国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

EaDREB2B互作蛋白的篩選及分析

2022-02-10 23:34蔣夏蘭黃翠霖徐世強(qiáng)張木清
熱帶作物學(xué)報(bào) 2022年1期
關(guān)鍵詞:干旱甘蔗

蔣夏蘭 黃翠霖 徐世強(qiáng) 張木清

摘 ?要:甘蔗(Saccharum officinarum)是我國重要的糖料作物之一,90%以上的食用糖是由甘蔗產(chǎn)生的,我國有85%以上的甘蔗種植區(qū)是分布在旱地,干旱是限制甘蔗生產(chǎn)重要的因素之一。因此,改良和培育抗旱甘蔗新品種對甘蔗產(chǎn)業(yè)的發(fā)展具有重要意義。AP2/ERF轉(zhuǎn)錄因子是植物中特有的基因家族之一,該基因家族成員通過調(diào)控逆境脅迫相關(guān)基因的表達(dá),從而在植物的干旱、鹽害、冷凍等非生物脅迫中發(fā)揮重要作用。前期研究表明斑茅轉(zhuǎn)錄因子EaDREB2B在近緣種甘蔗中異源表達(dá)可提高甘蔗的抗旱性,但EaDREB2B在甘蔗中的互作蛋白有待挖掘,其調(diào)控甘蔗抗旱的分子機(jī)制尚待闡明。本研究在前期研究基礎(chǔ)上,構(gòu)建了干旱脅迫下轉(zhuǎn)EaDREB2B基因甘蔗GN18的酵母cDNA文庫,擬利用生物信息學(xué)和酵母雙雜交技術(shù)篩選EaDREB2B的互作蛋白,為闡明EaDREB2B調(diào)控甘蔗抗旱的分子機(jī)制奠定基礎(chǔ)。結(jié)果表明:EaDREB2B編碼325個(gè)氨基酸,含有一個(gè)位于N端71~129氨基酸區(qū)域的AP2保守結(jié)構(gòu)域,EaDREB2B存在轉(zhuǎn)錄激活活性,其自激活區(qū)位于EaDREB2B的C端255~325氨基酸區(qū)域;利用截短的EaDREB2B(1~255氨基酸)作為誘餌蛋白在甘蔗酵母cDNA文庫中篩選其互作蛋白,初步篩選出498個(gè)候選陽性克隆,通過PCR檢測篩選到432個(gè)有效陽性克隆,經(jīng)測序和比對去除重復(fù)克隆后,成功篩選出269個(gè)與EaDREB2B互作的候選蛋白,候選互作蛋白主要包括轉(zhuǎn)錄因子、泛素蛋白酶、乙烯不敏感蛋白、脫水誘導(dǎo)蛋白、核糖體蛋白、延伸因子、解旋酶、蛋白激酶和一些未知蛋白等。通過KEGG功能分析顯示,162個(gè)候選蛋白被KEGG注釋,并且參與44條KEGG信號(hào)通路,主要涉及泛素介導(dǎo)蛋白水解、光合作用、核糖體、氨基酸的生物合成、半胱氨酸和蛋氨酸、調(diào)節(jié)自噬、內(nèi)質(zhì)網(wǎng)中的蛋白質(zhì)加工、碳代謝和RNA轉(zhuǎn)運(yùn)等通路;通過KEGG富集分析發(fā)現(xiàn)互作蛋白在光合作用、泛素介導(dǎo)蛋白水解和氨基酸生物合成等途徑顯著富集,推測EaDREB2B可能通過其相互作用蛋白泛素化介導(dǎo)蛋白降解參與逆境響應(yīng),推測EaDREB2B可能通過蛋白泛素化介導(dǎo)蛋白降解參與逆境響應(yīng)。

關(guān)鍵詞:EaDREB2B;甘蔗;干旱;酵母雙雜;蛋白互作

中圖分類號(hào):S961.6 ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A

Screening and Analysis of EaDREB2B Interaction Proteins from Sugarcane

JIANG Xialan, HUANG Cuilin, XU Shiqiang, ZHANG Muqing*

Guangxi Key Laboratory of Sugarcane Biology Provincial, Guangxi University / Provincial & Ministerial Collaborative Innovation Center for Sugar Industry, Nanning, Guangxi 530005, China

