国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水稻大穗形成及其調(diào)控的研究進(jìn)展

2023-01-16 05:06劉立軍周沈琪張偉楊楊建昌
作物學(xué)報(bào) 2023年3期
關(guān)鍵詞:穎花枝梗幼穗

劉立軍 周沈琪 劉 昆 張偉楊 楊建昌

水稻大穗形成及其調(diào)控的研究進(jìn)展

劉立軍*周沈琪 劉 昆 張偉楊 楊建昌

揚(yáng)州大學(xué)江蘇省作物遺傳生理重點(diǎn)實(shí)驗(yàn)室 / 江蘇省糧食作物現(xiàn)代產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心 / 江蘇省作物基因組學(xué)和分子育種重點(diǎn)實(shí)驗(yàn)室 / 農(nóng)業(yè)農(nóng)村部耕地質(zhì)量監(jiān)測(cè)與評(píng)價(jià)重點(diǎn)實(shí)驗(yàn)室, 江蘇揚(yáng)州 225009

水稻每穗粒數(shù)是構(gòu)成產(chǎn)量的關(guān)鍵因素, 現(xiàn)代高產(chǎn)水稻品種多表現(xiàn)為穗大粒多。增加每穗粒數(shù)、促進(jìn)大穗形成是提高水稻產(chǎn)量的重要途徑。本文概述了水稻每穗粒數(shù)形成與幼穗發(fā)育的關(guān)系, 并結(jié)合作者相關(guān)研究, 從水稻穗型的遺傳調(diào)控、營養(yǎng)狀況與氮肥管理、水分、溫光條件和內(nèi)源激素等方面分析了其對(duì)每穗粒數(shù)形成的影響。從根系形態(tài)生理與幼穗發(fā)育、水肥管理和溫光條件以及植物激素間的相互作用調(diào)節(jié)穎花分化與退化的生理和分子機(jī)制等方面提出了未來加強(qiáng)水稻大穗形成研究的重點(diǎn), 以期為大穗高產(chǎn)水稻品種選育和栽培調(diào)控提供依據(jù)。

水稻; 大穗; 穎花分化與退化; 水肥管理; 激素

水稻是世界上最重要的糧食作物之一, 全球一半人口以稻米為主食[1-3]。目前水稻單產(chǎn)年增長(zhǎng)率僅為1.70%, 顯著低于2050年將總產(chǎn)翻一番所需2.4%的年增長(zhǎng)率[4-5]。水稻增產(chǎn)主要通過擴(kuò)大種植面積和提高單位面積產(chǎn)量2條路徑, 但由于耕地面積逐漸減少、水資源匱乏的現(xiàn)狀, 靠擴(kuò)大種植面積實(shí)現(xiàn)水稻增產(chǎn)的潛力非常有限[6]。因此, 提高單位面積產(chǎn)量是增加水稻總產(chǎn)量的有效途徑。水稻產(chǎn)量由單位面積穗數(shù)、每穗粒數(shù)、結(jié)實(shí)率和粒重構(gòu)成。單位面積穗數(shù)受空間條件制約, 存在一定程度上的飽和; 粒重主要受遺傳因素控制, 表現(xiàn)相對(duì)穩(wěn)定; 結(jié)實(shí)率不僅取決于水分和養(yǎng)分的供應(yīng), 還取決于成熟期的光溫條件; 而每穗粒數(shù)的可變性與可調(diào)性較大, 高產(chǎn)水稻品種通常具有穗型大、每穗粒數(shù)多、單穗重量高(大穗)的特點(diǎn)[7-8]。因此, 增加每穗粒數(shù)、促進(jìn)大穗形成是提高水稻產(chǎn)量的重要途徑[9-11]。本文綜述了水稻每穗粒數(shù)與幼穗發(fā)育的關(guān)系以及影響每穗粒數(shù)形成的主要因素, 提出了未來加強(qiáng)水稻每穗粒數(shù)研究的重點(diǎn)。旨在進(jìn)一步揭示水稻大穗形成的機(jī)制, 為大穗高產(chǎn)水稻品種選育和栽培調(diào)控提供依據(jù)。

1 幼穗發(fā)育與每穗粒數(shù)形成

稻穗為圓錐花序, 由穗軸、一次枝梗、二次枝梗、小穗梗和小穗(小花)組成。每穗粒數(shù)在穗分化期形成并確定, 是小花分化、發(fā)育和退化等一系列復(fù)雜生理過程的最終體現(xiàn)[12-13]。國內(nèi)外學(xué)者從形態(tài)和解剖等方面對(duì)稻穗的發(fā)育過程進(jìn)行了詳細(xì)研究[14]。水稻幼穗發(fā)育大致可分為2個(gè)階段, 第一階段自穗軸分化期(苞分化期)至穎花原基分化期結(jié)束, 此階段主要分化一、二次枝梗和穎花; 第二階段自雌雄蕊分化期至抽穗, 主要完成枝梗伸長(zhǎng)、穎花發(fā)育、花器官形成、減數(shù)分裂和花粉粒充實(shí)完成等過程[15]。幼穗分化第一階段主要影響穎花分化數(shù)的形成, 以二次枝梗及穎花原基分化期對(duì)穎花分化的促進(jìn)作用最為顯著, 且穎花分化數(shù)與二次枝梗分化數(shù)呈極顯著正相關(guān)[16]。第二階段主要影響穎花退化數(shù), 以花粉母細(xì)胞減數(shù)分裂期對(duì)穎花退化的影響最為明顯?;ǚ勰讣?xì)胞減數(shù)分裂期是水稻每穗穎花數(shù)從分化增加到退化減少的消長(zhǎng)轉(zhuǎn)折時(shí)期, 這一時(shí)期的幼穗正在快速伸長(zhǎng)且接近全長(zhǎng), 絕大多數(shù)穎花已經(jīng)分化完成, 劣勢(shì)穎花正在急劇退化[17]。

