(zhuǎn)入PAP1基因可以產(chǎn)生紫色性狀[36];葡萄VvMYBA1和VvMYBA2與擬南芥AtMYB75、AtMYB90、AtMYB113和AtMYB144同源,當(dāng)VvMYBA1的啟動(dòng)子被反轉(zhuǎn)錄轉(zhuǎn)座子插入或VvMYBA2編碼區(qū)存在突變點(diǎn)時(shí),葡萄(Vitis vinifera)失去紅色[37]。蘋(píng)果MdMYB10是調(diào)控LBGs轉(zhuǎn)錄的MYB轉(zhuǎn)錄因子,啟動(dòng)子中5個(gè)重復(fù)的23 bp基序使具有自激活特性[38],因此在‘Red Field蘋(píng)果品種所有組織中表達(dá)而使葉片、花朵和果肉都著紅色。蘋(píng)果果實(shí)外皮層組織的花青素合成則由MdMYB10 同源基因MdMYB110a調(diào)控,兩者在特定的蘋(píng)果品種內(nèi)具有保守的功能,對(duì)果實(shí)成熟的響應(yīng)及表達(dá)模式存在差異[39]。在紫色蕓薹屬蔬菜著色的研究中,Yuan等[22]調(diào)查了4個(gè)紫色甘藍(lán)品種中具有激活花青素合成的[KPRPR(S/T)F]序列,且分析了與擬南芥AtPAP1和AtPAP2同源的4個(gè)R2R3-MYB轉(zhuǎn)錄因子BoMYB1~4的表達(dá)情況,結(jié)果發(fā)現(xiàn)僅有BoMYB2與紫甘藍(lán)著色有關(guān)。Chiu等[4]利用精細(xì)制譜技術(shù)和候選基因篩選的方法鑒定出紫色花椰菜突變體基因Pr是紫色花椰菜著色的決定基因。Pr之所以超量表達(dá)是因?yàn)閱?dòng)子上游插入轉(zhuǎn)座子,從而使花椰菜顏色顯紫色。通過(guò)序列分析表明紫色花椰菜Pr核酸序列與紫甘藍(lán)BoMYB2核酸序列的相似度為99.6%,進(jìn)一步說(shuō)明紫色蕓薹屬蔬菜中調(diào)控LBGs的R2R3-MYB轉(zhuǎn)錄因子對(duì)著色的調(diào)控作用。紫心大白菜‘11S96外葉為綠色,球葉呈現(xiàn)不同深度的紫色,段巖嬌等[7]對(duì)已在十字花科中獲得的對(duì)花青素合成有影響的6個(gè)R2R3-MYB轉(zhuǎn)錄調(diào)控因子基因(MYB0、MYB1、MYB2、MYB4、MYB12和MYB111)進(jìn)行實(shí)時(shí)熒光定量PCR分析發(fā)現(xiàn),MYB2、MYB4、MYB12和MYB111在整個(gè)紫心大白菜中著色部分大幅上調(diào),其中MYB2和MYB4最為顯著,推測(cè)這可能是紫心大白菜花青素積累的重要原因。endprint

調(diào)控DFR和ANS/LDOX等結(jié)構(gòu)基因轉(zhuǎn)錄的R2R3-MYB轉(zhuǎn)錄因子受環(huán)境因子調(diào)節(jié)。光是花青素合成調(diào)控的重要因素,紫甘藍(lán)轉(zhuǎn)錄因子BoMYB113可能參與光調(diào)控花青素合成過(guò)程,青甘藍(lán)幼苗在光照處理的條件下,BoMYB113表達(dá)量差異較高,并有少量花青素合成,但黑暗條件下BoMYB113表達(dá)量明顯降低,花青素的含量也幾乎難以測(cè)出。紅菜薹和小青菜幼苗BrPAP1、BrPAP2、BrMYB113、BrMYB114同樣受光誘導(dǎo)表達(dá)[5]。溫度是影響花青素合成的重要因素,羽衣甘藍(lán)品種‘紅鴿是‘白鴿的突變體,常溫下它們的顏色都為綠色,當(dāng)在低溫下‘紅鴿顯紫色,轉(zhuǎn)錄因子基因BoPAP1在‘紅鴿受低溫后顯著表達(dá),強(qiáng)烈預(yù)示BoPAP1是低溫條件下造成‘紅鴿呈現(xiàn)紫色的原因[5]。缺素也可使植物顯色,擬南芥缺失N素和P素時(shí),轉(zhuǎn)錄因子基因AtPAP1、AtPAP2、AtGL3和AtMYB12轉(zhuǎn)錄水平都顯著提高[40]。紫甘藍(lán)缺失N素和P素BoMYB2轉(zhuǎn)錄水平上升,花青素合成量也顯著提高[22]。