Abstract: Sugarcane is the most important sugar crop, in China. More than 90% sugar is produced by sugarcane. More than 85% of sugarcane planting areas are distributed in dry land, and drought is one of the important factors restricting sugarcane production.The AP2/ERF gene family is one of the plant-specific gene families, which participate in the regulation and expression of genes related to adverse stress, and play a very important role in adverse stress. The previous research of the research group showed that EaDREB2B can improve the drought resistance of sugarcane, but the interaction protein of EaDREB2B in regulating the drought resistance of sugarcane remains to be clarified. In this study, a yeast cDNA library of EaDREB2B transgenic sugarcane GN18 under drought stress was constructed based on previous research. Bioinformatics and a yeast two-hybrid technique were used to screen the EaDREB2B interaction proteins to clarify the role of EaDREB2B in regulating sugarcane drought resistance. The functional domain prediction showed that EaDREB2B contained 978 base pairs, encoding 325 amino acid residues with a calculated molecular mass of 36.52 kDa and a predicted pI of 4.57, and the AP2/ERF of EaDREB2B existed in the N-terminal 71?129 amino acid region. The transactivation activity analysis showed that EaDREB2B had transcriptional activation activity in yeast. EaDREB2B had self-activation in the C-terminal 255?325 amino acid region. In this study, the truncated EaDREB2B (1?255 amino acid) was used as the bait protein to screen the sugarcane cDNA library and aimed to identify proteins that interacted with EaDREB2B. In this study, 498 positive candidate clones were initially screened, and 432 effective positive clones were further screened by PCR. After sequencing and comparison to remove identical clones, a total of 269 candidate proteins that interacted with EaDREB2B were screened out. The candidate interacting proteins mainly include transcription factors, ubiquitin proteases, ethylene insensitive proteins, dehydration-inducing proteins, ribosomal proteins, elongation factors, helicases, protein kinases, some unknown proteins and so on. The results of KEGG pathway analysis showed that a total of 162 proteins were annotated with KEGG and assigned to 44 KEGG pathways, including Ubiquitin mediated proteolysis, photosynthesis, ribosome, biosynthesis of amino acids, cysteine and methionine metabolism, regulation of autophagy, protein processing in endoplasmic reticulum, carbon metabolism and RNA transport. KEGG enrichment analysis indicated that 269 candidate proteins were significantly enriched in photosynthesis, ubiquitin-mediated proteolysis, amino acid biosynthesis, and other pathways, suggesting that EaDREB2B might mediate protein degradation through ubiquitination.

Keywords: EaDREB2B; sugarcane; drought; yeast two-hybrid; interaction protein

DOI: 10.3969/j.issn.1000-2561.2022.01.007

植物在生長發(fā)育過程中會(huì)受到許多不利因素的影響,包括生物因素和非生物因素。據(jù)報(bào)道,世界上主要的農(nóng)作物近50%的產(chǎn)量損失與非生物脅迫有關(guān)[1]。近年來,隨著全球氣候變暖,干旱已然成為影響作物產(chǎn)量的重要因素。甘蔗(Sac?c?ha?rum officinarum)是我國最重要的糖料作物,全國近90%的食糖由甘蔗提供[2]。我國85%以上的甘蔗種植區(qū)分布在旱地,有效灌溉面積小,干旱嚴(yán)重限制了甘蔗的生長發(fā)育,從而導(dǎo)致產(chǎn)量顯著下降[3-4]。長期的進(jìn)化過程中,植物形成了多種應(yīng)答機(jī)制來抵御逆境脅迫。轉(zhuǎn)錄因子在植物響應(yīng)干旱和高溫逆境脅迫過程中扮演著關(guān)鍵角色[5]。

AP2/ERF類轉(zhuǎn)錄因子是植物特有的轉(zhuǎn)錄因子,該類轉(zhuǎn)錄因子至少含有1個(gè)高度保守的AP2/ERF結(jié)構(gòu)域[6]。在擬南芥和水稻中,根據(jù)序列的相似性和AP2 的數(shù)量將AP2/ERF基因家族分為AP2、ERF(ethylene-responsive factor)、RAV(ABI3/VP1)和Soloist 4個(gè)亞族,AP2/ERF結(jié)構(gòu)域中的第14位氨基酸和第19位氨基酸對轉(zhuǎn)錄因子與DNA的結(jié)合尤為重要。在ERF亞族中根據(jù)第14位氨基酸和第19位氨基酸的類型,將ERF家族分為ERF和DREB(dehydration-responsive element-binding protein)[7]。

