国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

從數(shù)學(xué)史角度比較數(shù)學(xué)教材中的課例選擇
——以勾股定理為例

2020-01-09 09:17洛陽師范學(xué)院數(shù)學(xué)科學(xué)學(xué)院王眾杰
天津教育 2020年4期
關(guān)鍵詞:魯教蘇科版勾股定理

■洛陽師范學(xué)院 數(shù)學(xué)科學(xué)學(xué)院 王眾杰 來 靚

一、問題背景

勾股定理是中學(xué)課本中基礎(chǔ)的幾何定理,它的歷史源遠(yuǎn)流長。在中國古代的商朝時(shí)期,商高率先提出了“勾三股四弦五”的勾股定理的特例,因此勾股定理也被稱為商高定理。在古代西方國家,最早提出并證明勾股定理的是公元前6世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他的學(xué)派創(chuàng)始人畢達(dá)哥拉斯用演繹法證明直角三角形斜邊平方等于兩直角邊平方之和。經(jīng)過幾千年數(shù)學(xué)史的發(fā)展,人們已經(jīng)發(fā)現(xiàn)400余種證明方法。勾股定理在人類的數(shù)學(xué)發(fā)展史中占據(jù)了重要地位,它不僅僅是個(gè)簡單的定理,更蘊(yùn)含了千百年來數(shù)學(xué)發(fā)展的艱辛與挫折。

二、問題提出

勾股定理作為初中階段一個(gè)基礎(chǔ)的定理,在后續(xù)數(shù)學(xué)的學(xué)習(xí)中都發(fā)揮著重要的輔證作用,本文從習(xí)題配置、數(shù)學(xué)史背景知識(shí)兩方面分析八個(gè)版本教材對于數(shù)學(xué)史知識(shí)融入課本的程度,以達(dá)到優(yōu)化教學(xué)課堂的目的。

三、教材分析

(一)教材選擇與分析

我國現(xiàn)行中學(xué)數(shù)學(xué)教材種類繁多,人教版、北師版、華師版、滬科版、冀教版、魯教版、青島版、蘇科版、湘教版、浙教版、上海版、京教版十二個(gè)版本的教材,下面篩選出八個(gè)版本的教材供參考。

本文通過文本比較分析的方法對人教版、北師大版、華師版等八個(gè)版本的教材中“勾股定理”的內(nèi)容從數(shù)學(xué)史習(xí)題配置以及背景知識(shí)融入方面進(jìn)行了比較分析。

(二)教材解讀習(xí)題配置

1.《九章算術(shù)》關(guān)于“引葭赴岸”的敘述?!敖裼谐厮环?,葭生其中夾,出水一尺,引葭赴岸,適與岸齊,問水深、葭長各幾何”。引葭赴岸問題流傳甚廣,類似題目在史書《張邱建算經(jīng)》《四元玉鑒》中也曾出現(xiàn)。相似問題在國外史學(xué)典籍中也有跡可循,例如,印度古代數(shù)學(xué)家婆什迦羅的《麗羅瓦提》中 的“風(fēng)動(dòng)紅蓮”問題;阿拉伯?dāng)?shù)學(xué)家阿爾?卡西的《算術(shù)之鑰》中的“池中長茅”問題;歐洲《十六世紀(jì)的算術(shù)》一書中又有“圓池蘆葦”問題。 在現(xiàn)代中學(xué)數(shù)學(xué)教材中,人教版、滬教版、冀教版、魯教版、蘇科版均出現(xiàn)了這道題,五個(gè)版本對“引葭赴案”問題的譯文僅有細(xì)微差別,采用的語言通俗易懂,學(xué)生易于理解。這五個(gè)版本中,冀教版比較特殊,稱此題為“池葭出水”引用古典不同,但實(shí)質(zhì)相同,均可取。

