孟艷雙+邢育紅
摘要:闡述了應(yīng)用型人才的內(nèi)涵與數(shù)學(xué)建模實(shí)踐活動(dòng)的本質(zhì),分析了應(yīng)用型人才培養(yǎng)模式下數(shù)學(xué)建?;顒?dòng)在人才培養(yǎng)過(guò)程中的作用,探討了數(shù)學(xué)建模三級(jí)教學(xué)平臺(tái)的構(gòu)建與實(shí)施。
關(guān)鍵詞:應(yīng)用型人才;數(shù)學(xué)建模;教學(xué)平臺(tái)
中圖分類號(hào):G642.0 ? ? 文獻(xiàn)標(biāo)志碼:A ? ? 文章編號(hào):1674-9324(2016)06-0035-03
一、對(duì)應(yīng)用型人才內(nèi)涵與數(shù)學(xué)建模實(shí)踐活動(dòng)的深入認(rèn)識(shí)
應(yīng)用型人才是一種能將專業(yè)知識(shí)和技能應(yīng)用于所從事的專業(yè)社會(huì)實(shí)踐的一種專門(mén)的人才類型,是熟練掌握社會(huì)生產(chǎn)或社會(huì)活動(dòng)一線的基礎(chǔ)知識(shí)和基本技能,主要從事一線生產(chǎn)的技術(shù)或?qū)I(yè)人才。在知識(shí)結(jié)構(gòu)上,應(yīng)用型人才更強(qiáng)調(diào)復(fù)合性、應(yīng)用性和與時(shí)俱進(jìn),具有復(fù)合性和跨學(xué)科的特點(diǎn)。在能力結(jié)構(gòu)上,應(yīng)用型人才強(qiáng)調(diào)發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力,要求具備解決復(fù)雜問(wèn)題的實(shí)踐能力;在素質(zhì)結(jié)構(gòu)上,應(yīng)用型人才直接服務(wù)于各行各業(yè),更強(qiáng)調(diào)社會(huì)適應(yīng)性和與社會(huì)的共處能力。應(yīng)用型人才的特點(diǎn):強(qiáng)調(diào)實(shí)踐,突出應(yīng)用;終身學(xué)習(xí),知識(shí)復(fù)合;科學(xué)態(tài)度,敢于創(chuàng)新;責(zé)任意識(shí),團(tuán)隊(duì)協(xié)作。
數(shù)學(xué)建模就是通過(guò)對(duì)現(xiàn)實(shí)問(wèn)題的抽象、簡(jiǎn)化,確定變量和參數(shù),并應(yīng)用某些“規(guī)律”建立起變量、參數(shù)間的確定的數(shù)學(xué)問(wèn)題;然后求解該數(shù)學(xué)問(wèn)題,最后在現(xiàn)實(shí)問(wèn)題中解釋、驗(yàn)證所得到的解的創(chuàng)造過(guò)程。數(shù)學(xué)建模過(guò)程可用下圖來(lái)表明:
因此,數(shù)學(xué)建?;顒?dòng)是一個(gè)多次循環(huán)反復(fù)驗(yàn)證的過(guò)程,是應(yīng)用數(shù)學(xué)的語(yǔ)言和方法解決實(shí)際問(wèn)題的過(guò)程。數(shù)學(xué)建模是一種聯(lián)系數(shù)學(xué)與實(shí)際問(wèn)題的橋梁,它突出了實(shí)踐活動(dòng)的重要特點(diǎn),強(qiáng)調(diào)人才的培養(yǎng)應(yīng)從側(cè)重知識(shí)教育轉(zhuǎn)向側(cè)重應(yīng)用能力培養(yǎng)。
二、應(yīng)用型人才培養(yǎng)模式下數(shù)學(xué)建?;顒?dòng)在人才培養(yǎng)過(guò)程中的作用
應(yīng)用型人才培養(yǎng)模式下,數(shù)學(xué)建?;顒?dòng)不僅包括學(xué)習(xí)數(shù)學(xué)知識(shí),展示各應(yīng)用領(lǐng)域中的數(shù)學(xué)問(wèn)題和建模方法,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,更重要的是培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力,創(chuàng)造有利于提高學(xué)生將來(lái)從事實(shí)際工作能力的環(huán)境。數(shù)學(xué)建?;顒?dòng)的教學(xué)內(nèi)容和教學(xué)方法是以應(yīng)用型人才培養(yǎng)為核心,內(nèi)容取材于實(shí)際、方法結(jié)合于實(shí)際、結(jié)果應(yīng)用于實(shí)際,對(duì)學(xué)生能力的培養(yǎng)體現(xiàn)在多個(gè)方面。