轉(zhuǎn)錄因子R2R3-MYB可以單獨(dú)發(fā)揮調(diào)節(jié)作用,也可以與bHLH(TT8、GL3和EGL3)[33,35,41,42]以及WD40(TTG1) [42,43]類(lèi)轉(zhuǎn)錄因子組成蛋白復(fù)合物MYB-bHLH-WD40 (MBW)激活花青素合成的結(jié)構(gòu)基因。MBW調(diào)控花青素合成具有物種特異性,玉米中的 MYB類(lèi)轉(zhuǎn)錄因子ZmC1需要和bHLH類(lèi)轉(zhuǎn)錄因子ZmR或ZmB相互作用后協(xié)同激活結(jié)構(gòu)基因DFR的表達(dá),而ZmC對(duì)DFR的激活作用卻不需要bHLH轉(zhuǎn)錄因子的參與;蘋(píng)果MdbHLH3 和MdbHLH33 轉(zhuǎn)錄因子是MYB類(lèi)轉(zhuǎn)錄因子不可或缺的協(xié)作因子[35]。外界低溫條件可誘導(dǎo)MdbHLH3蛋白磷酸化,增強(qiáng)其啟動(dòng)子結(jié)合能力和轉(zhuǎn)錄活性,進(jìn)而增強(qiáng)蘋(píng)果花青苷的合成[44]。紫色花椰菜[4]和紫甘藍(lán)中[22]MYB轉(zhuǎn)錄因子可能與bHLH組成復(fù)合蛋白來(lái)激活結(jié)構(gòu)基因的過(guò)量表達(dá)調(diào)節(jié)花青素的合成,因?yàn)樵贐oMYB2轉(zhuǎn)錄過(guò)程中BoTT8同樣大量轉(zhuǎn)錄,值得注意的是光照和黑暗處理?xiàng)l件下紫甘藍(lán)中的BoTT8的表達(dá)水平是一致的,這與紫甘藍(lán)在黑暗條件下仍然能夠少量積累花青素的現(xiàn)象吻合[5]。在紫菜薹花青素合成過(guò)程中結(jié)構(gòu)基因的轉(zhuǎn)錄對(duì)bHLH類(lèi)轉(zhuǎn)錄因子的依賴(lài)更為明顯,BrTT8與CHS、F3H、ANS、DFR 這4個(gè)關(guān)鍵結(jié)構(gòu)基因的表達(dá)模式是一致的,即在紅菜薹花青素積累的組織中都有高豐度的表達(dá),在紅菜薹沒(méi)有花青素積累的組織還有小白菜中的表達(dá)量都非常低,但是羽衣甘藍(lán)‘紅鴿調(diào)控花青素合成的BoPAP1和BoPAP2轉(zhuǎn)錄因子調(diào)控花青素合成卻不依賴(lài)于BoTT8[5]。

4 總結(jié)與展望

綜上可知,花青素合成受結(jié)構(gòu)基因、調(diào)節(jié)基因和環(huán)境因子的影響。蕓薹屬蔬菜紫甘藍(lán)BoMYB2和紫色花椰菜Pr基因是兩種蔬菜著色的決定因素,它們上調(diào)DFR和ANS/LDOX等基因的表達(dá)。紫甘藍(lán)內(nèi)葉和外葉的花青素含量相差不大。但是,紫心大白菜花青素含量卻是由外葉到中心葉逐漸增多,形成的機(jī)理還不得而知。光敏色素A(phytochromeA,phyA)在極低的光強(qiáng)下能調(diào)控光形態(tài)建成,而在高光強(qiáng)條件下易分解,我們推測(cè)光通過(guò)phyA對(duì)紫心白菜著色起調(diào)控作用。光照產(chǎn)生抑制因子,抑制花青素合成結(jié)構(gòu)基因的轉(zhuǎn)錄,而隨著光強(qiáng)的減弱抑制物合成也減少,從而形成白菜的紫心現(xiàn)象。大白菜紫心形成的機(jī)制尚需進(jìn)一步探索。

參 考 文 獻(xiàn):

[1] 郁有健, 張耀偉, 張德雙. 大白菜紫色性狀的 SRAP 連鎖標(biāo)記的篩選[J]. 分子植物育種, 2009, 7(3):573-578.