2.趙爽出入相補(bǔ)法證明勾股定理。我國古代數(shù)學(xué)家趙爽根據(jù)此圖巧妙運(yùn)用面積拆分挪移證明了勾股定理。人教版“出入相補(bǔ)法”與魯教版“青朱出入圖”以及意大利畫家達(dá)芬奇的證明方法均是運(yùn)用面積增補(bǔ)進(jìn)行證明,但人教版教材中這部分內(nèi)容安排在正文部分,魯教版中安排在閱讀材料部分,學(xué)生很大程度上會(huì)忽略這一部分的證明。所以,兩者相比起來,人教版教材在內(nèi)容安排上略勝一籌。

3.《原本》中歐幾里得的面積證明法。北師版和蘇科版教材的閱讀材料中出現(xiàn)了此法。北師版文字描述證明過程略詳盡,蘇科版數(shù)學(xué)符號更多,兩者在敘述語言上都秉承簡潔清晰的原則,均可取。

4.數(shù)學(xué)史背景知識(shí)融入。人教版教材關(guān)于數(shù)學(xué)史材料的引入是畢達(dá)哥拉斯的思考與證明、勾股定理、費(fèi)馬大定理;北師版采用《原本》證明;華師版采用《周髀算經(jīng)》中“弦圖”和勾股定理簡介、勾股定理無字證明;滬教版采用趙爽的敘述、勾股定理簡史;冀教版是《周髀算經(jīng)》勾股定理的記載;魯教版采用勾股數(shù)與費(fèi)馬大定理、古哥倫比亞時(shí)期泥板文字;青島版采用《周髀算經(jīng)》勾股定理、勾股數(shù)組;蘇科版采用商高與勾三股四弦五、趙爽“弦圖”、普林頓322。

人教版教材在勾股定理的安排中數(shù)學(xué)史出現(xiàn)七處,章主題頁、節(jié)頭、習(xí)題和閱讀與思考欄目均涉及;北師版教材對于數(shù)學(xué)史涉及的內(nèi)容有三處,出現(xiàn)在習(xí)題和讀一讀欄目;華師版教材對于數(shù)學(xué)史涉及的內(nèi)容有三處,出現(xiàn)在讀一讀與閱讀材料中,著重介紹了中國古代對于勾股定理的發(fā)現(xiàn)與研究;滬教版教材中出現(xiàn)兩處,著重介紹了趙爽的“弦圖”,以及《周髀算經(jīng)》中周公與商高關(guān)于勾股定理的介紹;冀教版教材中的一處是周公商高、大禹、趙爽、畢達(dá)哥拉斯關(guān)于勾股定理的研究;魯教版的三處介紹分別是中國古代商高、古巴比倫人的數(shù)學(xué)泥板、畢達(dá)哥拉斯的相關(guān)證明,這個(gè)版本的精彩之處在于介紹了費(fèi)馬大定理與勾股數(shù)的關(guān)系以及給出了中國(青朱出入圖)、印度、意大利(畫家達(dá)芬奇)的三種無字版證明;青島版的兩處點(diǎn)睛之筆在于介紹了古巴比倫人記載的勾股數(shù)組并且拓展介紹了計(jì)算勾股數(shù)組的公式;蘇科版教材不同于其他七個(gè)版本教材之處在于點(diǎn)名了古巴比倫泥板的編號“普林頓322”,但實(shí)際上也是勾股數(shù)組的記載。

(三)研究結(jié)論與建議

1.習(xí)題配置分析。從數(shù)學(xué)史選材范圍對比,北師版教材選用西方數(shù)學(xué)史內(nèi)容較多,選取國內(nèi)史料較少,這些西方史料大都安排在自主學(xué)習(xí)部分,另外七種教材中對于我國古代數(shù)學(xué)史資料引用比較多。從數(shù)學(xué)史具體內(nèi)容上對比,人教版內(nèi)容占6處,魯教版內(nèi)容占7 處,蘇科版內(nèi)容占6 處,相對于其他無個(gè)版本教材而言,人教版、魯教版和蘇科版教材選材范圍比較豐富,出現(xiàn)的位置多樣化,分布比較廣泛。從知識(shí)編排分布上比較,華師版、滬教版、冀教版將數(shù)學(xué)史內(nèi)容巧妙融合進(jìn)了練習(xí)題當(dāng)中,另外的五種教材中數(shù)學(xué)史內(nèi)容則多是安排在課后閱讀材料當(dāng)中。

