国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一類彈性碰撞問題的簡單解法

2020-09-10 16:17陳博
高考·下 2020年3期
關(guān)鍵詞:動(dòng)量定理對(duì)稱

摘 要:本文在課本中一類彈性碰撞問題兩種解法的基礎(chǔ)上,利用對(duì)稱思想,深入探討了一種簡單的求解過程,激發(fā)對(duì)復(fù)雜問題的思考,培養(yǎng)分析解決問題的能力。

關(guān)鍵詞:彈性碰撞;對(duì)稱;動(dòng)量定理

在人教版高中物理選修3-5中,有一節(jié)專門討論碰撞問題的內(nèi)容。課本以“思考與討論”的形式,讓學(xué)生通過建模和計(jì)算,探究碰撞后兩物體的速度。

如圖,光滑水平面上的兩個(gè)剛性小球,質(zhì)量為m1的小球1以速度v1和質(zhì)量為m2的靜止小球2發(fā)生彈性碰撞后,求各自的速度v1’和v2’?

課本通過提示,建立動(dòng)量守恒定律和能量守恒定律,列出兩個(gè)方程,

對(duì)于上述的二元二次方程組,教師有必要在課堂上給學(xué)生演示或講解求解過程?,F(xiàn)成的解法無非是將①式中的v1’用v2’表達(dá)出來,代入②式,再解一元二次方程。但其中一組答案是v1'=v1,v2'=0,可以舍掉。

再聯(lián)立①④,很容易就可以得到答案。

盡管如此,以上兩種方法,無論是求解過程,還是最終答案的識(shí)記,對(duì)高中生來說都有一定的難度。但對(duì)于碰撞后兩球速度的討論,以及遇到的更復(fù)雜的彈性碰撞問題(如兩球都有初速度),這個(gè)過程又是必不可少的。怎樣才能讓學(xué)生更容易求解及識(shí)記這個(gè)碰撞后的結(jié)果呢?

在多次繁瑣的求解中,我意識(shí)到,兩小球的這種彈性碰撞,是經(jīng)歷了從開始形變,到形變量最大,再到完全恢復(fù)形變的過程,好像有對(duì)稱的思想,那么如果能根據(jù)以形變量最大的時(shí)刻為對(duì)稱點(diǎn),找到碰撞前后速度關(guān)于形變量最大時(shí)刻的共同速度的對(duì)稱關(guān)系,是否就能化簡求解過程呢?

帶著這樣的疑問,我把求解兩小球系統(tǒng)動(dòng)量守恒的四個(gè)動(dòng)量定理的方程寫出來進(jìn)行比較。設(shè)從開始形變到形變量最大的時(shí)間為t1,這段時(shí)間內(nèi)兩球間的平均作用力大小為F1;從形變量最大到完全恢復(fù)形變的時(shí)間為t2,這段時(shí)間內(nèi)兩球間的平均作用力大小為F2;在形變量最大時(shí),兩球的共同速度為v共??紤]矢量性,則

思考F、t的含義,我們能夠想到,對(duì)于接觸的兩個(gè)彈性形變的物體,它們的形變是對(duì)方引起的。當(dāng)考慮小球1時(shí),它關(guān)于形變最大時(shí)刻對(duì)稱的兩個(gè)時(shí)刻,形變應(yīng)該是相同的,不過一個(gè)是向最大形變發(fā)生的狀態(tài),一個(gè)是由最大形變恢復(fù)的狀態(tài)。這樣,在碰撞過程中,每時(shí)每刻都有關(guān)于形變最大時(shí)刻對(duì)稱的兩個(gè)狀態(tài),所以每一組彈力F大小應(yīng)該也是相同的。雖然每時(shí)每刻的彈力不同,但畫出的F-t圖像一定是軸對(duì)稱的,對(duì)稱軸就是形變最大的時(shí)刻。因此,F(xiàn)關(guān)于t的圖像相對(duì)于對(duì)稱軸兩邊所圍成的面積也是相等的,即F1t1=F2t2。

對(duì)稱的思考,讓我們找到了比前面兩種更為簡潔的解法:根據(jù)動(dòng)量的矢量性,先求解兩彈性碰撞小球能達(dá)到的共同速度v共,再乘以2后,減去各自的初始速度,即可得到每個(gè)小球碰撞后的末速度。這樣的求解和結(jié)果的識(shí)記,都非常簡便。

以更復(fù)雜的情況作為檢驗(yàn),如圖,光滑水平面上的兩個(gè)剛性小球,當(dāng)質(zhì)量為m1的小球1以速度v1去和質(zhì)量為m2、速度為v2的小球2發(fā)生彈性碰撞后,求各自的速度v1’和v2’?

用我們探索出來的方法計(jì)算,和常規(guī)方法得到的結(jié)果是一致的:

參考文獻(xiàn)

[1]人民教育出版社,課程教材研究所等.普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書物理(選修3-5)[M].人民教育出版社,2010:17-19.

[2]王平水.一類常見彈性碰撞的求解及規(guī)律探討[J].中學(xué)生數(shù)理化(高二版),2010,04:24-25.

作者簡介:陳博(1983.6),男,漢族,河南鄭州人,本科,中級(jí)教師

猜你喜歡
動(dòng)量定理對(duì)稱
淺談信息化2.0情境下物理教學(xué)的精準(zhǔn)性
例談對(duì)話教學(xué)在高中物理教學(xué)中的應(yīng)用
從錯(cuò)題中理解動(dòng)能定理和動(dòng)量定理
分類例析動(dòng)量定理的應(yīng)用問題
動(dòng)量定理在解題中的應(yīng)用
平面第二類曲線積分的對(duì)稱性
談大提琴演奏中的不對(duì)稱弓法
動(dòng)量定理應(yīng)用中的整體法
玉树县| 文水县| 建始县| 阳山县| 株洲县| 双辽市| 镇远县| 商丘市| 民和| 金阳县| 乐安县| 柯坪县| 永康市| 鹤壁市| 伽师县| 大石桥市| 临潭县| 高碑店市| 宁阳县| 鄯善县| 尼勒克县| 温州市| 武夷山市| 五指山市| 澄江县| 潮州市| 乐清市| 安国市| 贵德县| 兴仁县| 广饶县| 灵石县| 郧西县| 乌兰察布市| 社会| 英德市| 尖扎县| 克什克腾旗| 沾益县| 新宾| 财经|