胡進(jìn)軍 劉巴黎
摘要:結(jié)構(gòu)彈塑性特征的差異會(huì)引起殘余位移較大的離散性,使得強(qiáng)震下結(jié)構(gòu)殘余位移難以準(zhǔn)確預(yù)測(cè).為準(zhǔn)確評(píng)估和預(yù)測(cè)震后結(jié)構(gòu)殘余位移,實(shí)現(xiàn)精細(xì)化的抗震設(shè)計(jì)和評(píng)估,有必要研究結(jié)構(gòu)殘余位移的離散性.鑒于此,基于大量分類地震動(dòng)記錄,選用不同的歸一化參數(shù)分別定義殘余位移比,通過(guò)非線性時(shí)程分析建立單自由度體系殘余位移比譜,研究彈塑性特征參數(shù)(延性系數(shù)和強(qiáng)度折減系數(shù))以及場(chǎng)地條件對(duì)殘余位移比離散性的影響,建立了殘余位移比變異系數(shù)譜的擬合公式.結(jié)果表明:殘余位移與彈塑性譜位移的相關(guān)性比與彈性譜位移更好;結(jié)構(gòu)殘余位移比離散性受場(chǎng)地類別的影響較?。粴堄辔灰票茸儺愊禂?shù)譜分別隨延性系數(shù)和強(qiáng)度折減系數(shù)的增大而增大;選擇彈塑性譜位移作為歸一化參數(shù)可以減小結(jié)構(gòu)殘余位移比離散性.
關(guān)鍵詞:殘余位移;歸一化參數(shù);相關(guān)性;離散性;結(jié)構(gòu)彈塑性特征參數(shù)
中圖分類號(hào):P315.92文獻(xiàn)標(biāo)志碼:A
基金項(xiàng)目:國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(U1939210),National Natural Science Foundation of China(U1939210)
Study on Variability of Residual Displacement Ratios Based on Different Normalized Parameters for SDOF Systems
HU Jinjun1,2,LIU Bali1,2
(1. Institute of Engineering Mechanics,China Earthquake Administration,Harbin 150080,China;2. Key Laboratory of Earthquake Engineering and Engineering Vibration,China Earthquake Administration,Harbin 150080,China)
Abstract:The elastic-plastic characteristics of the structure will lead to large dispersion of the residual dis-placements,which makes it difficult to predict the residual displacements accurately under strong earthquake excita-tions. In order to accurately evaluate and predict the residual displacements of the structure and realize the refined a-seismic design,it is necessary to investigate the dispersion of the residual displacement of structures. In the light of this,based on a large number of classified ground motions,different normalized parameters are used to define the residual displacement ratio in this paper. The residual displacement ratios spectra of single degree of freedom(SDOF)systems are constructed by means of nonlinear response time-history analyses. The results are statistically organized to evaluate the influence of the following parameters: elastic-plastic characteristic parameters(ductility factor and strength reduction factor)and site condition. A simplified expression is presented to estimate the variation coefficient spectra of residual displacement ratios. It is concluded that the correlation between residual displacements and inelas-tic spectral displacements is better than that between residual displacements and elastic spectral displacements. The dispersion of the residual displacements is less affected by the site conditions. The variation coefficient spectra of residual displacement ratios increase with the increase of elastic-plastic characteristic parameters. It is suggested to select the inelastic spectral displacement as the normalized parameter,which can reduce the dispersion of the residual displacement ratios.
Key words:residual displacement;normalized parameter;correlation;dispersion;elastic-plastic characteristic parameter of structure
結(jié)構(gòu)在強(qiáng)震作用下進(jìn)入非線性階段會(huì)產(chǎn)生不可恢復(fù)的殘余位移[1],結(jié)構(gòu)殘余位移是抗震性能評(píng)估和地震損失評(píng)估的重要參數(shù)[2-5]. FEMA P-58[6]將殘余位移作為決定結(jié)構(gòu)震后修復(fù)或拆除的重要指標(biāo).《建筑抗震韌性評(píng)價(jià)標(biāo)準(zhǔn)》(GB/T 38591—2020)[7]中建筑的抗震韌性由彈塑性時(shí)程分析的層殘余變形結(jié)合其限值確定,并給出了部分結(jié)構(gòu)形式層殘余位移角的限值.