穎花退化是糧食減產(chǎn)的一個(gè)重要原因。闡明穎花分化與退化的機(jī)制是當(dāng)今水稻栽培學(xué)家和育種學(xué)家關(guān)注的熱點(diǎn)問題之一。前人對(duì)穎花分化與退化的認(rèn)識(shí)歸納起來主要有以下4種理論。第一種是“資源限制”假設(shè)。在非脅迫條件下, 水稻節(jié)間伸長(zhǎng)與幼穗原基分化發(fā)育之間存在“器官同伸”關(guān)系, 此時(shí)幼穗與莖鞘會(huì)發(fā)生養(yǎng)分競(jìng)爭(zhēng), 從而影響幼穗分化發(fā)育。在脅迫條件下, 處于下部的穎花養(yǎng)分供應(yīng)變得不足[18-19], 缺少非結(jié)構(gòu)性碳水化合物供應(yīng)會(huì)導(dǎo)致其在強(qiáng)烈的養(yǎng)分競(jìng)爭(zhēng)下營養(yǎng)不良, 最終劣勢(shì)穎花退化[20]。但亦有研究表明, 即使在良好的營養(yǎng)供應(yīng)條件下, 穎花仍會(huì)嚴(yán)重退化。因此, “資源限制”可能只是穎花退化的原因之一, 而非主要原因。第二種是“自組織過程”假設(shè)。該假設(shè)認(rèn)為幼穗發(fā)育之初同一稻穗內(nèi)部不同穎花相互競(jìng)爭(zhēng), 營養(yǎng)物質(zhì)分配不均勻, 這種初始的資源不平衡在穎花分化前期表現(xiàn)為優(yōu)勢(shì)穎花分化能力提升, 在后期擴(kuò)大并形成優(yōu)勢(shì), 通過自催化過程獲得更多的資源, 不能獲得足夠資源的劣勢(shì)穎花則發(fā)生退化[21]。然而大多數(shù)谷物中的穎花退化并不是隨機(jī)的, 如水稻小穗的穎花退化通常發(fā)生在穗基部和頂部。因此, 上述2種假說尚未找到更加有力的證據(jù)來支持。第三種是“植物激素平衡”理論。植物激素是影響穎花分化和退化的關(guān)鍵調(diào)節(jié)因子。一般認(rèn)為, 生長(zhǎng)素(indole-3-acetic, IAA)、細(xì)胞分裂素(cytokinins, CTK)和赤霉素(gibberellins, GAs)可促進(jìn)穎花分化, 而脫落酸(abscisic acid, ABA)和乙烯(ethylene, ET)則會(huì)引起穎花退化[16]。第四種是“碳氮代謝平衡”理論。穎花分化和退化與植株器官的碳氮代謝平衡存在密切關(guān)系。有研究表明, 在穎花原基分化期, 水稻地上部的含氮量與穎花分化數(shù)呈顯著正相關(guān), 植株含氮量越高, 穎花分化數(shù)越多, 但穎花退化數(shù)也會(huì)增加[22]。在花粉母細(xì)胞減數(shù)分裂期, 每穗穎花數(shù)與穗分化期整株碳積累量呈直線相關(guān), 植株體內(nèi)積累的非結(jié)構(gòu)性碳水化合物越多, 穎花退化率越低[22]。幼穗發(fā)育過程中的碳氮比例達(dá)到一個(gè)相互促進(jìn)的平衡狀態(tài)才能有效促進(jìn)穎花分化, 減少退化, 增加穎花現(xiàn)存數(shù)[23]。

2 水稻穗型的遺傳調(diào)控

轉(zhuǎn)錄組研究顯示, 在22,000個(gè)基因中, 有357個(gè)基因在穗部發(fā)育中發(fā)揮了不同的作用, 表明仍有許多基因尚未被識(shí)別。在目前已被識(shí)別的基因中,()基因是第一個(gè)被克隆的控制水稻穗粒數(shù)的主效數(shù)量性狀基因座, 它是與細(xì)胞分裂素氧化酶/脫氫酶高度同源的()基因。當(dāng)表達(dá)水平降低時(shí), CTK會(huì)在花序分生組織上大量積累, 增加枝梗數(shù)和籽粒數(shù), 而活性CTK合成缺陷突變體的穗部枝梗以及籽粒數(shù)目顯著下降[24]。()基因可直接通過調(diào)控的表達(dá)來影響水稻穗整體枝梗與籽粒的數(shù)目[25]。另外, 過表達(dá)以及干擾CTK應(yīng)答的GATA轉(zhuǎn)錄因子都會(huì)降低水稻枝梗數(shù)以及穗粒數(shù)[26]。()基因編碼一個(gè)赤霉素20-氧化酶, 參與GAs信號(hào)調(diào)控。該基因在水稻穗分生組織中通過調(diào)控()基因的轉(zhuǎn)錄反饋環(huán), 增強(qiáng)CTK活性, 進(jìn)而促進(jìn)編碼赤霉素20-氧化酶的的轉(zhuǎn)錄, 抑制活性GA1和GA3的積累, 從而增加穗粒數(shù)[27]。這些結(jié)果也從另一方面說明了CTK相關(guān)基因的表達(dá)對(duì)每穗粒數(shù)的形成起到了至關(guān)重要的調(diào)控作用。()、()和()是與水稻抽穗期感光性相關(guān)的3個(gè)主效數(shù)量性狀基因座, 它能同時(shí)控制水稻株高、每穗粒數(shù)和抽穗期3個(gè)性狀。單(敲除和)促進(jìn)穗粒數(shù)形成, 而單(敲除和)抑制穗粒數(shù)形成。日照長(zhǎng)短對(duì)上述3個(gè)基因的表達(dá)水平也有重要影響作用, 長(zhǎng)日照下,促進(jìn)表達(dá), 并被和招募形成不同的抑制復(fù)合體, 產(chǎn)生不同程度的延遲抽穗或不抽穗。而短日照下,表達(dá)量很低,與抑制復(fù)合體間表現(xiàn)出競(jìng)爭(zhēng)關(guān)系,表達(dá)量的增加可以不同程度地促進(jìn)抽穗和穗粒數(shù)形成[28-29]。主要在幼嫩組織中表達(dá), 它的高表達(dá)量能夠顯著增加一次枝梗數(shù)和二次枝梗數(shù), 尤其是二次枝梗的數(shù)量。也有研究觀察到,()能促進(jìn)細(xì)胞分裂, 增加枝梗數(shù)和每穗籽粒數(shù), 進(jìn)而促進(jìn)水稻增產(chǎn)[30]。除此之外, 每穗粒數(shù)還受到()、()、()和()等基因調(diào)控[28,31]。