DREB轉(zhuǎn)錄因子參與不同的信號(hào)傳遞,低溫、干旱和高鹽等逆境脅迫能誘導(dǎo)大部分DREB基因的表達(dá)。擬南芥的AtDREB2A基因能特異性地結(jié)合干旱應(yīng)答元件CRT/DRE(C-repeat/dehydration- responsive element)的核心序列(A/GCCGAC),調(diào)控高鹽、干旱和低溫相關(guān)基因的表達(dá)[8-9]。StDREB2基因通過調(diào)控氣體交換、滲透物質(zhì)累積、抗氧化酶活性、活性氧(ROS)清除及與逆境相關(guān)基因的表達(dá),從而提高棉花的抗旱能力和植物生物量[10]。CHEN等[11]發(fā)現(xiàn)GmDREB2受干旱脅迫誘導(dǎo),可激活轉(zhuǎn)基因擬南芥系列下游基因的表達(dá),提高轉(zhuǎn)基因株系對干旱的耐受性。JIANG等[12]報(bào)道番茄SlDREB1基因在干旱脅迫下強(qiáng)烈表達(dá),將其遺傳轉(zhuǎn)化擬南芥后,發(fā)現(xiàn)其能增強(qiáng)轉(zhuǎn)基因擬南芥的耐旱能力。WANG等[13]研究發(fā)現(xiàn)水稻OsDREB1F基因、OsDREB2A基因均受高鹽脅迫誘導(dǎo),分別在擬南芥中過表達(dá)OsDREB1F基因、OsDREB2A基因,并且發(fā)現(xiàn)轉(zhuǎn)基因株系均表現(xiàn)出較強(qiáng)抗鹽能力。本課題組前期構(gòu)建了以rd29A為啟動(dòng)子的表達(dá)載體prd29a-dreb- hyg,通過基因槍轟擊轉(zhuǎn)化甘蔗,獲得轉(zhuǎn)基因GN18植株,在后續(xù)研究中發(fā)現(xiàn)GN18與野生型FN95-1702相比,具有優(yōu)異的抗旱性,表明EaDREB2B能夠提高甘蔗的抗旱性[14]。然而,關(guān)于EaDREB2B調(diào)控甘蔗抗旱分子機(jī)制尚不清楚,因此本研究擬利用酵母雙雜交技術(shù)篩選EaDREB2B的互作蛋白,為闡明EaDREB2B調(diào)控甘蔗抗旱的分子機(jī)制奠定基礎(chǔ)。

1 ?材料與方法

1.1 ?材料

酵母雙雜實(shí)驗(yàn)所用的Y2HGold酵母菌株、質(zhì)粒pGADT7和pGBKT7購于Clontech公司;高保真酶2 × Phanta(南京,諾唯贊)、DNA Ligation Kit(TaKaRa)、Top10感受態(tài)細(xì)胞(上海,唯地生物)、質(zhì)粒DNA小提試劑、DNA純化回收試劑盒(北京,天根)、酵母質(zhì)粒提取試劑盒(北京,索萊寶)等均購自商業(yè)公司;引物合成由生工生物工程(上海)股份有限公司和南寧捷尼斯生物公司共同完成,測序由生工生物工程(上海)股份有限公司完成。研究使用的甘蔗材料為GN18(轉(zhuǎn)EaDREB2B基因株系)和FN95-1702(受體材料),由本實(shí)驗(yàn)室種植保存。甘蔗材料的種植及處理參見XU等[15]的方法,采集正常澆水、輕度干旱、重度干旱和復(fù)水5 d的GN18甘蔗葉片用于甘蔗cDNA酵母文庫構(gòu)建。

1.2 ?方法

1.2.1 ?EaDREB2B生物信息學(xué)分析 ?利用Expasy在線分析工具ProtParam tool(https://web.expasy. org/protparam/)對EaDREB2B蛋白氨基酸序列進(jìn)行氨基酸數(shù)目、相對分子質(zhì)量、等電點(diǎn)等理化性質(zhì)分析,ProtSacle(https://web.expasy. org/protscale/)在線分析親水性和疏水性;Prosite tool(https:// prosite.expasy.org/prosite.html)分析EaDREB2B蛋白的保守結(jié)構(gòu)域;NetPhosK 1.0 Server(http:// www.cbs.dtu.dk/services/NetPhos-3.1/)預(yù)測潛在的磷酸化位點(diǎn);TMHMM Server v. 2.0(http://www. cbs.dtu.dk/services/TMHMM-2.0/)分析其跨膜結(jié)構(gòu)域。

1.2.2 ?pGBKT7-EaDREB2B載體構(gòu)建 ?EaDREB2B的AP2保守結(jié)構(gòu)域位于N端71~129氨基酸區(qū)域,對EaDREB2B蛋白從C端進(jìn)行氨基酸截短。根據(jù)前期分析的EaDREB2B基因序列信息及結(jié)合pGBKT7多克隆位點(diǎn)信息,設(shè)計(jì)帶有EcoR I和Sal I的EaDREB2B全長(1~325 aa)及一系列截短蛋白(1~295 aa、1~275 aa和1~255 aa)的PCR擴(kuò)增引物,引物序列見表1。PCR反應(yīng)體系為:總體積為50 μL,其中2×Phanta? Max Master Mix 25 μL,上下游引物各2 μL,模板質(zhì)粒1 μL,ddH2O 20 μL。反應(yīng)程序?yàn)椋?5℃ 3 min;95℃ 15 s,60℃ 15 s,72℃ 30 s,35個(gè)循環(huán);72℃ 5 min。PCR產(chǎn)物回收后與酵母表達(dá)載體pGBKT7分別用EcoR I和Sal I雙酶切,回收后的目的基因與載體片段用DNA Ligation Kit連接酶16℃連接30 min后,取5 μL連接產(chǎn)物轉(zhuǎn)化50 μL大腸桿菌Top10感受態(tài)細(xì)胞,涂布于含卡那霉素(50 μg/mL)的LB固體培養(yǎng)基,37℃過夜培養(yǎng)。挑選陽性克隆,經(jīng)菌液PCR檢測后擴(kuò)大培養(yǎng)提取質(zhì)粒,委托生工生物工程(上海)股份有限公司完成測序,測序正確即成功構(gòu)建誘餌表達(dá)載體。

