中職課堂需要講究一定的實(shí)踐性,作為理工科的基礎(chǔ),數(shù)學(xué)的學(xué)習(xí)更加應(yīng)該能夠以實(shí)踐性的形式展現(xiàn)在中職學(xué)生的面前。當(dāng)前的教育工作人員已經(jīng)注意到了這個問題,并且在教學(xué)活動的實(shí)踐中已經(jīng)做出了很多改進(jìn)和完善。
數(shù)學(xué)這門學(xué)科的誕生在于幫助人們記住生活中發(fā)生的種種事情,同時(shí)對于數(shù)學(xué)問題的深入研究能夠幫助人類更好地理解生活中存在的種種問題。生活中處處存在問題,因此中職教師應(yīng)該將生活中的種種問題引入課堂中,并且結(jié)合趣味教學(xué)的手段激發(fā)學(xué)生的思考想象,幫助學(xué)生從數(shù)學(xué)學(xué)習(xí)過程中獲取一定的學(xué)習(xí)樂趣,并且在實(shí)踐學(xué)習(xí)活動中提高自己的動手能力。在平常的生活中因?yàn)檫m應(yīng)了這樣的學(xué)習(xí)方式能夠自主地通過自身的能力去解決平常生活中的常見問題,例如商品銷售、家庭理財(cái)以及購物等方面的問題。
例如在學(xué)習(xí)分段函數(shù)這一章節(jié)的時(shí)候,教師可以將出租車的收費(fèi)問題帶入課堂的討論中,為了能夠增加課程的逼真性,可以在課堂上出示一張出租車的票據(jù)。例如,該城市的起步價(jià)為8 元3 公里,超過的部分按照每公里3 元的標(biāo)準(zhǔn)進(jìn)行打卡計(jì)算,所以可以根據(jù)這樣的收費(fèi)標(biāo)準(zhǔn),教師模擬分給學(xué)生一定的金額讓他們計(jì)算出最簡單、最實(shí)惠的坐車方式[1]。
學(xué)生階段的智力發(fā)展很大一部分來源于不斷從游戲中獲得的經(jīng)驗(yàn)和思考,從而催發(fā)他們的智力發(fā)展。部分心理學(xué)家認(rèn)為學(xué)習(xí)階段的學(xué)生需要在課堂上引入這些能夠激發(fā)智力的游戲,因?yàn)闊o論是學(xué)生還是成人,以上的所有人群都是向往游戲活動的。因此,在中職的教學(xué)活動中,中職數(shù)學(xué)教師首先應(yīng)該結(jié)合學(xué)生的實(shí)際情況將數(shù)學(xué)學(xué)習(xí)的游戲性和趣味性融合到實(shí)際的課堂中,提高他們的專注度。其次,還應(yīng)該注意的一點(diǎn)在于所有游戲的組成要素都是個人,人是推動游戲正常進(jìn)行的主要動力,所以在開發(fā)游戲的過程中,需要中職學(xué)生能夠主動參與關(guān)于游戲規(guī)則的創(chuàng)建活動,共同構(gòu)建一個相對和諧的游戲環(huán)境。此外,游戲的設(shè)計(jì)準(zhǔn)則應(yīng)該以數(shù)學(xué)教學(xué)的任務(wù)為根本需求,保證在課堂中每個人都有機(jī)會參與。
我們以“集合”章節(jié)的教學(xué)內(nèi)容為例,這個章節(jié)的很多概念都是比較晦澀難懂的,為了能夠幫助學(xué)生對于這個章節(jié)進(jìn)行更加準(zhǔn)確深刻的理解,教師可以將這些概念通過形象化的例子展示出來,例如如果將全班學(xué)生比作為一個集合,那么可以將女生這個群體比作為內(nèi)部的一個子集,而男生的群體則是這個集合中的余下補(bǔ)集。根據(jù)教師的口號要求,數(shù)學(xué)教師在叫到相關(guān)子集的時(shí)候被叫到的學(xué)生應(yīng)該立刻站起來,否則將會受到一定的懲罰[2]。