3 影響水稻每穗粒數(shù)形成的主要因素

3.1 營養(yǎng)狀況與氮肥管理

水稻穎花現(xiàn)存數(shù)與氮素積累量和穗發(fā)育階段的營養(yǎng)狀況、生物積累量密切相關(guān)。水稻大穗形成的前提是充足的營養(yǎng)生長(zhǎng)量和碳氮代謝水平的協(xié)調(diào)穩(wěn)定, 這也是源強(qiáng)的直接表現(xiàn)[13]。當(dāng)?shù)鼗蛏锓e累量減少時(shí), 穎花分化數(shù)會(huì)隨之減少。水稻幼穗發(fā)育過程中吸收的氮、磷、鉀等礦物質(zhì)營養(yǎng)元素主要用于構(gòu)成碳水化合物、蛋白質(zhì)和核酸。碳水化合物主要用來構(gòu)建穗、枝梗和小花, 蛋白質(zhì)和核酸則主要用于減少枝梗和穎花的退化、充實(shí)生殖器官[32]。在水稻由營養(yǎng)生長(zhǎng)向生殖生長(zhǎng)轉(zhuǎn)化的階段, 莖稈和幼穗處于共同旺盛生長(zhǎng)時(shí)期, 互相競(jìng)爭(zhēng)同化物[33-34]。葉片含糖量的增加是保證幼穗分化和水稻植株迅速生長(zhǎng)的基礎(chǔ), 幼穗分化始期營養(yǎng)不足, 穎花分化數(shù)將明顯減少, 影響結(jié)實(shí)粒數(shù)[8,35]。穎花干物質(zhì)量越低, 退化就越多; 反之, 穎花干物質(zhì)量越高, 枝梗和穎花退化越少, 每穗粒數(shù)則越多[11,36]。幼穗與莖稈競(jìng)爭(zhēng)同化物的能力直接影響到穗粒數(shù)的形成。相對(duì)于莖稈來說, 幼穗是一個(gè)較弱的庫。當(dāng)水稻進(jìn)入花粉母細(xì)胞減數(shù)分裂期后, 幼穗對(duì)營養(yǎng)物質(zhì)的競(jìng)爭(zhēng)能力大于莖稈[37]。此期過多無效分蘗和穗數(shù)將再次引起空間和養(yǎng)分的競(jìng)爭(zhēng), 最終導(dǎo)致稈細(xì)穗弱, 穎花發(fā)育不良。

每穗穎花數(shù)由穎花分化數(shù)和退化數(shù)決定。研究表明, 適宜的氮素水平可以顯著提高水稻的穎花分化數(shù), 從而增加每穗粒數(shù)[38-39]。氮肥的合理施用, 尤其是穗肥的合理用量與每穗粒數(shù)形成密切相關(guān)。作者研究觀察到, 在0~216 kg hm–2氮素穗肥范圍內(nèi), 增加施氮量可不同程度提高不同穗型超級(jí)稻品種一次枝梗和二次枝梗穎花分化數(shù)。穎花退化數(shù)和一次枝梗穎花退化率隨穗肥施氮量的增加而增加, 而二次枝梗穎花退化率隨穗肥施氮量增加呈先降后升的變化趨勢(shì)。不同穗型水稻品種對(duì)穗肥的響應(yīng)存在明顯差異, 小穗型水稻品種每穗穎花數(shù)對(duì)穗肥的響應(yīng)更大。如與不施穗肥相比, 施用穗肥后的小穗型品種南粳9108、中穗型品種揚(yáng)兩優(yōu)6號(hào)和大穗型品種甬優(yōu)1540每穗二次枝梗穎花現(xiàn)存數(shù)分別增加了25.0%~57.6%、10.5%~40.8%和7.1%~25.3% (圖1)。

碳氮代謝平衡是水稻幼穗正常發(fā)育的基礎(chǔ), 一般認(rèn)為, 氮代謝旺盛有利于營養(yǎng)生長(zhǎng), 而碳代謝旺盛有利于生殖生長(zhǎng)[41-42]。在幼穗分化前期, 施用一定量的氮素穗肥對(duì)葉片的當(dāng)時(shí)效應(yīng)是“得氮耗糖”, 但由于葉片等營養(yǎng)器官的相對(duì)生長(zhǎng)量變化, 在花粉母細(xì)胞減數(shù)分裂期后會(huì)出現(xiàn)“低氮高糖”現(xiàn)象, 這種現(xiàn)象有利于增加每穗穎花數(shù)。氮素營養(yǎng)可通過調(diào)節(jié)葉片光合作用和碳氮物質(zhì)分配比例, 使一部分碳氮物質(zhì)繼續(xù)供應(yīng)植株生長(zhǎng), 另一部分貯藏于幼穗、葉片等器官中, 并調(diào)節(jié)其相對(duì)生長(zhǎng)[43-44]。李剛?cè)A等[45]觀察到從穗分化開始到抽穗前20 d, 植株含氮量越高, 穎花分化數(shù)越多; 從抽穗前16 d開始, 植株體內(nèi)積累的非結(jié)構(gòu)性碳水化合物越多, 穎花退化率越低。在花粉母細(xì)胞減數(shù)分裂期前后, 幼穗急劇生長(zhǎng), 穎花急劇增大, 水稻從營養(yǎng)生長(zhǎng)過渡到生殖生長(zhǎng), 此過程以碳積累為主, 需要大量碳水化合物, 此期施用適當(dāng)比例氮肥可以防止穗下部的枝梗和穎花退化。水稻葉片需要保持一定的氮含量, 才有利于光合作用的進(jìn)行。施氮肥的植株比不施或少施氮肥的植株得到更多的氮素供應(yīng), 可使一些弱勢(shì)穎花得以生存而減少退化[46]。氮肥一方面通過影響穗分化期植株的碳氮代謝平衡影響穎花量的多少, 另一方面還可通過調(diào)節(jié)幼穗中IAA和CTK的時(shí)空分布來調(diào)控穎花發(fā)育[47], 這也表明植物激素在養(yǎng)分管理調(diào)控水稻穎花發(fā)育的過程中發(fā)揮著重要作用。

圖1 穗肥施氮量對(duì)不同穗型超級(jí)稻品種一、二次枝梗穎花分化和退化的影響

Nanjing 9108、Yangliangyou 6和Yongyou 1540分別代表小穗型(每穗粒數(shù)130粒左右)、中穗型(每穗粒數(shù)220粒左右)和大穗型(每穗粒數(shù)300粒左右)品種南粳9108、揚(yáng)兩優(yōu)6號(hào)和甬優(yōu)1540。0N、54N、108N、162N和216N分別代表穗肥施氮量為0、54、108、162和216 kg hm–2。DiN、SN、DeN和DR分別代表分化數(shù)、退化數(shù)、現(xiàn)存數(shù)和退化率。該圖根據(jù)參考文獻(xiàn)[40]改制。

Nanjing 9108, Yangliangyou 6, and Yongyou 1540 respectively represent small panicle size (about 130 spikelets per panicle), medium panicle size (about 220 spikekets per panicle) and large panicle size (about 300 spikelets per panicle) varieties of rice. 0N, 54N, 108N, 162N, and 216N represent the panicle nitrogen fertilizer rate of 0, 54, 108, 162, and 216 kg hm–2, respectively. DiN, SN, DeN, and DR represent differentiated number, degenerated number, surviving number, and degeneration rate, respectively. The figure is adapted from the reference of [40].