1.2.3 ?酵母Y2HGold感受態(tài)細(xì)胞制備及自激活驗(yàn)證 ?酵母感受態(tài)細(xì)胞制備及轉(zhuǎn)化參照鄢敏麗[16]的方法。按照Clontch公司酵母雙雜交試劑盒說明方法,將含有EaDREB2B(1~325 aa、1~295 aa、1~275 aa、1~255 aa)片段的載體與pGBKT7(BD空載)分別轉(zhuǎn)化酵母Y2HGold感受態(tài)細(xì)胞,涂布于SD/-Trp/X-α-Gal平板上,30℃培養(yǎng)3~5 d,根據(jù)菌斑生長情況及顏色變化判斷是否有轉(zhuǎn)錄自激活活性。

1.2.4 ?酵母文庫建立及互作蛋白的篩選 ?本研究使用的甘蔗均一化pGADT7-cDNA酵母文庫,委托上海歐易生物醫(yī)學(xué)科技有限公司構(gòu)建。將pGBKT7-EaDREB2B(1~255 aa)與pGADT7- cDNA文庫質(zhì)粒共同轉(zhuǎn)化Y2HGold酵母感受態(tài),以pGBKT7-53+pGADT7-T為陽性對照,以pGBKT7-Lam+ pGADT7-T為陰性對照,將轉(zhuǎn)化后的酵母涂布于DDO/A/X(SD/-Leu/-Trp/AbA(125 ng/mL)/X-α-Gal(40 μg/mL)平板上;30℃培養(yǎng)3~5 d后,挑選藍(lán)色菌落劃線于QDO/A/X(SD/-Ade/-His/-Leu/-Trp/AbA/X-α-Gal)平板上;30℃培養(yǎng)3~5 d后,挑選在QDO平板正常生長的藍(lán)色菌落于QDO液體培養(yǎng)基中;30℃搖床培養(yǎng)2~3 d,提取渾濁菌液質(zhì)粒DNA,用AD載體通用引物進(jìn)行PCR擴(kuò)增,引物信息見表1;挑選片段大于500 bp單一產(chǎn)物進(jìn)行測序,測序結(jié)果通過Blast比對割手密基因組數(shù)據(jù)庫(http://www.life. illinois.edu/ming/downloads/Spontaneum_genome/),獲取候選蛋白注釋信息。

2 ?結(jié)果與分析

2.1 ?EaDREB2B生物信息學(xué)分析

理化性質(zhì)分析發(fā)現(xiàn),EaDREB2B蛋白分子量為36.52 kDa,等電點(diǎn)(pI)為4.57,分子式為C1576H2454N444O532S12 ,不穩(wěn)定系數(shù)為59.63。親水性和疏水性分析預(yù)測,發(fā)現(xiàn)EaDREB2B蛋白質(zhì)的氨基酸序列中多為親水性氨基酸(圖1A),推測EaDREB2B為親水蛋白質(zhì);磷酸化預(yù)測結(jié)果顯示,EaDREB2B蛋白質(zhì)中有19個(gè)Ser(絲氨酸)位點(diǎn)可發(fā)生磷酸化修飾,有8個(gè)Thr(蘇氨酸)位點(diǎn)可發(fā)生磷酸化修飾,4個(gè)Tyr(酪氨酸)位點(diǎn)可發(fā)生磷酸化修飾(圖1B),推測EaDREB2B翻譯后可能進(jìn)行磷酸化修飾發(fā)揮其功能;跨膜結(jié)構(gòu)分析,發(fā)現(xiàn)EaDREB2B蛋白沒有跨膜結(jié)構(gòu)(圖1C)。EaDREB2B蛋白保守結(jié)構(gòu)域分析發(fā)現(xiàn),EaDREB2B蛋白共編碼325個(gè)氨基酸,具有一個(gè)高度保守的AP2結(jié)構(gòu)域,包含58個(gè)氨基酸殘基,位于71~129 aa區(qū)域。EaDREB2b蛋白的N端存在KRWKESNQNVDEKPRRK核定位序列(NLS),C端的202~240 aa之間存在一個(gè)谷氨酸富集區(qū)(圖1D)。蛋白質(zhì)二級(jí)結(jié)構(gòu)分析,EaDREB2B蛋白由43.69%的無規(guī)則卷曲、38.46%的α-螺旋和6.15%的β-轉(zhuǎn)角組成。