結(jié)構(gòu)自身彈塑性特征的不同會(huì)引起地震響應(yīng)較大的離散性,使得強(qiáng)震下結(jié)構(gòu)性態(tài)難以準(zhǔn)確預(yù)測(cè)[8]. Kawashima等[9]對(duì)雙線性單自由度(SDOF)體系的殘余位移進(jìn)行研究,認(rèn)為屈服后剛度對(duì)殘余位移譜離散性影響較大,場(chǎng)地條件、延性系數(shù)和自振周期對(duì)殘余位移譜離散性影響較小. Ruiz-Garcia和Miranda[10]對(duì)SDOF體系采用彈性譜位移歸一化的殘余位移比譜進(jìn)行了系統(tǒng)研究,結(jié)果表明強(qiáng)度折減系數(shù)對(duì)殘余位移比譜離散性影響較小,自振周期對(duì)殘余位移比譜離散性影響較大.胡曉斌和賀慧高[11]采用不同的參數(shù)對(duì)殘余位移進(jìn)行歸一化,對(duì)雙線性SDOF體系殘余位移離散性進(jìn)行了研究,結(jié)果表明自振周期與屈服后剛度對(duì)殘余位移離散性有影響,強(qiáng)度折減系數(shù)對(duì)殘余位移比譜離散性影響較小. Harikrishnan和Gupta[12]采用彈塑性譜位移和彈性譜位移對(duì)殘余位移進(jìn)行歸一化,對(duì)理想彈塑性(EPP)SDOF體系殘余位移比離散性進(jìn)行了研究,認(rèn)為延性系數(shù)和自振周期對(duì)殘余位移比離散性有一定的影響,地震動(dòng)持時(shí)對(duì)殘余位移比離散性影響很小. Harikrishnan和Gupta[13]對(duì)SDOF體系等強(qiáng)度殘余位移比譜進(jìn)行了進(jìn)一步研究,結(jié)果表明強(qiáng)度折減系數(shù)和自振周期對(duì)殘余位移比離散性有一定的影響.
綜上所述,結(jié)構(gòu)彈塑性特征參數(shù)(屈服后剛度、延性系數(shù)和強(qiáng)度折減系數(shù)等)和地震動(dòng)的隨機(jī)性對(duì)結(jié)構(gòu)殘余位移離散性影響的諸多結(jié)論不一致.總體而言,與地震作用下結(jié)構(gòu)最大位移響應(yīng)的離散性相比,結(jié)構(gòu)殘余位移響應(yīng)離散性更大[10].彈塑性特征以及地震動(dòng)的復(fù)雜性和隨機(jī)性所導(dǎo)致的結(jié)構(gòu)殘余位移響應(yīng)的較大離散性,不僅使得結(jié)構(gòu)殘余位移難以準(zhǔn)確預(yù)測(cè)和評(píng)估,也成為結(jié)構(gòu)抗震性態(tài)評(píng)估以及基于性能的抗震設(shè)計(jì)發(fā)展的困難.本文旨在對(duì)殘余位移的離散性進(jìn)行系統(tǒng)的研究,從減小結(jié)構(gòu)殘余位移比離散性的角度,分析了不同歸一化參數(shù)對(duì)等延性和等強(qiáng)度殘余位移比譜離散性的影響,并給出了殘余位移比譜離散性較小的歸一化參數(shù),同時(shí)構(gòu)建了等延性和等強(qiáng)度殘余位移比變異系數(shù)譜的擬合公式,為準(zhǔn)確預(yù)測(cè)和評(píng)估結(jié)構(gòu)殘余位移,實(shí)現(xiàn)精細(xì)化的抗震設(shè)計(jì)和評(píng)估提供參考.