3.2 水分

幼穗分化期是水稻一生中生理需水量最多的時(shí)期?;ǚ勰讣?xì)胞減數(shù)分裂期對(duì)水分最為敏感, 此期遭受水分脅迫可能造成穎花退化數(shù)增加或花粉不育而影響總穎花量和結(jié)實(shí)粒數(shù), 不利于形成大穗[40,48]。有研究表明, 水分脅迫可顯著提高水稻葉鞘中氮的比例, 水分的缺失使得葉片光合作用的同化產(chǎn)物優(yōu)先運(yùn)往新生葉片和正在伸長(zhǎng)的莖稈, 而后運(yùn)往穗部, 此時(shí)營養(yǎng)物質(zhì)供應(yīng)不足就會(huì)導(dǎo)致穎花分化數(shù)減少、退化數(shù)增加[49]。因此, 自減數(shù)分裂開始至抽穗開花結(jié)束, 生產(chǎn)上一般采用水層灌溉的方法。但也有研究表明, 長(zhǎng)期淹水條件下根層土壤環(huán)境惡化會(huì)影響水稻根系和地上部的生長(zhǎng)發(fā)育, 不利于穎花發(fā)育和最終穗粒數(shù)形成[13,50]。

我們最近的研究表明, 與傳統(tǒng)淹水灌溉相比, 輕干濕交替灌溉(土壤落干期土水勢(shì)不低于-15 kPa或中午葉片水勢(shì)不低于-1.2 MPa)有利于促進(jìn)穎花分化、減少穎花退化, 最終有利于促進(jìn)水稻大穗形成[40]。其主要原因是土壤落干后復(fù)水使根系產(chǎn)生一種積極的自我調(diào)節(jié)能力(補(bǔ)償效應(yīng)), 即水稻受到輕度水分脅迫時(shí), 某些生理功能略有降低或生長(zhǎng)受阻, 但在復(fù)水后卻能超過正常供水狀態(tài)[48,51-53]。具體表現(xiàn)為增加了根系縱向伸長(zhǎng)和橫向擴(kuò)展, 提高了根系生物量和根毛數(shù)量以及根系吸收表面積, 擴(kuò)大了根系對(duì)水分和養(yǎng)分的吸收范圍, 增加了穗分化前期單莖干物質(zhì)和非結(jié)構(gòu)性碳水化合物的積累量, 進(jìn)而有利于增加水稻二次枝梗穎花分化數(shù)、降低二次枝梗穎花退化數(shù)與退化率, 提高水稻穎花現(xiàn)存數(shù), 最終獲得高產(chǎn)(表1)。

表1 穗分化期水分處理對(duì)不同穗型水稻品種穎花分化和退化的影響

CF: 常規(guī)灌溉; AWMD: 干濕交替灌溉; DiN: 分化數(shù); DeN: 退化數(shù); SN: 現(xiàn)存數(shù); DR: 退化率。標(biāo)以不同字母表示在= 0.05水平上差異顯著, 同欄內(nèi)同一品種間比較。該表根據(jù)參考文獻(xiàn)[54]改制。

CF: conventional irrigation; AWMD: alternate wetting and moderate soil drying; DiN: differentiated number; DeN: degenerated number; SN: surviving number; DR: degeneration rate. Different lowercase letters within the same column indicate significant differences at the= 0.05 level within the same variety. The table is adapted from the reference of [54].

3.3 溫光條件

溫度和光照是影響水稻每穗粒數(shù)的重要環(huán)境因子。幼穗分化期最適溫度為26~30℃, 溫度過高或過低均不利于每穗粒數(shù)形成。幼穗分化期遇高溫脅迫會(huì)減少水稻穎花分化數(shù)、增加退化數(shù)[33,55]?;ǚ勰讣?xì)胞減數(shù)分裂期對(duì)環(huán)境條件最為敏感, 此期受到高溫脅迫會(huì)導(dǎo)致IAA、CTK含量下降, ET釋放速率增加, 花粉代謝紊亂[56-57]。水稻在幼穗分化期遇高溫將積累大量氧化物, 氧離子、過氧化氫(H2O2)、丙二醛(MDA)等氧化物含量上升。隨著高溫脅迫時(shí)間的增加, 活性氧的生成速度已經(jīng)遠(yuǎn)遠(yuǎn)大于清除速度, 過氧化物酶(POD)、過氧化氫酶(CAT)和超氧化物歧化酶(SOD)等抗氧化酶活性受到抑制, 細(xì)胞膜受到傷害而影響水稻器官正常建成, 導(dǎo)致穎花退化數(shù)增加[58]。幼穗發(fā)育過程中, 花粉母細(xì)胞減數(shù)分裂期后2~3 d是水稻對(duì)低溫最為敏感的時(shí)期, 這一時(shí)期如遇17℃以下的低溫環(huán)境, 會(huì)降低穎花分化數(shù)和現(xiàn)存數(shù)、增加穎花退化數(shù)[59]。穗分化期低溫還會(huì)影響花粉粒的正常發(fā)育, 導(dǎo)致籽粒充實(shí)不良[48]。總之, 極端高溫或極端低溫均不利于穎花分化, 且低溫天氣對(duì)穎花退化的影響明顯大于高溫天氣[60]。日照時(shí)數(shù)和光照強(qiáng)度對(duì)一、二次枝梗數(shù)和穎花數(shù)的形成有較大影響作用, 水稻幼穗分化期如沒有足夠的光強(qiáng), 將影響營養(yǎng)物質(zhì)的積累, 導(dǎo)致枝梗分化速度減緩、穎花退化數(shù)增加[3,6]。

3.4 內(nèi)源激素

目前公認(rèn)的植物激素有6類: IAA、GAs、CTK、ABA、ET和油菜素甾醇(brassinosteriods, BRs)。此外, 多胺(polyamines, PAs)、水楊酸(salicylic acid, SA)和茉莉酸(jasmonic acid, JA)也具有植物激素的特征[61]。