2.2 ?誘餌載體構(gòu)建及自激活檢測

通過PCR擴(kuò)增EaDREB2B全長及其截短片段,產(chǎn)物經(jīng)瓊脂糖凝膠電泳檢測后獲得目的條帶(圖2A),產(chǎn)物純化后插入pGBKT7,轉(zhuǎn)化大腸桿菌Top10感受態(tài),測序后確認(rèn)和已知的EaDREB2B全長及其截短的EaDREB2B序列完全一致。重組質(zhì)粒自激活檢測結(jié)果顯示,在SD/-Trp/X-α-Gal平板上均能正常長出菌落,表明重組質(zhì)粒成功轉(zhuǎn)入Y2H酵母菌株;轉(zhuǎn)化EaDREB2B全長、截短EaDREB2B片段(1~295 aa和1~275 aa)的酵母菌落變藍(lán)色,而轉(zhuǎn)化pGBKT7(BD)空載和重組EaDREB2B(1~255 aa)截短片段的酵母菌落未變藍(lán),結(jié)果表明EaDREB2B具有自激活活性,自激活區(qū)域位于C端255~325區(qū)域(圖2B)。

2.3 ?酵母文庫的篩選和陽性克隆的鑒定

選用無轉(zhuǎn)錄激活活性的pGBKT7-EaDREB2B(1~255 aa)與pGAD7-cDNA酵母文庫質(zhì)?;旌虾蠊餐D(zhuǎn)化Y2H酵母感受態(tài),均勻涂布于DDO/A/X營養(yǎng)缺陷培養(yǎng)基上,30℃培養(yǎng)3~5 d。挑選平板上直徑大于2 mm的藍(lán)色菌落,重新劃線于QDO/A/X平板上初步得到820個(gè)陽性克隆,挑選四缺板上的陽性克隆與3 mL QDO/X/A液體培養(yǎng)基中培養(yǎng)2~3 d,提取酵母質(zhì)粒后用載體通用引物進(jìn)行PCR驗(yàn)證,結(jié)果篩選到432個(gè)陽性克?。▓D3A),挑選片段大于500 bp陽性克隆進(jìn)行測序分析(圖3B)。測序結(jié)果通過Blast檢索割手密基因組cDNA數(shù)據(jù)庫,去除重復(fù)序列后獲得269個(gè)候選蛋白的注釋信息,主要包括轉(zhuǎn)錄因子、泛素蛋白酶、乙烯不敏感蛋白、脫水誘導(dǎo)蛋白、核糖體蛋白、延伸因子、解旋酶、蛋白激酶和一些未知蛋白等(表2)。

利用百邁克在線分析工具[17],對269個(gè)候選互作蛋白進(jìn)行GO功能注釋分類,269個(gè)候選蛋白中有242個(gè)蛋白得到注釋,這些蛋白參與15種生物進(jìn)程,14種細(xì)胞組分合成和9種分子功能(圖4A)。KEGG pathway功能分析顯示,269個(gè)候選蛋白中有162個(gè)蛋白參與44條信號(hào)通路,主要涉及泛素介導(dǎo)蛋白水解(ubiquitin mediated proteolysis)、光合作用(photosynthesis)、核糖體(ribosome)、氨基酸的生物合成(biosynthesis of amino acids)、半胱氨酸和蛋氨酸(cysteine and methionine metabolism)、調(diào)節(jié)自噬(regulation of autophagy)內(nèi)質(zhì)網(wǎng)中的蛋白質(zhì)加工(protein processing in endoplasmic reticulum)、碳代謝(carbon metabolism)和RNA轉(zhuǎn)運(yùn)(RNA transport)等通路(圖4B)。