[2] 張寧, 胡宗利, 陳緒清, 等. 植物花青素代謝途徑分析及調(diào)控模型建立[J]. 中國(guó)生物工程雜志, 2008,28(1):97-105.

[3] 胡雅馨, 李京, 惠伯棣, 等. 藍(lán)莓果實(shí)中主要營(yíng)養(yǎng)及花青素成分的研究[J]. 食品科學(xué), 2006, 27(10):600-603.

[4] Chiu L W, Zhou X, Burke S, et al. The purple cauliflower arises from activation of a MYB transcription factor [J]. Plant Physiology, 2010, 154:1470-1480.

[5] 張彬. 蕓薹屬植物花青素生物合成代謝途徑調(diào)控機(jī)制的研究[D]. 重慶:重慶大學(xué), 2011.

[6] 李長(zhǎng)新. 紫色小白菜花青素理化性質(zhì)研究[D]. 楊凌:西北農(nóng)林科技大學(xué), 2011.

[7] 段巖嬌, 張魯剛, 何瓊, 等. 紫心大白菜花青素積累特性及相關(guān)基因表達(dá)分析[J].園藝學(xué)報(bào), 2012, 39(11):2159-2167.

[8] Clifford M N. Anthocyanins-nature, occurrence and dietary burden [J]. Science of Food and Agriculture, 2000, 80:1063-1072.

[9] Fleschhut J, Kratzer F, Rechkemmer G, et al. Stability and biotransformation of various dietary anthocyanins in vitro [J]. European Journal of Nutrition, 2006, 45(1):7-18.

[10] Arapitsas P, Sjoberg P J R, Turner C, et al. Characterisation of anthocyanins in red cabbage using high resolution liquid chromatography coupled with photodiode array detection and electrospray ionization-linear ion trap mass spectrometry [J]. Food Chemistry, 2008, 109:219-226.endprint

[11] Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids [J]. The Plant Journal, 2008, 54:733-749.

[12] 任玉林, 李華, 邴貴德. 天然食用色素——花色苷[J]. 食品科學(xué), 1995(16):22-27.

[13] Broun P. Transcriptional control of flavonoid biosynthesis:A complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis [J]. Curr. Opin. Plant Biol., 2005, 8(3): 272-279.

[14] Dixon R A, Xie D Y, Sharma S B. Proanthocyanidins-a final frontier in flavonoid research? [J].New Phytologist, 2005, 165(1):9-28.

[15] Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways [J]. Trends Plant Science, 2005, 10:236-242.

[16] Grotewold E. The genetics and biochemistry of floral pigments[J]. Annu. Rev. Plant Biol., 2006, 57:761-780.

[17] 林文超, 王德森, 劉維信. 紫色白菜花色苷組分鑒定及抗氧化性研究[C]//中國(guó)園藝學(xué)會(huì)十字花科蔬菜分會(huì)第十屆學(xué)術(shù)研討會(huì)論文集. 2012.

[18] 王海. 紫甘藍(lán)花青素的提取純化、結(jié)構(gòu)鑒定及其生物學(xué)作用的研究[D]. 泰安:山東農(nóng)業(yè)大學(xué), 2012.

[19] 王倩. 紫甘藍(lán)色素的研究[D]. 無(wú)錫:江南大學(xué), 2011.

[20] 劉玉芹, 江婷, 趙先恩, 等. 高效液相色譜-四極桿飛行時(shí)間質(zhì)譜分析紫甘藍(lán)和羽衣甘藍(lán)中花色苷[J].分析化學(xué), 2011, 39(3):419-424.

[21] McDougall G J, Fyffe S, Dobson P, et al. Anthocyanins from red cabbage-stability to simulated gastrointestinal digestion [J]. Phytochemistry, 2007, 68:1285-1294.

[22] Yuan Y X, Chiu L W, Li L, et al. Transcriptional regulation of anthocyanin biosynthesis in red cabbage [J]. Planta, 2009, 230:1141-1153.