CTK主要是一種由根系合成、通過輸導(dǎo)組織運(yùn)輸?shù)降厣喜糠謱?duì)植物生長(zhǎng)發(fā)育起調(diào)控作用的植物激素[40,47,62]。CTK除具誘導(dǎo)細(xì)胞分裂的作用外, 還參與延緩葉片衰老[63-64]、頂端優(yōu)勢(shì)[65]、根系增殖[24]和生殖生長(zhǎng)[66]等各種生理代謝過程。有研究表明, 水稻幼穗發(fā)育與CTK含量有明顯的同步性, 穎花分化期高濃度的CTK及其與IAA的比值有利于延長(zhǎng)分化時(shí)間, 促進(jìn)穎花分化, 抑制穎花退化[67]。CTK促進(jìn)穎花發(fā)育的同時(shí), 還能抑制IAA從分化較早的穎花中向外輸出, 削減幼穗生長(zhǎng)的頂端優(yōu)勢(shì), 使小穗生長(zhǎng)具有一致性, 從而穩(wěn)定穎花分化數(shù)、減少退化數(shù)[63,65]。除了CTK和IAA, GAs也是一種促進(jìn)植物生長(zhǎng)發(fā)育的激素。有學(xué)者觀察到, 當(dāng)水稻遭受鹽脅迫時(shí), 噴施GAs可以有效抑制穎花退化[68]。但亦有研究發(fā)現(xiàn), 水稻在花粉母細(xì)胞減數(shù)分裂期遭受干旱時(shí), 穎花退化數(shù)顯著增加, 但此時(shí)幼穗中的GAs含量并沒有下降[69]。因此, 水稻逆境脅迫下GAs水平對(duì)穎花分化與退化調(diào)控還有待進(jìn)一步研究。

ET和ABA常被認(rèn)為是抑制型植物激素[70-71]。前人觀察到, 高濃度的ET會(huì)誘發(fā)玉米和水稻等禾谷類作物的穎花(小花)退化或種子敗育。內(nèi)源ABA和ET還可能相互拮抗調(diào)控水稻穎花發(fā)育, 較高的ABA與ET比值能減少穎花退化[50,72]。此外, PAs、SA、JA對(duì)水稻穎花發(fā)育也有重要調(diào)控作用[63,66,73-74]。PAs廣泛存在于細(xì)胞各處并參與植物細(xì)胞代謝的整個(gè)過程, 如細(xì)胞分裂、DNA復(fù)制、轉(zhuǎn)錄和翻譯、細(xì)胞的生長(zhǎng)衰老以及對(duì)環(huán)境脅迫的響應(yīng)等。PAs通過與ET之間的拮抗作用響應(yīng)適度的土壤干旱, 從而調(diào)控水稻穎花退化[35]。在高溫脅迫下, 噴施SA能顯著提高水稻穗部可溶性糖、脯氨酸、GAs、BRs、IAA等激素的含量和抗氧化酶的活性, 減少小穗退化[75-76]。JA是植物體內(nèi)一種重要的脂類激素。研究表明, JA可通過激活()、()和()等已克隆的茉莉素合成及轉(zhuǎn)導(dǎo)基因的表達(dá)來調(diào)控穎花的分化與退化[77]。

BRs主要由油菜素內(nèi)酯(brassinolid, BL)和油菜素甾酮(castasterone, CS)及其衍生物組成, 對(duì)花粉育性、穎花分化與退化有明顯調(diào)控作用[78]。其中, 24-表油菜甾酮(24-epocastasterone, 24-epiCS)和28-高油菜素內(nèi)酯(28-homobrassinolide, 28-homoBL)被認(rèn)為是水稻體內(nèi)重要的BRs[79-80]。作者觀察到, 穎花原基分化期幼穗中較高含量的BRs (24-epiCS和28-homoBL)能促進(jìn)穎花分化, 提高花粉母細(xì)胞減數(shù)分裂期幼穗中BRs含量有利于減少穎花退化(圖2)。BRs主要通過以下三方面調(diào)控穎花分化和退化。(1)增加BRs含量可促進(jìn)()和()基因表達(dá), 從而提高花序分生組織的活性, 延遲小穗分生組織分化, 延長(zhǎng)枝梗發(fā)育時(shí)間, 有利于促進(jìn)穎花分化, 最終增加每穗穎花數(shù)。(2) BRs生物合成量的增加提高了水稻具有MYB結(jié)構(gòu)域蛋白的()基因表達(dá), 并直接觸發(fā)幼穗中糖利用相關(guān)基因的表達(dá), 可使幼穗從營養(yǎng)組織中獲得更多的碳同化物, 從而增加穎花分化數(shù)并降低穎花退化率。(3) BRs含量的提高發(fā)育幼穗中抗氧化系統(tǒng)的活性, 減少活性氧對(duì)幼穗細(xì)胞的傷害, 最終促進(jìn)穎花分化, 并減少穎花退化。BRs調(diào)控幼穗發(fā)育的機(jī)制分析見圖3[81]。

4 研究與展望

增加每穗粒數(shù)、促進(jìn)水稻大穗形成、增加庫容一直是水稻高產(chǎn)栽培和育種的重要目標(biāo)。目前, 此方面已有大量研究, 并取得明顯進(jìn)展。近年來, 以甬優(yōu)系列為代表的大穗型水稻品種在生產(chǎn)上應(yīng)用廣泛,多地多年均表現(xiàn)高產(chǎn)穩(wěn)產(chǎn), 代表性品種甬優(yōu)1540、甬優(yōu)2640和甬優(yōu)12的每穗粒數(shù)超過300粒[83-84], 遠(yuǎn)高于大面積生產(chǎn)中常用高產(chǎn)水稻品種的每穗粒數(shù), 但這些品種大穗形成的機(jī)制仍然不是十分明確?;谝延醒芯? 筆者認(rèn)為將來對(duì)水稻大穗形成機(jī)制的研究有以下三方面需要加強(qiáng)。

(圖2)

YD-6: 揚(yáng)稻6號(hào); YY-2640: 甬優(yōu)2640; SPD: 穎花原基分化期; PMC: 花粉母細(xì)胞減數(shù)分裂期。該圖根據(jù)參考文獻(xiàn)[82]改制。**< 0.01。

YD-6: Yangdao 6; YY-2640: Yongyou 2640; SPD: spikelet primordium differentiation period; PMC: pollen mother cell meiosis period. The figure is adapted from the reference of [82].**< 0.01.

圖3 水稻幼穗發(fā)育過程中油菜素甾醇(BRs)作用的描述模型

Fig 3 A descriptive model for the role of brassinosteriods (BRs) in panicle growth and development of rice

黑色箭頭“→”表示增強(qiáng), 紅色箭頭“→”表示抑制。IM activity: 分生組織活性; H2O2: 過氧化氫; O2: 氧氣; H2O: 水; AsA: 抗壞血酸; GSH: 谷胱甘肽; GSSH: 氧化型谷胱甘肽; D-mannose-1-P: 甘露糖-1-磷酸; GDP-D-mannose: 二磷酸鳥苷-二核苷酸-甘露糖; AO: 抗壞血酸氧化酶; APX: 抗壞血酸過氧化物酶; DHAR: 脫氫抗壞血酸還原酶; MDHAR: 單脫氫抗壞血酸還原酶; NADP: 氧化型煙酰胺腺嘌呤二核苷酸磷酸; NADPH: 還原型煙酰胺腺嘌呤二核苷酸磷酸; MDHA: 單脫氫抗壞血酸; DHA: 脫氫抗壞血酸; DKG: 2,3-二酮-L-古洛糖酸。該圖根據(jù)參考文獻(xiàn)[81]改制。

The black arrow “→” indicates enhancement, and the red arrow “→” indicates inhibition. IM activity: inflorescence meristem; H2O2: hydrogen peroxide; O2: oxygen; H2O: water; AsA: ascorbic acid; GSH: glutathione; GSSH: oxidized glutathione; D-mannose-1-P: D-mannose-1-phosphate; GDP-D-mannose: guanosine diphosphate-dinucleotide-mannose; AO: ascorbate oxidase; APX: ascorbate peroxidase; DHAR: dehydroascorbate reductase; MDHAR: monodehydroascorbate reductase; NADP: oxidized nicotinamide adenine dinucleotide phosphate; NADPH: reductive nicotinamide adenine dinucleotide phosphate; MDHA: monodehydroascorbate; DHA: dehydroascorbate; DKG: 2,3-diketogulonic acid. The figure is adapted from the reference of [81].