(一)培養(yǎng)學(xué)生分析問(wèn)題與解決問(wèn)題的能力
數(shù)學(xué)建模競(jìng)賽的題目一般由工程技術(shù)、經(jīng)濟(jì)管理、社會(huì)生活等領(lǐng)域中的實(shí)際問(wèn)題簡(jiǎn)化而成,在數(shù)學(xué)建?;顒?dòng)中,要求首先強(qiáng)調(diào)如何分析實(shí)際問(wèn)題,如何利用所掌握的知識(shí)和對(duì)問(wèn)題的理解提出合理且簡(jiǎn)化的假設(shè),如何將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,即將實(shí)際問(wèn)題“翻譯”成數(shù)學(xué)模型。其次是如何建立適當(dāng)?shù)臄?shù)學(xué)模型,如何利用恰當(dāng)?shù)姆椒ㄇ蠼鈹?shù)學(xué)模型,以及如何利用模型結(jié)果解決實(shí)際問(wèn)題。對(duì)數(shù)學(xué)模型求解后,還要用數(shù)學(xué)模型的結(jié)果解釋實(shí)際現(xiàn)象。這是一個(gè)雙向“翻譯”的過(guò)程,通過(guò)這個(gè)過(guò)程,讓學(xué)生體驗(yàn)數(shù)學(xué)在解決實(shí)際問(wèn)題中的作用,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)的意識(shí)和能力,從而提高學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力。數(shù)學(xué)建模本身就是一個(gè)創(chuàng)新的過(guò)程并且為培養(yǎng)學(xué)生創(chuàng)新精神和創(chuàng)造能力提供了環(huán)境。
(二)培養(yǎng)學(xué)生的創(chuàng)造精神和創(chuàng)新能力
創(chuàng)造精神和創(chuàng)新能力是指利用自己已有的知識(shí)和經(jīng)驗(yàn),在個(gè)性品質(zhì)支持下,新穎而獨(dú)特地提出問(wèn)題、解決問(wèn)題,并由此產(chǎn)生有價(jià)值的新思想、新方法、新成果。數(shù)學(xué)建模問(wèn)題的解決沒(méi)有標(biāo)準(zhǔn)答案、不局限于唯一方法,不同的假設(shè)就會(huì)產(chǎn)生不同的模型,同一類模型也會(huì)有很多不同的數(shù)學(xué)求解方法。數(shù)學(xué)建模的每一步都給學(xué)生留有較大的空間,在數(shù)學(xué)建?;顒?dòng)中,要鼓勵(lì)學(xué)生勤于思考、大膽實(shí)踐,不拘泥于用一種方法解決問(wèn)題,嘗試運(yùn)用多種數(shù)學(xué)方法描述實(shí)際問(wèn)題,鼓勵(lì)學(xué)生充分發(fā)揮想象力、勇于創(chuàng)造新方法,不斷地修改和完善模型,不斷地積累經(jīng)驗(yàn),逐步提高學(xué)生創(chuàng)新能力,數(shù)學(xué)建模本身就是一個(gè)創(chuàng)新的過(guò)程并且為培養(yǎng)學(xué)生創(chuàng)新精神和創(chuàng)造能力提供了環(huán)境。數(shù)學(xué)建模是培養(yǎng)學(xué)生創(chuàng)造性思維和創(chuàng)新精神的良好平臺(tái)。
(三)培養(yǎng)學(xué)生的學(xué)習(xí)探索能力
心理學(xué)家布魯納指出:探索是數(shù)學(xué)教學(xué)的生命線。培養(yǎng)學(xué)生的探索能力,應(yīng)貫串?dāng)?shù)學(xué)教學(xué)的全過(guò)程。這一點(diǎn)在普通的數(shù)學(xué)課堂上往往做不到。但在數(shù)學(xué)建模的教學(xué)過(guò)程中,通常會(huì)有意識(shí)地創(chuàng)設(shè)探索情境,引導(dǎo)學(xué)生以自我為主,進(jìn)行調(diào)查研究、查閱文獻(xiàn)、制定方案、設(shè)計(jì)實(shí)驗(yàn)、構(gòu)思模型、分析總結(jié)等方面獨(dú)立探索能力的訓(xùn)練,促進(jìn)學(xué)生創(chuàng)新精神、科研能力和實(shí)踐技能的培養(yǎng)。