在傳統(tǒng)的教學(xué)模式下培養(yǎng)學(xué)生的數(shù)學(xué)興趣與增強(qiáng)實(shí)踐能力是重要的教學(xué)任務(wù),對于他們?nèi)蘸蟮娜松l(fā)展和智力拓展具有很大的幫助。因此,在中職數(shù)學(xué)教學(xué)過程中應(yīng)該能夠適當(dāng)?shù)匾M(jìn)一些數(shù)學(xué)教學(xué)實(shí)驗(yàn),為社會培養(yǎng)更多的實(shí)用性人才。學(xué)生在積極參與討論實(shí)踐的過程中能夠通過自身的經(jīng)驗(yàn)和原本的積累知識逐漸發(fā)現(xiàn)問題,分析問題并且通過一定的交流和討論工作解決問題,這個過程中最終的目的在于希望能夠培養(yǎng)他們積極探索、獨(dú)立自主的學(xué)習(xí)精神。
運(yùn)用實(shí)驗(yàn)課程在當(dāng)前的幾何學(xué)習(xí)中具有比較重要的作用,例如在學(xué)習(xí)等比數(shù)列求和的過程中,等比數(shù)列的概念一般比較抽象,中職學(xué)生限于自身的理解能力有限不能夠直接對于這些概念進(jìn)行全盤接受。所以,中職教師應(yīng)該能夠借助計(jì)算機(jī)技術(shù)通過比較簡單的動畫演示技術(shù)提高課堂的生動趣味性。在學(xué)習(xí)三角函數(shù)這一章節(jié)的時(shí)候,需要能夠提供大量的機(jī)會進(jìn)行實(shí)踐性質(zhì)的學(xué)習(xí),因?yàn)檫@個部分的內(nèi)容需要學(xué)生能夠結(jié)合實(shí)際的圖像和函數(shù)進(jìn)行理解,不同的函數(shù)都是具有不同的圖像劃分的,因此性質(zhì)也是各有差異的。例如,函數(shù)y=sinx在0 到2π 的變化在圖像上的變化就是一個圓中的角度隨著函數(shù)的變化趨勢。同時(shí),在教授指數(shù)函數(shù)的性質(zhì)以及應(yīng)用中,可以借助其他的學(xué)科事例進(jìn)行更加充分的闡述。例如可以將這個部分的知識和生物細(xì)胞的知識結(jié)合起來理解,一方面能夠激發(fā)學(xué)生的學(xué)習(xí)興趣,激發(fā)他們對于這個概念的想象力,另一方面借助計(jì)算機(jī)的動畫演示技術(shù)能夠直接表現(xiàn)出指數(shù)函數(shù)的一般性特點(diǎn),更加方便他們的函數(shù)理解能力。通過很多的實(shí)踐案例可以發(fā)現(xiàn)在中職教學(xué)課堂中運(yùn)用計(jì)算機(jī)技術(shù)和相關(guān)軟件能夠在有限的課堂中為學(xué)生提供更加廣闊的實(shí)踐空間,提高課堂的進(jìn)行效果。
問題情景的設(shè)計(jì)原則應(yīng)該能夠符合學(xué)生的自身身心發(fā)展特點(diǎn),教師結(jié)合生活設(shè)計(jì)情況和教學(xué)的內(nèi)容進(jìn)行對比分析,將問題情景設(shè)計(jì)得能夠在學(xué)生的理解范圍之內(nèi),并且能夠在課堂上高效吸收和理解。
立體幾何這一章節(jié)的知識一直以來都是比較抽象的,因此在初步接觸這門課程的時(shí)候可以在已有的基礎(chǔ)上建立一個多層次、多元化的問題情景,隨著學(xué)生思維的不斷活躍推動課堂的進(jìn)度。展開的情景問題如下,在平面幾何中兩條直線之間的關(guān)系無外乎相交或者平行,但是如果將這兩條直線置于空間中,那么它們之間的關(guān)系存在著什么樣的變化,由平面之間的相交關(guān)系過渡到下一個對于空間角度的提問,在平面中的四邊形內(nèi)角和為360 度,在空間中這種關(guān)系是否發(fā)生變化。另外,在直線和直線平面之間的垂直關(guān)系可以設(shè)置如下問題:在平曠的空地中,旗桿和其影子的夾角是否會隨著太陽的移動而發(fā)生變化以及教室中的墻角線與地面之間的關(guān)系是否垂直。
總之,數(shù)學(xué)是一門趣味性十足的學(xué)科。在中職教學(xué)活動中,數(shù)學(xué)教師應(yīng)當(dāng)能夠充分利用這門學(xué)科的特點(diǎn)并結(jié)合自身的實(shí)踐教學(xué)經(jīng)驗(yàn),將更多的趣味性帶入教學(xué)課堂中。因此,本文希望能夠幫助有關(guān)的數(shù)學(xué)教育工作人員做好教育的改革工作。