1數(shù)據(jù)來(lái)源
本文所選地震動(dòng)來(lái)源于美國(guó)太平洋地震工程研究中心(PEER NGA-West2)強(qiáng)震數(shù)據(jù)庫(kù),挑選原則[14]如下:1)矩震級(jí)大于5.7;2)地震動(dòng)峰值加速度(PGA)大于40 cm/s2;3)不包含脈沖型地震動(dòng).據(jù)此,本文挑選了全球范圍內(nèi)的280條地震動(dòng)記錄,依據(jù)NEHRP[15]規(guī)范的場(chǎng)地劃分標(biāo)準(zhǔn)分為四類,AB類(A類和B類合為一類)、C類、D類及E類,每類場(chǎng)地選取了70條地震動(dòng)記錄.地震動(dòng)的震級(jí)-斷層距分布如圖1所示.
2殘余位移比的定義
研究結(jié)構(gòu)震后殘余位移ur時(shí),國(guó)內(nèi)外學(xué)者通常將ur進(jìn)行歸一化得到無(wú)量綱的殘余位移,即殘余位移比Cr.常用的歸一化參數(shù)包括屈服位移uy、最大可能殘余位移ur,m、彈塑性譜位移sdi以及彈性譜位移sde.
uy是最早被采用的歸一化參數(shù),Mahin和Bert-ero[16]通過(guò)對(duì)EPP模型的SDOF體系等延性彈塑性譜進(jìn)行研究,并且采用屈服位移對(duì)殘余位移歸一化,研究表明結(jié)構(gòu)殘余位移可能超過(guò)最大彈塑性位移的40%.胡曉斌和賀慧高[11]與Farrow和Kurama[17-18]也采用屈服位移對(duì)殘余位移進(jìn)行歸一化研究.
ur,m即結(jié)構(gòu)從最大位移點(diǎn)卸載后剩余的不可恢復(fù)的變形. Macrae和Kawashima[19]采用最大可能殘余位移對(duì)殘余位移進(jìn)行歸一化,首次對(duì)雙線性SDOF性體系的殘余位移進(jìn)行了系統(tǒng)詳細(xì)的研究. Kawashima等[9]采用最大可能殘余位移對(duì)殘余位移進(jìn)行歸一化,進(jìn)一步研究了屈服后剛度、延性系數(shù)、震級(jí)、震中距及場(chǎng)地類別對(duì)雙線性SDOF體系殘余位移比譜的影響.
sdi(Borzi等[20];Christopoulos等[21];Harikrishnan和Gupta[12-13])以及sde(Ruiz-Garcia和Miranda[10];Ji等[22])為最常用的歸一化參數(shù).本文分別采用sdi和sde對(duì)殘余位移進(jìn)行歸一化,定義結(jié)構(gòu)殘余位移比Cr.相關(guān)參數(shù)如圖2所示.
3殘余位移與歸一化參數(shù)相關(guān)性分析
周期小于0.5 s時(shí),不同μ的殘余位移與歸一化參數(shù)(sdi和sde)的相關(guān)系數(shù)隨周期增大而增幅較大.周期大于0.5 s時(shí),不同μ的殘余位移與歸一化參數(shù)的相關(guān)系數(shù)隨周期增大而增幅較小.
周期小于0.5 s時(shí),不同α的殘余位移與歸一化參數(shù)的相關(guān)系數(shù)隨周期增大而減小;周期大于0.5 s時(shí),不同α的殘余位移與歸一化參數(shù)的相關(guān)系數(shù)隨周期增大而增大;存在臨界周期值(0.5 s),大于或小于臨界周期值時(shí),不同α的殘余位移與歸一化參數(shù)之間的相關(guān)性趨勢(shì)發(fā)生很大變化,這一點(diǎn)與文獻(xiàn)[24]的結(jié)論一致.
總體而言,殘余位移與歸一化參數(shù)的相關(guān)系數(shù)受彈塑性特征參數(shù)(μ和α)的影響較小.殘余位移與sdi的相關(guān)性較大,與sde的相關(guān)性較小.這是因?yàn)閟di包含自振周期、阻尼以及反映結(jié)構(gòu)彈塑性特征的參數(shù)(延性系數(shù))等信息,而sde中沒(méi)有包含反映結(jié)構(gòu)彈塑性特征的參數(shù)信息.