4.1 水稻根系形態(tài)生理與幼穗發(fā)育和大穗形成的關(guān)系及其機(jī)理

水稻根系形態(tài)生理指標(biāo)主要包括根重、根數(shù)、根長(zhǎng)、根系氧化力、激素種類與濃度、根系傷流液、根系分泌物組分與濃度。有研究表明, 每穗粒數(shù)多、產(chǎn)量高的品種在穗分化期有較高的根重[85]。但也有研究者認(rèn)為穗分化期根系數(shù)量在一定范圍內(nèi)與每穗粒數(shù)呈正相關(guān), 超過適宜范圍會(huì)造成無效消耗, 減少穎花分化、增加穎花退化, 造成每穗粒數(shù)減少, 即根系存在“冗余生長(zhǎng)”, 這不利于促進(jìn)水稻幼穗分化和產(chǎn)量提高[86-88]。更高的根系活力可以減少小穗退化, 促進(jìn)每穗粒數(shù)形成[89]。我們以往的研究觀察到, 在花粉母細(xì)胞減數(shù)分裂期至花粉內(nèi)容物充實(shí)期, 水稻根系玉米素+玉米素核苷含量和根系活性水平(根系氧化力、根系傷流量、根系總吸收表面積和根系活躍吸收表面積)與每穗粒數(shù)呈顯著或極顯著正相關(guān)。上述結(jié)果暗示了水稻根系形態(tài)生理和幼穗分化發(fā)育以及激素含量間的關(guān)系復(fù)雜, 其潛在的調(diào)控機(jī)制還不清楚。今后需要繼續(xù)加強(qiáng)對(duì)根系形態(tài)生理變化特點(diǎn)的分析, 深入研究其與激素的協(xié)同作用對(duì)幼穗發(fā)育和大穗形成的影響。

4.2 水肥管理和溫光條件對(duì)水稻穎花分化與退化的調(diào)控機(jī)制

水稻穗的大小主要由遺傳因素決定, 但其生長(zhǎng)周期內(nèi)的環(huán)境因素, 如高溫[90]、二氧化碳濃度[91]等對(duì)穗大小也有很大影響。目前, 栽培措施對(duì)穎花分化及退化的影響已有大量研究, 但相關(guān)研究仍存在許多薄弱之處, 如氮素穗肥影響水稻穎花分化和退化的機(jī)制、干濕交替等節(jié)水灌溉方式對(duì)水稻穎花分化和退化的具體影響方式、穗分化期高溫對(duì)水稻穎花分化及退化過程的影響及其與器官碳氮代謝及活性氧產(chǎn)生之間的關(guān)系還有待進(jìn)一步研究。另外, 已往研究多集中于穎花分化數(shù)和退化數(shù)的表觀觀察, 極少涉及幼穗發(fā)育中穎花形成與退化過程的研究。因此, 仍需深入研究明確水分和氮素管理對(duì)水稻穎花分化與退化的調(diào)控機(jī)理, 以期為增加每穗粒數(shù)提供理論依據(jù)。

4.3 植物激素間的相互作用調(diào)節(jié)穎花分化與退化的生理和分子機(jī)制

植物激素可調(diào)節(jié)植物的生長(zhǎng)發(fā)育和養(yǎng)分分配, 是植物適應(yīng)不同環(huán)境的首要作用因子。作者觀察到, 外源噴施BRs可顯著提高幼穗內(nèi)源激素的含量、能量水平和抗氧化能力, 并顯著降低幼穗中MDA和H2O2水平, 降低穎花退化率。表明BRs可通過調(diào)控能量和抗氧化能力水平, 進(jìn)而調(diào)控水稻穎花的發(fā)育[82]。但在逆境下外源BRs調(diào)控水稻植株內(nèi)源激素變化并影響穗發(fā)育過程的途徑和機(jī)制、BRs是否參與穎花分化退化對(duì)不同氮水平的響應(yīng)及其調(diào)控過程仍需進(jìn)一步探明。此外, 水稻激素含量變化具有一定規(guī)律性, 且易受諸多環(huán)境因素的影響, 各激素及其互作效應(yīng)對(duì)水稻穎花分化與退化、籽粒灌漿、產(chǎn)量和品質(zhì)等具有重要調(diào)節(jié)作用。目前對(duì)植物激素間的相互作用對(duì)水稻耐受性的響應(yīng)已有了初步的研究, 比如ABA和BRs在調(diào)控植物響應(yīng)干旱的機(jī)制上存在拮抗作用; 擬南芥的CTK受體在ABA信號(hào)轉(zhuǎn)導(dǎo)和滲透脅迫反應(yīng)中起負(fù)調(diào)控作用[92]。但是對(duì)于在不同水肥管理?xiàng)l件下, 植物激素間的互作效應(yīng)調(diào)節(jié)穎花分化與退化的機(jī)制是怎樣的?是協(xié)同作用還是拮抗作用?仍然缺乏研究。

[1] Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. Food security: the challenge of feeding 9 billion people., 2010, 327: 812–818.

[2] Xiong J, Ding C Q, Wei G B, Ding Y F, Wang S H. Characteristic of dry-matter accumulation and nitrogen-uptake of super-high-yielding early rice in China., 2013, 105: 1142–1150.

[3] Okamura M, Arai-Sanoh Y, Yoshida H, Mukouyama T, Adachi S, Yabe S, Nakagawa H, Tsutsumi K, Taniguchi Y, Kobayashi N, Kondo M. Characterization of high-yielding rice cultivars with different grain-filling properties to clarify limiting factors for improving grain yield., 2018, 219: 139–147.

[4] Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050., 2013, 8: e66428.

[5] Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D P, Huang J L. Crop production under drought and heat stress: plant responses and management options., 2017, 8: 1147.