[23] 邵莉, 李毅, 楊美珠, 等. 查爾酮合酶基因?qū)D(zhuǎn)基因植物花色和育性的影響[J]. 植物學(xué)報(bào),1996, 38(7): 517-524.

[24] Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis [J]. Plant Cell, 1995, 7:1071-1083.

[25] 王宇塵. 轉(zhuǎn)F3′5′H基因煙草的花色改變[D]. 重慶:西南大學(xué), 2005.

[26] Katsumoto Y, Fukuchi-Mizutani, Fukui Y, et al. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin [J]. Plant Cell Physiol., 2007, 48(11): 1589-1600.

[27] Tanaka Y, Fukui Y, Fukuchi-Mizutani M et al. Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene [J].Plant and Cell Physiology,1995, 36:1023-1031.

[28] Feyissa D, Lvdal T, Olsen K, et al. The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves [J]. Planta, 2009, 230:747-754.

[29] Kim J S, Lee B H, Kim S H, et al. Response to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn (Zea mays L.) leaf [J]. Journal of Plant Biology, 2006, 49: 16-25.endprint

[30] 蔣明, 陳孝賞, 李金枝. 紫菜薹花青素合成酶基因BcANS的克隆、表達(dá)與序列分析 [J].浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2011, 37(4):393-398.

[31] Kim S, Endress P, Hauser B, et al. Origin of the calyptra and characterization of B class genes in Eupomatia(Eupomatiaceae)[J]. International Journal of Plant Sciences, 2005,166:185-198.

[32] Reddy A M, Reddy V S, Scheffler B E, et al. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential[J]. Metabolic Engineering, 2007, 9: 95-111.

[33] Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings [J]. Plant, 2008, 53:814-827.

[34] Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling [J]. The Plant Journal, 2007, 50:660-677.

[35] Borevitz J O, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. Plant Cell, 2000, 12: 2383-2394.

[36] Tohge T, Nishiyama Y, Hirai M Y, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor [J]. The Plant Journal, 2005, 42:218-235.

[37] Walker A R, Lee E, Bogs J, et al. White grapes arose through the mutation of two similar and adjacent regulatory genes [J]. The Plant Journal, 2007, 49:772-785.

[38] Espley R V, Brendolise C, Chagne D, et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples [J]. Plant Cell, 2009, 21: 168-183.

[39] Chagné D, Lin-Wang K, Espley R V, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes [J]. Plant Physiology, 2013, 161(1):225-239.

[40] Lea U S, Slimestad R, Smedvig P, et al. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway[J]. Planta, 2007, 225:1245-1253.

[41] Dubos C, Le Gourrierec J, Baudry A ,et al. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana [J].The Plant Journal, 2008, 55:940-953.

[42] Matsui K. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis [J]. The Plant Journal, 2008, 55:954-967.

[43] Walker A R, Davison P A, Bolognesi-Winfield A C, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein [J]. The Plant Cell Online, 1999, 11(7):1337-1349.

[44] Xie X B, Li S, Zhang R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples [J]. Plant Cell and Environment,2012,35(11):1884-1897. 山 東 農(nóng) 業(yè) 科 學(xué) 2014,46(11):143~147endprint

[30] 蔣明, 陳孝賞, 李金枝. 紫菜薹花青素合成酶基因BcANS的克隆、表達(dá)與序列分析 [J].浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2011, 37(4):393-398.

[31] Kim S, Endress P, Hauser B, et al. Origin of the calyptra and characterization of B class genes in Eupomatia(Eupomatiaceae)[J]. International Journal of Plant Sciences, 2005,166:185-198.

[32] Reddy A M, Reddy V S, Scheffler B E, et al. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential[J]. Metabolic Engineering, 2007, 9: 95-111.

[33] Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings [J]. Plant, 2008, 53:814-827.

[34] Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling [J]. The Plant Journal, 2007, 50:660-677.

[35] Borevitz J O, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. Plant Cell, 2000, 12: 2383-2394.

[36] Tohge T, Nishiyama Y, Hirai M Y, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor [J]. The Plant Journal, 2005, 42:218-235.

[37] Walker A R, Lee E, Bogs J, et al. White grapes arose through the mutation of two similar and adjacent regulatory genes [J]. The Plant Journal, 2007, 49:772-785.