4殘余位移比譜離散性分析
地震動(dòng)本身具有極強(qiáng)的隨機(jī)性,不同的地震動(dòng)計(jì)算結(jié)果差距可能高達(dá)數(shù)倍[25],結(jié)構(gòu)彈塑性特征也會(huì)引起地震響應(yīng)較大的離散性[8],相關(guān)研究中各因素對(duì)殘余位移離散性影響的結(jié)論也不一致.本文采用變異系數(shù)(COV)來(lái)描述和評(píng)價(jià)殘余位移比的離散性,研究延性系數(shù)、強(qiáng)度折減系數(shù)和場(chǎng)地類別對(duì)殘余位移比離散性的影響.
4.1場(chǎng)地條件的影響
按照?qǐng)龅胤诸怉B、C、D和E類,計(jì)算μ為2的各類場(chǎng)地不同歸一化參數(shù)的等延性殘余位移比COV譜,結(jié)果如圖5(a)和(b)所示.α為2的各類場(chǎng)地不同歸一化參數(shù)的等強(qiáng)度殘余位移比COV譜,結(jié)果如圖5(c)和(d)所示.可以看出:四類場(chǎng)地等延性和等強(qiáng)度殘余位移比COV譜差距較小,說(shuō)明結(jié)構(gòu)殘余位移的離散性受場(chǎng)地類別的影響較?。唤Y(jié)構(gòu)自振周期小于0.5 s時(shí),等延性和等強(qiáng)度殘余位移比COV譜隨著周期增大而減小;結(jié)構(gòu)自振周期大于0.5 s時(shí),等延性和等強(qiáng)度殘余位移比COV譜趨于不變,即周期大于0.5 s時(shí)等延性和等強(qiáng)度殘余位移比COV譜對(duì)周期變化不敏感.
4.2延性系數(shù)的影響
延性系數(shù)μ為結(jié)構(gòu)最大位移和屈服位移之比.分別取μ為2、3、4、5和6,計(jì)算四類場(chǎng)地平均等延性殘余位移比COV譜,結(jié)果如圖6所示.可以看出:等延性殘余位移比COV譜分別隨延性系數(shù)的增大而增大.等延性殘余位移比離散性受歸一化參數(shù)的影響較為顯著,與sde作為歸一化參數(shù)的殘余位移比COV相比,sdi作為歸一化參數(shù)的等延性殘余位移比COV更小.這是因?yàn)闅堄辔灰婆csdi的相關(guān)性較大,與sde的相關(guān)性較小,選擇與殘余位移相關(guān)性較大的參數(shù)(sdi)對(duì)其歸一化后得到的等延性殘余位移比COV更小.結(jié)構(gòu)自振周期小于0.5 s時(shí),等延性殘余位移比COV隨著周期增大而減?。唤Y(jié)構(gòu)自振周期大于0.5 s時(shí),等延性殘余位移比COV趨于不變,即周期大于0.5 s時(shí)等延性殘余位移比COV譜對(duì)周期變化不敏感.
4.3強(qiáng)度折減系數(shù)的影響
強(qiáng)度折減系數(shù)α為結(jié)構(gòu)保持彈性所需的最小強(qiáng)度與屈服強(qiáng)度之比.分別取α為2、3、4、5和6,計(jì)算四類場(chǎng)地平均等強(qiáng)度殘余位移比COV譜,結(jié)果如圖7所示.可以看出:等強(qiáng)度殘余位移比COV譜分別隨強(qiáng)度折減系數(shù)的增大而增大.等強(qiáng)度殘余位移比離散性受歸一化參數(shù)的影響較為顯著,與sde作為歸一化參數(shù)的殘余位移比COV相比,sdi作為歸一化參數(shù)的等強(qiáng)度殘余位移比COV更小.這是因?yàn)檫x擇與殘余位移相關(guān)性較大的參數(shù)(sdi)對(duì)其歸一化后得到的等強(qiáng)度殘余位移比COV更小.結(jié)構(gòu)自振周期小于0.5 s時(shí),等強(qiáng)度殘余位移比COV隨著周期增大而減??;結(jié)構(gòu)自振周期大于0.5 s時(shí),等強(qiáng)度殘余位移比COV趨于不變,即周期大于0.5 s時(shí)等強(qiáng)度殘余位移比COV譜對(duì)周期變化不敏感.