2.史料結(jié)合分析。從知識(shí)編排分布比較人教版、華師版、滬教版、冀教版、蘇科版這五個(gè)版本比較注重新知識(shí)的融地與結(jié)合,通過簡單的生活例子引出課題,循序漸進(jìn)加深知識(shí)難度。人教版教材中關(guān)于費(fèi)馬大定理的引入點(diǎn)到為止,考慮到學(xué)生的接受能力并未過多涉及疑難問題。北師版、魯教版、青島版這三個(gè)版本教材將數(shù)學(xué)史內(nèi)容安排在課外閱讀上比較多,節(jié)省學(xué)生課堂時(shí)間,學(xué)生可以自由選擇。

從知識(shí)選材范圍比較北師版的材料略顯單薄,人教版、華師版、魯教版、蘇科版內(nèi)容比較詳盡,除了簡要介紹基礎(chǔ)的勾股定理相關(guān)知識(shí)以外,華師版給出的三種無字證明可以很好地鍛煉學(xué)生的思維能力;魯教版、蘇科版、青島版均提到了“普林頓322”泥板,也就是勾股數(shù)組,史料結(jié)合,有力地證明了勾股定理出現(xiàn)的年代。

3.結(jié)論與建議。研究的八個(gè)版本的教材中,人教版教材是目前國內(nèi)中小學(xué)使用范圍最廣的一種教材,人教版教材在數(shù)學(xué)史方面的引入非常到位,從知識(shí)的選材范圍、編排分布、具體內(nèi)容三個(gè)角度考核比較平衡,既涉及了國內(nèi)外的史料,也突出了我國在勾股定理發(fā)現(xiàn)探究的領(lǐng)先地位,但是美中不足的一點(diǎn)是缺少勾股數(shù)組和勾股樹知識(shí)點(diǎn)的介紹。

北師版教材內(nèi)容清晰簡潔,在勾股定理的知識(shí)編排上省略很多繁文末節(jié),學(xué)生進(jìn)行學(xué)習(xí)時(shí)比較有條理,但是在略去的內(nèi)容中,有一些我國重要史料沒有呈現(xiàn)在課本上,所以選用這版教材的學(xué)校中關(guān)于我國勾股定理的發(fā)展歷史相對而言掌握較少,可以適當(dāng)考慮多引入我國史料。其他六版教材在國內(nèi)通行度略低,但也是各有千秋,魯教版在史料較為豐富;華師版在編排上比較嚴(yán)謹(jǐn);滬教版、冀教版、青島版、蘇科版在各方面比較平衡,結(jié)合數(shù)學(xué)史內(nèi)容,可以達(dá)到靈活運(yùn)用勾股定理解決后續(xù)各種相關(guān)問題的目標(biāo)。

猜你喜歡
魯教蘇科版勾股定理
勾股定理緊握折疊的手
用勾股定理解一類題
應(yīng)用勾股定理的幾個(gè)層次
《勾股定理》拓展精練
“數(shù)形結(jié)合”巧解二次函數(shù)問題
例談消元法在初中數(shù)學(xué)解題中的應(yīng)用
蘇科版初中數(shù)學(xué)《平面直角坐標(biāo)系》教學(xué)設(shè)計(jì)教學(xué)目標(biāo)
略談《師說》中引用的瑕疵
魯教版中學(xué)語文教材淺析
初中數(shù)學(xué)綜合與實(shí)踐活動(dòng)課的落腳點(diǎn)在哪里:基于蘇科版教材七上課題活動(dòng)“翻轉(zhuǎn)茶杯”