3 ?討論

前人研究發(fā)現(xiàn),大多數(shù)DREB2s轉(zhuǎn)錄因子僅含有一個(gè)由58個(gè)氨基酸殘基組成的AP2結(jié)構(gòu)域,N末端是富含堿性氨基酸的核定位信號(hào)區(qū),C端存在轉(zhuǎn)錄自激活區(qū)域。QIN等[18]研究發(fā)現(xiàn)玉米中ZmDREB2A轉(zhuǎn)錄因子自激活區(qū)域在于C端235~ 272 aa區(qū)域。水稻中OsDREB2B具有轉(zhuǎn)錄激活活性,研究發(fā)現(xiàn)OsDREB2B蛋白的284~373 aa區(qū)域其轉(zhuǎn)錄活性很重要[19]。SAKUMA等[20]研究發(fā)現(xiàn),擬南AtDREB2A蛋白的C端存在一個(gè)含有脯氨酸-谷氨酸-絲氨酸-蘇氨酸形成的信號(hào)肽,正常條件下,信號(hào)肽對AtDREB2A蛋白有抑制作用,當(dāng)刪除這段氨基酸殘基后(AtDREB2A-CA),過表達(dá)AtDREB2A-CA基因可提高擬南芥的抗旱能力。EaDREB2B生物信息學(xué)分析發(fā)現(xiàn),EaDREB2B蛋白的N端有一個(gè)堿性核定位區(qū),只有1個(gè)AP2結(jié)構(gòu)域,位于N端71~129 aa區(qū)域,共58個(gè)氨基酸殘基,編碼的蛋白主要以β-折疊和α-螺旋為主,根據(jù)DREB亞族分類條件,EaDREB2B屬于DREB2s類轉(zhuǎn)錄因子,推測其可能存在轉(zhuǎn)錄激活區(qū)域。通過構(gòu)建EaDREB2B蛋白全長及從截短蛋白片段的誘餌表達(dá)載體,并進(jìn)行自激活區(qū)域檢測,結(jié)果顯示EaDREB2B全長具有轉(zhuǎn)錄激活活性,能轉(zhuǎn)錄激活調(diào)控下游一系列相關(guān)基因的表達(dá),其轉(zhuǎn)錄激活區(qū)域在EaDREB2B的C端255~325 aa區(qū),與前人研究發(fā)現(xiàn)DREB2s類轉(zhuǎn)錄因子C端存在轉(zhuǎn)錄激活活性的結(jié)果一致。

酵母雙雜交技術(shù)是驗(yàn)證蛋白間相互作用的經(jīng)典方法,最早由美國紐約州立大學(xué)的FIELDS等在1989年提出并且建立了基本模型[21]。1997年,STOCKINGER等[22]利用酵母單雜技術(shù),首次從擬南芥cDNA文庫中分離到DREB轉(zhuǎn)錄因子CBF1。LEE等[23]從擬南芥酵母cDNA文庫中篩選DREB2C的互作蛋白bZIP蛋白(ABF2),ABF2可調(diào)節(jié)對ABA依賴性基因的表達(dá)。朱路平[24]研究發(fā)現(xiàn)OsDREBA5轉(zhuǎn)錄因子有轉(zhuǎn)錄激活活性,其自激活區(qū)域在C端,選擇無自激活活性的pGBKT7-OsDREBA5-1-f2質(zhì)粒,從水稻酵母文庫中成功篩選出43個(gè)互作蛋白,表明利用C端截短的DREB轉(zhuǎn)錄因子可通過酵母雙雜交篩選與其相互作用的蛋白。本研究利用酵母雙雜交技術(shù),以截短的EaDREB2B(1~255 aa)為誘餌質(zhì)粒,從甘蔗酵母cDNA文庫成功篩選到269個(gè)與EaDREB2B(1~255 aa)互作的候選蛋白。

本研究篩選到與EaDREB2B互作的候選蛋白中涉及蛋白激酶和泛素蛋白酶體等防御相關(guān)的蛋白較多,說明EaDREB2B在抗非生物脅迫中有著重要作用。泛素-蛋白酶系統(tǒng)在生物體內(nèi)控制許多蛋白質(zhì)的降解速率,從而調(diào)節(jié)多個(gè)基本的細(xì)胞生理過程,包括植物生長、細(xì)胞信號(hào)傳導(dǎo)和應(yīng)激反應(yīng)[25-26]。泛素-蛋白酶系統(tǒng)在真核生物中是機(jī)械保守的,涉及復(fù)雜的酶和酶復(fù)合物收集,這些酶和酶的復(fù)合物結(jié)合到特定靶標(biāo)蛋白并促進(jìn)其進(jìn)行泛素化的降解。蛋白質(zhì)靶標(biāo)是通過ATP依賴性反應(yīng)級(jí)聯(lián)作用于泛素化,一般是通過E1 Ub激活酶、E2 Ub結(jié)合酶、E3 Ub連接酶3個(gè)連續(xù)作用進(jìn)行標(biāo)記[27]。據(jù)報(bào)道,DREB2A互作蛋白(DRIP1和DRIP2)與DREB2B相互作用,作為RING型E3泛素連接酶將DREB2A靶向26s蛋白酶體水解[28]。ZHANG等[29]發(fā)現(xiàn)擬南芥中編碼E3泛素蛋白的TaSAP5可介導(dǎo)與DREB2A互作蛋白DRIPs的降解,從而增加DREB2A蛋白的積累,進(jìn)而影響其下游基因的表達(dá)。