[6] Wei H Y, Zhang H C, Blumwald E, Li H L, Cheng J Q, Dai Q G, Huo Z Y, Xu K, Guo B W. Different characteristics of high yield formation between inbredsuper rice and inter- sub-specific hybrid super rice., 2016, 198: 179–187.

[7] Zhang Z J, Chu G, Liu L J, Wang Z Q, Wang X M, Zhang H, Yang J C, Zhang J H. Mid-season nitrogen application strategies for rice varieties differing in panicle size., 2013, 150: 9–18.

[8] Tang L, Xu Z J, Chen W F. Advances and prospects of super rice breeding in China., 2017, 16: 984–991.

[9] Liu L J, Zhang H, Ju C X, Xiong Y W, Bian J L, Zhao B H, Yang J C. Changes in grain yield and root morphology and physiology of mid-season rice in the Yangtze River basin of China during the last 60 years., 2014, 6: 1–15.

[10] Zhang H, Liu H L, Hou D P, Zhou Y L, Liu M Z, Wang Z Q, Liu L J, Gu J F, Yang J C. The effect of integrative crop management on root growth and methane emission of paddy rice., 2019, 7: 444–457.

[11] Huang L Y, Yang D S, Li X X, Peng S B, Wang F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice., 2019, 233: 49–58.

[12] Furutani I, Sukegawa S, Kyozuka J. Genome-wide analysis of spatial and temporal gene expression in rice panicle development., 2006, 46: 503–511.

[13] González-Navarro O E, Griffiths S, Molero G, Reynolds M P, Slafer G A. Dynamics of floret development determining differences in spike fertility in an elite population of wheat., 2015, 172: 21–31.

[14] Itoh J I, Nonomura K I, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. Rice plant development: from zygote to spikelet., 2005, 46: 23–47.

[15] Li S B, Qian Q, Fu Z M, Zeng D L, Meng X B, Kyozuka J, Maekawa M, Zhu X D, Zhang J, Li J Y, Wang Y H. Short panicle1encodes a putative PTR family transporter and determines rice panicle size., 2009, 58: 592–605.

[16] Kobyasi K, Yamane K, Imaki T. Effects of non-structural carbohydrates on spikelet differentiation in rice., 2001, 4: 9–14.

[17] 喬中英, 陳培峰, 韓立宇, 顧俊榮, 季紅娟, 董明輝. 氮肥運(yùn)籌與栽插密度對(duì)粳稻穎花和產(chǎn)量形成的影響. 揚(yáng)州大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2016, 37(2): 56–62.

Qiao Z Y, Chen P F, Han L Y, Gu J R, Ji H J, Dong M H. Effects of nitrogen managements and transplanting density on spikelets and yield formation of japonica rice varieties.(Agric Life Sci Edn), 2016, 37(2): 56–62 (in Chinese with English abstract).

[18] Kamoi T, Kenzo T, Kuraji K, Momose K. Abortion of reproductive organs as an adaptation to fluctuating daily carbohydrate production., 2007, 154: 663–677.

[19] Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H, Terao T, Ishii R, Ohsugi R, Yamagishi T. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (L.): comparison of caryopses located at different positions in a panicle., 2005, 46: 620–628.

[20] Skazhennik M A, Vorob’yov N V, Sheudzhen A K, Kovalyov V S. Causes of increased panicle spikelet sterility in rice., 2015, 41: 309–310.

[21] Kobata T, Tanaka S, Utumi M, Hara S, Imaki T. Sterility in rice (L.) subject to drought during the booting stage occurs not because of lack of assimilate or of water- deficit in the shoot but because of dehydration of the root-zone., 1994, 63: 510–517.

[22] 孫永健, 孫園園, 嚴(yán)奉君, 楊志遠(yuǎn), 徐徽, 李玥, 王海月, 馬均. 氮肥后對(duì)不同氮效率水稻花后碳氮代謝的影響. 作物學(xué)報(bào), 2017, 43: 407–419.

Sun Y J, Sun Y Y, Yan F J, Yang Z Y, Xu H, Li Y, Wang H Y, Ma J. Effects of postponing nitrogen topdressing on post-anthesis carbon and nitrogen metabolism in rice cultivars with different nitrogen use efficiencies., 2017, 43: 407–419 (in Chinese with English abstract).

[23] 阮新民, 施伏芝, 從夕漢, 羅志祥. 氮高效利用水稻碳氮代謝物含量的變化特征. 作物雜志, 2015, (6): 76–83.

Ruan X M, Shi F Z, Cong X H, Luo Z X. Characteristics of carbon and nitrogen metabolites of rice genotype with high nitrogen use efficiency., 2015, (6): 76–83 (in Chinese with English abstract).

[24] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production., 2005, 309: 741–745.

[25] Gouda G, Gupta M K, Donde R, Kumar J, Vadde R, Mohapatra T, Behera L. Computational approach towards understanding structural and functional role of cytokinin oxidase/dehydrogenase 2 (CKX2) in enhancing grain yield in rice plant., 2019, 38: 1158–1167.

[26] Hudson D, Guevara D R, Hand A J, Xu Z H, Hao L X, Chen X, Zhu T, Bi Y M, Rothstein S J. Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture., 2013, 162: 132–144.

[27] Wu Y, Wang Y, Mi X F, Shan J X, Li X M, Xu J F, Lin H X. The QTLencodes, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems., 2016, 12: e1006386.

[28] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation inis an important regulator of heading date and yield potential in rice., 2008, 40: 761–767.

[29] Zong W B, Ren D, Huang M H, Sun K L, Feng J L, Zhao J, Xiao D D, Xie W H, Liu S Q, Zhang H, Qiu R, Tang W J, Yang R Q, Chen H Y, Xie X R, Chen L T, Liu Y G, Guo J X. Strong photoperiod sensitivity is controlled by cooperation and competition among,andin rice heading., 2020, 229: 1635–1649.

[30] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at thelocus enhances grain yield in rice., 2009, 41: 494–497.

[31] Terao T, Nagata K, Morino K, Hirose T. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice., 2009, 120: 875–893.

[32] Wang Y X, Yang L X, Kobayashi K, Zhu J G, Chen C P, Yang K F, Tang H Y, Wang Y L. Investigations on spikelet formation in hybrid rice as affected by elevated tropospheric ozone concentration in China., 2012, 150: 63–71.

[33] Kovi M R, Bai X F, Mao D H, Xing Y Z. Impact of seasonal changes on spikelets per panicle, panicle length and plant height in rice (L.)., 2011, 179: 319–331.

[34] Zhao L, Tan L B, Zhu Z F, Xiao L T, Xie D X, Sun C Q. Pay 1 improves plant architecture and enhances grain yield in rice., 2015, 83: 528–536.