5殘余位移比變異系數(shù)譜擬合
6結(jié)論
本文分析SDOF體系殘余位移與歸一化參數(shù)(彈塑性譜位移、彈性位移)的相關(guān)性,基于大量地震動(dòng)記錄建立了等延性和等強(qiáng)度殘余位移比變異系數(shù)譜,分析了延性系數(shù)、強(qiáng)度折減系數(shù)和場(chǎng)地類別對(duì)殘余位移比譜離散性的影響.主要結(jié)論如下:
總體而言,殘余位移與彈塑性譜位移的相關(guān)性較大,與彈性譜位移的相關(guān)性較小.這是因?yàn)閺椥宰V位移包含自振周期、阻尼以及反映結(jié)構(gòu)彈塑性特征的參數(shù)(延性系數(shù))等信息,而彈性譜位移中沒(méi)有包含反映結(jié)構(gòu)彈塑性特征的參數(shù)信息.殘余位移與歸一化參數(shù)的相關(guān)性受延性系數(shù)和強(qiáng)度折減系數(shù)的影響較小.
等延性和等強(qiáng)度殘余位移比離散性受場(chǎng)地類別的影響較小.殘余位移比變異系數(shù)譜分別隨延性系數(shù)和強(qiáng)度折減系數(shù)的增大而增大.結(jié)構(gòu)自振周期小于0.5 s時(shí),殘余位移比變異系數(shù)譜隨著周期增大而減??;結(jié)構(gòu)自振周期大于0.5 s時(shí),殘余位移比變異系數(shù)譜趨于不變.
等延性和等強(qiáng)度殘余位移比離散性受歸一化參數(shù)的影響較為顯著.與彈性譜位移相比,彈塑性譜位移作為歸一化參數(shù)得到的殘余位移比變異系數(shù)更小.因此,選擇彈塑性譜位移作為歸一化參數(shù)可以減小結(jié)構(gòu)殘余位移比離散性.
致謝:感謝美國(guó)太平洋地震工程研究中心(PEER)NGA計(jì)劃項(xiàng)目提供的地震動(dòng)數(shù)據(jù)!
參考文獻(xiàn)
[1]PAMPANIN S,CHRISTOPOULOS C,NIGEL PRIESTLEY M J. Performance-based seismic response of frame structures including residual deformations. part ii:multi-degree of freedom systems[J]. Journal of Earthquake Engineering,2003,7(1):119—147.
[2]YAZGAN U,DAZIO A. The use of post-earthquake residual dis-placements as a performance indicator in seismic assessment[J]. Georisk:Assessment and Management of Risk for Engineered Sys-tems and Geohazards,2011,5(1):59—76.
[3]YAZGAN U,DAZIO A. Post-earthquake damage assessment using residual displacements[J]. Earthquake Engineering & Structural Dynamics,2012,41(8):1257—1276.
[4]RAMIREZ C M,MIRANDA E. Significance of residual drifts in building earthquake loss estimation[J]. Earthquake Engineering & Structural Dynamics,2012,41(11):1477—1493.
[5]RUIZ-GARCIA J,AGUILAR J D. Aftershock seismic assessment taking into account postmainshock residual drifts[J]. Earthquake Engineering & Structural Dynamics,2015,44(9):1391—1407.
[6]FEMA. Seismic performance assessment of buildings,Volume 1,methodology[R]. Washington DC:Federal Emergency Management Agency,2012:130—139.
[7]建筑抗震韌性評(píng)價(jià)標(biāo)準(zhǔn):GB/T 38591—2020[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2020. Standard for seismic resilience assessment of buildings:GB/T 38591—2020[S]. Beijing:Standards Press of China,2020.(In Chinese)
[8]葉列平,陸新征,馬千里,等.屈服后剛度對(duì)建筑結(jié)構(gòu)地震響應(yīng)影響的研究[J].建筑結(jié)構(gòu)學(xué)報(bào),2009,30(2):17—29. YE L P,LU X Z,MA Q L,et al. Influence of post-yielding stiffness to seismic response of building structures[J]. Journal of Building Structures,2009,30(2):17—29.(In Chinese)
[9]KAWASHIMA K,MACRAE G A,HOSHIKUMA J I,et al. Residual displacement response spectrum[J]. Journal of Structural Engineer-ing,1998,124(5):523—530.