EaDREB2B互作候選蛋白FREE1是內(nèi)體蛋白分選轉(zhuǎn)運(yùn)裝置(endosomal sorting complex required for transport, ESCRT)所需的內(nèi)體分選復(fù)合物關(guān)鍵蛋白,參與多囊泡/前室區(qū)蛋白質(zhì)的分選的調(diào)節(jié)。BUESO等[30]和BELDA-PALAZON等[31]發(fā)現(xiàn)RSL1介導(dǎo)ABA受體PYL4和PYR1泛素化,F(xiàn)REE1可與RSL1相互作用,將質(zhì)膜上的ABA受體復(fù)合物轉(zhuǎn)運(yùn)至ESTCRT機(jī)制中進(jìn)行泛素化降解,減弱ABA信號(hào)傳導(dǎo)。FREE1與轉(zhuǎn)錄因子ABF4和ABI5相互作用,以通過減少他們與下游基因的順式調(diào)控序列的結(jié)合而在轉(zhuǎn)錄上抑制ABA信號(hào)傳導(dǎo)途徑[32]。推測EaDREB2B可能通過候選互作蛋白FREE1介導(dǎo)PYL4ABA受體的泛素化,參與依賴ABA信號(hào)傳導(dǎo)途徑響應(yīng)干旱脅迫。

參考文獻(xiàn)

[1] SHAO H B, CHU L Y, JALEEL C A, MANIVANNAN P, PANNEERSELVAM R, SHAO M A. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe[J]. Critical Reviews in Biotechnology, 2009, 29(2): 131-151.

[2] 李海碧, 桂意云, 張榮華, 韋金菊, 楊榮仲, 張小秋, 李楊瑞, 周 ?全, 劉昔輝. 甘蔗抗旱性及抗旱育種研究進(jìn)展[J]. 分子植物育種, 2019, 17 (10): 3406-3415.

LI H B, GUI Y Y, ZHANG R H, WEI J J, YANG R Z, ZHANG X Q, LI Y R, ZHOU Q, LIU X H. Research progress on drought resistance and drought-resistant breeding of sugarcane[J]. Molecular Plant Breeding, 2019, 17(10): 3406-3415. (in Chinese)

[3] 王繼華, 張木清, 曹 ?干. 甘蔗抗旱育種研究進(jìn)展[J]. 廣東農(nóng)業(yè)科學(xué), 2010, 37(12): 34-35, 51.

WANG J H, ZHANG M Q, CAO G. Research progress of sugarcane breeding for drought resistance[J]. Guangdong Agricultural Sciences, 2010, 37(12): 34-35, 51. (in Chinese)

[4] OW L F, YEO T Y, SIM E K. Identification of drought- tolerant plants for roadside greening-An evaluation of chlorophyll fluorescence as an indicator to screen for drought tolerance[J]. Urban Forestry & Urban Greening, 2011, 10(3): 177-184.

[5] LI X P, TIAN A G, LUO G Z, GONG Z Z, ZHANG J S, CHEN S Y. Soybean DRE-binding transcription factors that are responsive to abiotic stresses[J]. Theoretical and Applied Genetics, 2005, 110(8): 1355-1362.

[6] MAGNANI E, SJO?LANDER K, HAKE S. From endonucleases to transcription factors: evolution of the AP2 DNA bin?ding domain in plants[J]. The Plant Cell, 2004, 16(9): 2265- 2277.

[7] NAKANO T, SUZUKI K, FUJIMUR T, SHINSHI H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432.

[8] LIU Q, KASUGA M, SAKUMA Y, ABE H, MIURA S, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Two trans?cription factors, DREB1 and DREB2, with an EREBP/ AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-re?spo?n?s?ive gene expression, respectively, in Arabidopsis[J]. The Plant Cell, 1998, 10(8): 1391-1406.

[9] KASUGA M, LIU Q, MIURA S, YAMAGUCHI- SHINOZAKI K, SHINOZAKI K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nature Biotechnology, 1999, 17(3): 287-291.

[10] EL-SAWI M A, ALAYAFI A A. Overexpression of StDREB2 transcription factor enhances drought stress tolerance in cotton (Gossypium barbadense L.)[J]. Genes, 2019, 10(2): 142.

[11] CHEN M, WANG Q Y, CHENG X G, XU Z S, LI L C, YE X G, MA Y Z. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants[J]. Biochemical and Biophysical Research Communications, 2007, 353(2): 299-305.

[12] JIANG L, WANG Y, ZHANG S, HE R, LI W, HAN J, CHENG X. Tomato SlDREB1 gene conferred the transcriptional activation of drought-induced gene and an enhanced tolerance of the transgenic Arabidopsis to drought stress[J]. Plant Growth Regulation, 2017, 81(1): 131-145.

[13] WANG Q, GUAN Y, WU Y, CHEN H, CHEN F, CHU C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice[J]. Plant molecular Biology, 2008, 67(6): 589-602.

[14] 吳 ?楊. 斑茅DREB2B基因遺傳轉(zhuǎn)化甘蔗的抗旱性研究[D]. 福州: 福建農(nóng)林大學(xué), 2009.

WU Y. The study on drought resistance of gentic transformation of Erianthus arundinaceus’s DREB2B gene into sugarcne[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009. (in Chinese)

[15] XU S, WANG J, SHANG H, HUANG Y, YAO W, CHEN B, ZHANG M. Transcriptomic characterization and potential marker development of contrasting sugarcane cultivars[J]. Scientific Reports, 2018, 8(1): 1683.