(四)培養(yǎng)學(xué)生的洞察力和抽象概括能力
數(shù)學(xué)建模的模型假設(shè)需要根據(jù)對(duì)實(shí)際問(wèn)題的觀察和分析,透過(guò)現(xiàn)象看本質(zhì),將錯(cuò)綜復(fù)雜的實(shí)際問(wèn)題簡(jiǎn)化,再進(jìn)行高度的概括,抽象出合理、簡(jiǎn)化、可行的假設(shè)條件。數(shù)學(xué)建模促進(jìn)了對(duì)學(xué)生的洞察力和抽象概括能力的培養(yǎng)。
(五)培養(yǎng)學(xué)生利用計(jì)算機(jī)解決實(shí)際問(wèn)題的能力
在數(shù)學(xué)建模中,很多模型的求解都面臨著復(fù)雜的數(shù)學(xué)推導(dǎo)及大量的數(shù)值計(jì)算,同時(shí)所建模型是否與實(shí)際問(wèn)題相吻合也常常需要通過(guò)計(jì)算或模擬來(lái)檢驗(yàn),能熟練使用計(jì)算機(jī)計(jì)算數(shù)學(xué)問(wèn)題是對(duì)學(xué)生的必要要求。數(shù)學(xué)建模將數(shù)學(xué)、計(jì)算機(jī)有機(jī)地結(jié)合起來(lái),逐步培養(yǎng)學(xué)生利用數(shù)學(xué)軟件和計(jì)算機(jī)解決實(shí)際問(wèn)題的能力。
(六)培養(yǎng)學(xué)生論文寫(xiě)作和語(yǔ)言表達(dá)的能力
數(shù)學(xué)建模的考核內(nèi)容一般包括基本建模方法的掌握、簡(jiǎn)單建模問(wèn)題的求解和實(shí)際問(wèn)題的解決,考核方式往往采取閉卷與開(kāi)卷相結(jié)合、理論答卷與上機(jī)實(shí)驗(yàn)相結(jié)合、筆試與答辯相結(jié)合的方法。因此,數(shù)學(xué)建模答卷需要學(xué)生具有一定的描述問(wèn)題的能力、組織結(jié)構(gòu)的能力以及文字表達(dá)的能力。而數(shù)學(xué)建模競(jìng)賽成績(jī)的好壞、獎(jiǎng)項(xiàng)的高低,其評(píng)定的唯一依據(jù)就是數(shù)學(xué)建模論文,假設(shè)是否合理,建模方法是否有特色,重點(diǎn)是否突出,模型結(jié)果是否正確,論文撰寫(xiě)是否清晰等是對(duì)論文成績(jī)?cè)u(píng)定的主要標(biāo)準(zhǔn)。通過(guò)數(shù)學(xué)建模確實(shí)能培養(yǎng)學(xué)生的論文寫(xiě)作能力和語(yǔ)言表達(dá)能力。
(七)培養(yǎng)學(xué)生的交流與合作能力和團(tuán)隊(duì)精神
數(shù)學(xué)建模中的實(shí)際問(wèn)題涉及多個(gè)學(xué)科領(lǐng)域,所需知識(shí)較多,因此集體討論、學(xué)生報(bào)告、教師點(diǎn)評(píng)是經(jīng)常采用的教學(xué)方式。數(shù)學(xué)建模競(jìng)賽活動(dòng)是一個(gè)集體項(xiàng)目,比賽要求參賽隊(duì)在3天之內(nèi)對(duì)所給的問(wèn)題提出一個(gè)較為完整的解決方案,具有一定規(guī)模的建模問(wèn)題一般都不可能由個(gè)人獨(dú)立完成,這就需要三個(gè)人積極配合,協(xié)同作戰(zhàn),要發(fā)揮每個(gè)人的長(zhǎng)處,互相彌補(bǔ)短處,是培養(yǎng)學(xué)生全局意識(shí)、角色意識(shí)、合作意識(shí)的過(guò)程,也是一個(gè)塑造學(xué)生良好個(gè)性的過(guò)程。在此過(guò)程中,既要發(fā)揮好學(xué)生各自特點(diǎn),又要有及時(shí)妥協(xié)的能力,目的是發(fā)揮整體的最好實(shí)力。作為對(duì)學(xué)生的一種綜合訓(xùn)練,除了三個(gè)人都要有數(shù)學(xué)建模的基礎(chǔ)知識(shí)外,成員之間的討論、修改、綜合,既有分工,又有合作。只有充分的團(tuán)隊(duì)合作,才能取得成功,凡是參加過(guò)競(jìng)賽的每一個(gè)人都能深刻體會(huì)到這種團(tuán)隊(duì)精神的重要性,認(rèn)識(shí)到這一點(diǎn)對(duì)學(xué)生以后的成長(zhǎng)是非常有幫助的。