[10]RUIZ-GARCIA J,MIRANDA E. Residual displacement ratios for assessment of existing structures[J]. Earthquake Engineering & Structural Dynamics,2006,35(3):315—336.
[11]胡曉斌,賀慧高.等強(qiáng)殘余位移系數(shù)譜研究[J].工程力學(xué),2015,32(1):163—167.HU X B,HE H G. Study on equal-strength residual displacement ratio spectrum[J]. Engineering Mechanics,2015,32(1):163—167.(In Chinese)
[12]HARIKRISHNAN M G,GUPTA V K. Scaling of constant-ductility residual displacement spectrum[J]. Earthquake Engineering & Structural Dynamics,2020,49(3):215—233.
[13]HARIKRISHNAN M G,GUPTA V K. Scaling of residual displace-ments in terms of elastic and inelastic spectral displacements for ex-isting SDOF systems[J]. Earthquake Engineering and Engineering Vibration,2020,19(1):71—85.
[14]MIRANDA E. Inelastic displacement ratios for structures on firm sites[J]. Journal of Structural Engineering,2000,126(10):1150—1159.
[15]FEMA. NEHRP recommended provisions for seismic regulations for new buildings and other structures[R]. Washington DC:Building Seismic Safety Council,2003:17—30.
[16]MAHIN S A,BERTERO V V. An evaluation of inelastic seismic de-sign spectra[J]. Journal of the Structural Division,1981,107(9):1777—1795.
[17]FARROW K T,KURAMA Y C. SDOF demand index relationships for performance-based seismic design[J]. Earthquake Spectra,2003,19(4):799—838.
[18]FARROW K T,KURAMA Y C. SDOF demand index relationships for performance-based seismic design[J]. Earthquake Spectra,2003,19(4):799—838.
[19]MACRAE G A,KAWASHIMA K. Post-earthquake residual dis-placements of bilinear oscillators[J]. Earthquake Engineering & Structural Dynamics,1997,26(7):701—716.
[20]BORZI B,CALVI G M,ELNASHAI A S,et al. Inelastic spectra for displacement-based seismic design[J]. Soil Dynamics and Earth-quake Engineering,2001,21(1):47—61.
[21]CHRISTOPOULOS C,PAMPANIN S,NIGEL PRIESTLEY M J. Performance-based seismic response of frame structures including residual deformations. part i:single-degree of freedom systems[J]. Journal of Earthquake Engineering,2003,7(1):97—118.
[22]JI D F,WEN W P,ZHAI C H,et al. Residual displacement ratios of SDOF systems subjected to ground motions recorded on soft soils[J]. Soil Dynamics and Earthquake Engineering,2018,115:331—335.
[23]YAZGAN U,DAZIO A. Simulating maximum and residual displace-ments of RC structures:II.sensitivity[J]. Earthquake Spectra,2011,27(4):1203—1218.
[24]郝建兵,吳剛,吳智深. SDOF體系殘余變形響應(yīng)與地震強(qiáng)度指標(biāo)相關(guān)性分析[J].土木工程學(xué)報(bào),2013,46(6):1—7. HAO J B,WU G,WU Z S. Correlation analysis between residual de-formation of SDOF system and ground motion intensity indices[J]. China Civil Engineering Journal,2013,46(6):1—7.(In Chinese)
[25]張耀庭,劉勇,沈杰,等.結(jié)構(gòu)動(dòng)力時(shí)程分析的地震動(dòng)選擇方法研究[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,47(7):29—39. ZHANG Y T,LIU Y,SHEN J,et al. Research on ground motion se-lection method for time-history analysis of structure[J]. Journal of Hunan University(Natural Sciences),2020,47(7):29—39.(In Chinese)
[26]MILLIKEN G A. Nonlinear regression analysis and its applications[J]. Technometrics,1990,32(2):219—220.