[16] 鄢敏麗. 蓮藕多酚氧化酶互作蛋白的篩選及驗(yàn)證[D]. 咸陽: 西北農(nóng)林科技大學(xué), 2019.

YAN M L. Screening and verification of polyphenol oxidase interacting proteins in lotus[D]. Xianyang: Northwest A&F University, 2009. (in Chinese)

[17] BECKER R A, CHAMBERS J M, WILKS A R. The new S language[M]. London: Taylor & Francis Group, 1988, 45(2): 935.

[18] QIN F, KAKIMOTO M, SAKUMA Y, MARUYAMA K, OSAKABE Y, TRAN L S P, YAMAGUCHI-SHINOZAKI K. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L[J]. The Plant Journal, 2007, 50(1): 54-69.

[19] DU X, LI W, SHENG L, DENG Y, WANG Y, ZHANG W, CHEN S. Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress[J]. BMC Plant Biology, 2018, 18(1): 1-10.

[20] SAKUMA Y, LIU Q, DUBOUZET J G, ABE H, SHINOZAKI, K, YAMAGUCHI-SHINOZAKI K. DNA- binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression[J]. Biochemical & Biophysical Research Communications, 2002, 290(3): 998-1009.

[21] FIELDS S, SONG O K. A novel genetic system to detect protein–protein interactions[J]. Nature, 1989, 340(6230): 245-246.

[22] STOCKINGER E J, GILMOUR S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-cont?aining transcriptional activator that binds to the C-repeat/ DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of the National Academy of Sciences, 1997, 94(3): 1035-1040.

[23] LEE S J, KANG J Y, PARK H J, KIM M D, BAE M S, CHOI H I, KIM S Y. DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity[J]. Plant Physiology, 2010, 153(2): 716-727.

[24] 朱路平. 利用酵母雙雜交方法篩選轉(zhuǎn)錄因子OsDREBA5- 1的互作蛋白[D]. 長沙: 湖南農(nóng)業(yè)大學(xué), 2015.

ZHU L P. Screening of interacting proteins with transcription factor OsDREBA5-1 using yeast two-hybrid system[D]. Changsha: Hunan Agricultural University, 2015.

[25] HERSHKO A, CIECHANOVER A. The ubiquitin system[J]. Annual Review of Biochemistry, 1998, 67(1): 425-479.

[26] VIERSTRA R D. The ubiquitin-26S proteasome system at the nexus of plant biology[J]. Nature Reviews Molecular Cell Biology, 2009, 10(6): 385-397.

[27] GLICKMAN M H, ADIR N. The proteasome and the delicate balance between destruction and rescue[J]. PLoS Biology, 2004, 2(1): e13.

[28] QIN F, SAKUMA Y, TRAN L S P, MARUYAMA K, KIDOKORO S, FUJITA Y, YAMAGUCHI-SHINOZAKI K. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-resp?onsive gene expression[J]. The Plant Cell, 2008, 20(6): 1693-1707.

[29] ZHANG N, YIN Y, LIU X, TONG S, XING J, ZHANG Y, YAO Y. The E3 ligase TaSAP5 alters drought stress responses by promoting the degradation of DRIP proteins[J]. Plant Physiology, 2017, 175(4): 1878-1892.

[30] BUESO E, RODRIGUEZ L, LORENZO-ORTS L, GONZALEZ-GUZMAN M, SAYAS E, MU?OZ- BERTOMEU J, RODRIGUEZ P L. The single-subunit RING- type E3 ubiquitin ligase RSL 1 targets PYL 4 and PYR 1 ABA receptors in plasma membrane to modulate abscisic acid signaling[J]. The Plant Journal, 2014, 80(6): 1057-1071.

[31] BELDA-PALAZON B, RODRIGUEZ L, FERNANDEZ M A, CASTILLO M C, ANDERSON E M, GAO C, RODRIGUEZ P L. FYVE1/FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway[J]. The Plant Cell, 2016, 28(9): 2291-2311.

[32] PAN W, ZHENG P, ZHANG C, WANG W, LI Y, FAN T, CAO S. The effect of ABRE BINDING FACTOR 4-mediated FYVE1 on salt stress tolerance in Arabidopsis[J]. Plant Science, 2020, 296: 110489.

猜你喜歡
干旱甘蔗
甘蔗的問題
甜甜的甘蔗
吃甘蔗
甘蔗
基于距平的白城地區(qū)干旱時(shí)間分布特征分析
臨夏地區(qū)干旱特征及干濕氣候區(qū)劃
黑熊吃甘蔗
夏季高溫干旱時(shí)節(jié)高山蔬菜種植管理策略
基于多源衛(wèi)星遙感的長江流域旱情監(jiān)測研究
基于SPI指數(shù)的農(nóng)作物生長期干旱時(shí)間變化研究