[38] Espley R V, Brendolise C, Chagne D, et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples [J]. Plant Cell, 2009, 21: 168-183.

[39] Chagné D, Lin-Wang K, Espley R V, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes [J]. Plant Physiology, 2013, 161(1):225-239.

[40] Lea U S, Slimestad R, Smedvig P, et al. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway[J]. Planta, 2007, 225:1245-1253.

[41] Dubos C, Le Gourrierec J, Baudry A ,et al. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana [J].The Plant Journal, 2008, 55:940-953.

[42] Matsui K. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis [J]. The Plant Journal, 2008, 55:954-967.

[43] Walker A R, Davison P A, Bolognesi-Winfield A C, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein [J]. The Plant Cell Online, 1999, 11(7):1337-1349.

[44] Xie X B, Li S, Zhang R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples [J]. Plant Cell and Environment,2012,35(11):1884-1897. 山 東 農(nóng) 業(yè) 科 學(xué) 2014,46(11):143~147endprint

[30] 蔣明, 陳孝賞, 李金枝. 紫菜薹花青素合成酶基因BcANS的克隆、表達(dá)與序列分析 [J].浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2011, 37(4):393-398.

[31] Kim S, Endress P, Hauser B, et al. Origin of the calyptra and characterization of B class genes in Eupomatia(Eupomatiaceae)[J]. International Journal of Plant Sciences, 2005,166:185-198.

[32] Reddy A M, Reddy V S, Scheffler B E, et al. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential[J]. Metabolic Engineering, 2007, 9: 95-111.

[33] Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings [J]. Plant, 2008, 53:814-827.

[34] Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling [J]. The Plant Journal, 2007, 50:660-677.

[35] Borevitz J O, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. Plant Cell, 2000, 12: 2383-2394.

[36] Tohge T, Nishiyama Y, Hirai M Y, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor [J]. The Plant Journal, 2005, 42:218-235.

[37] Walker A R, Lee E, Bogs J, et al. White grapes arose through the mutation of two similar and adjacent regulatory genes [J]. The Plant Journal, 2007, 49:772-785.

[38] Espley R V, Brendolise C, Chagne D, et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples [J]. Plant Cell, 2009, 21: 168-183.

[39] Chagné D, Lin-Wang K, Espley R V, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes [J]. Plant Physiology, 2013, 161(1):225-239.

[40] Lea U S, Slimestad R, Smedvig P, et al. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway[J]. Planta, 2007, 225:1245-1253.

[41] Dubos C, Le Gourrierec J, Baudry A ,et al. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana [J].The Plant Journal, 2008, 55:940-953.

[42] Matsui K. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis [J]. The Plant Journal, 2008, 55:954-967.

[43] Walker A R, Davison P A, Bolognesi-Winfield A C, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein [J]. The Plant Cell Online, 1999, 11(7):1337-1349.

[44] Xie X B, Li S, Zhang R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples [J]. Plant Cell and Environment,2012,35(11):1884-1897. 山 東 農(nóng) 業(yè) 科 學(xué) 2014,46(11):143~147endprint

猜你喜歡
花青素
玉米花青素研究進(jìn)展
紫薯中花青素的提取工藝研究
番茄果實(shí)花青素結(jié)構(gòu)及主要修飾類(lèi)型獲解析(2020.7.22 中國(guó)農(nóng)業(yè)科學(xué)院)
美麗信使花青素
為什么花朵能夠有那么多的顏色
不同發(fā)酵工藝對(duì)藍(lán)莓酒中花青素含量的影響
不同處理對(duì)刺葡萄愈傷組織花青素和原花青素生物合成的影響
花青素在飼料上的應(yīng)用探析
健康Q&A 花青素Q&A
哇,變色啦!
富宁县| 收藏| 长宁区| 贡嘎县| 凤凰县| 鸡东县| 综艺| 乌兰察布市| 武山县| 黑龙江省| 军事| 土默特右旗| 三穗县| 宁强县| 会泽县| 雅江县| 民乐县| 高雄县| 民和| 昂仁县| 巧家县| 遵义县| 镇雄县| 新丰县| 霍州市| 汉阴县| 宁海县| 普兰县| 永康市| 潮安县| 若羌县| 自贡市| 河北省| 衡东县| 达州市| 岚皋县| 搜索| 隆林| 临湘市| 微山县| 鄂尔多斯市|