[35] Zhang W Y, Chen Y J, Wang Z Q, Yang J C. Polyamines and ethylene in rice young panicles in response to soil drought during panicle differentiation., 2017, 82: 491–503.

[36] Osugi A, Sakakibara H. Q&A: how do plants respond to cytokinins and what is their importance?, 2015, 13: 1–10.

[37] 田青蘭, 劉波, 孫紅, 何莎, 鐘曉媛, 趙敏, 任萬軍. 不同播栽方式下雜交秈稻莖稈生長(zhǎng)和穗粒形成特點(diǎn)及與氣象因子的關(guān)系. 中國水稻科學(xué), 2016, 30: 507–524.

Tian Q L, Liu B, Sun H, He S, Zhong X Y, Zhao M, Ren W J. Characteristics of stem growth and formation of grain ofhybrid rice in different planting methods and their correlation with meteorological factors., 2016, 30: 507–524 (in Chinese with English abstract).

[38] 劉利, 雷小龍, 王麗, 鄧飛, 劉代銀, 任萬軍. 種植方式對(duì)雜交稻枝梗和穎花分化及退化的影響. 作物學(xué)報(bào), 2013, 39: 1434–1444.

Liu L, Lei X L, Wang L, Deng F, Liu D Y, Ren W J. Effect of planting methods on differentiation and retrogression of branches and spikelets of hybrid rice cultivar., 2013, 39: 1434–1444 (in Chinese with English abstract).

[39] 付鵬浩. 氮肥運(yùn)籌對(duì)大穗型水稻穎花分化、籽粒灌漿和產(chǎn)量的影響及機(jī)理. 華中農(nóng)業(yè)大學(xué)博士學(xué)位論文, 湖北武漢, 2020.

Fu P H. Effect of Nitrogen Management on Spikelet Differentiation, Grain Filling and Grain Yield and Its Mechanisms for Large-Panicle Type. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2020 (in Chinese with English abstract).

[40] 劉昆, 黃健, 周沈琪, 張偉楊, 張耗, 顧駿飛, 劉立軍. 穗肥施氮量對(duì)不同穗型超級(jí)稻品種產(chǎn)量的影響及其機(jī)理. 作物學(xué)報(bào), 2022, 48: 2028–2040.

Liu K, Huang J, Zhou S Q, Zhang W Y, Zhang H, Gu J F, Liu L J. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism., 2022, 48: 2028–2040 (in Chinese with English abstract).

[41] Wang Z Q, Zhang W Y, Yang J C. Physiological mechanism underlying spikelet degeneration in rice., 2018, 17: 1475–1481.

[42] Yoshida A, Ohmori Y, Kitano H, Taguchi-Shiobara F, Hirano H Y. Aberrant spikelet and panicle1, encoding a topless- related transcriptional co-repressor, is involved in the regulation of meristem fate in rice., 2012, 70: 327–339.

[43] 汪本福, 余振淵, 程建平, 李陽, 張枝盛, 楊曉龍. 氮素對(duì)水稻產(chǎn)量和品質(zhì)形成的影響研究進(jìn)展. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 2022, 41(1): 76–83.

Wang B F, Yu Z Y, Cheng J P, Li Y, Zhang Z S, Yang X L. Research progress of effects of nitrogen on yield and quality of rice., 2022, 41(1): 76–83 (in Chinese with English abstract).

[44] 魏海燕, 凌啟鴻, 張洪程, 郭文善, 楊建昌, 陳德華, 冷鎖虎, 陸衛(wèi)平, 邢志鵬. 作物群體質(zhì)量及其關(guān)鍵調(diào)控技術(shù). 揚(yáng)州大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2018, 39(2): 1–9.

Wei H Y, Ling Q H, Zhang H C, Guo W S, Yang J C, Chen D H, Leng S H, Lu W P, Xing Z P. The quality of crop population and its key regulation technology.(Agric Life Sci Edn), 2018, 39(2): 1–9 (in Chinese with English abstract).

[45] 李剛?cè)A, 王惠芝, 王紹華, 王強(qiáng)盛, 鄭永美, 丁艷鋒. 穗肥對(duì)水稻穗分化期碳氮代謝及穎花數(shù)的影響. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2010, 33(1): 1–5.

Li G H, Wang H Z, Wang S H, Wang Q S, Zheng Y M, Ding Y F. Effects of nitrogen applied at rice panicle initiation stage on carbon and nitrogen metabolism and spikelets per panicle., 2010, 33(1): 1–5 (in Chinese with English abstract).

[46] Deng F, Wang L, Mei X F, Li S X, Pu S L, Ren W J. Polyaspartate urea and nitrogen management affect nonstructural carbohydrates and yield of rice., 2016, 56: 3272–3285.

[47] Gu J F, Li Z K, Mao Y Q, Struik P C, Zhang H, Liu L J, Wang Z Q, Yang J C. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications., 2018, 274: 320–331.

[48] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang, J H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice., 2009, 113: 31–40.

[49] 鐘楚. 水分脅迫下水稻氮素利用及其適應(yīng)機(jī)理. 華中農(nóng)業(yè)大學(xué)博士學(xué)位論文, 湖北武漢, 2018.

Zhong C. Nitrogen Utilization and Its Adaptive Mechanism of Rice (L.) under Water Stress. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).

[50] Yang J C, Liu K, Wang Z Q, Du Y, Zhang J H. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential., 2007, 49: 1445–1454.

[51] Yang C M, Yang L Z, Yang Y X, Ou-Yang Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils., 2004, 70: 67–81.

[52] 陳培峰, 韓立宇, 顧俊榮, 喬中英, 王文青, 董明輝. 灌溉方式與施氮量對(duì)雜交粳稻穎花形成及籽粒充實(shí)的影響. 核農(nóng)學(xué)報(bào), 2017, 31: 1604–1611.

Chen P F, Han L Y, Gu J R, Qiao Z Y, Wang W Q, Dong M H. Effects of irrigation pattern and nitrogen applications on spikelets formation and grain filling in hybridrice., 2017, 31: 1604–1611 (in Chinese with English abstract).

[53] 田青蘭, 劉波, 鐘曉媛, 趙敏, 孫紅, 任萬軍. 不同播栽方式下雜交秈稻非結(jié)構(gòu)性碳水化合物與枝梗和穎花形成及產(chǎn)量性狀的關(guān)系. 中國農(nóng)業(yè)科學(xué), 2016, 49: 35–53.

Tian Q L, Liu B, Zhong X Y, Zhao M, Sun H, Ren W J. Relationship of NSC with the formation of branches and spikelets and the yield traits ofhybrid rice in different planting methods., 2016, 49: 35–53 (in Chinese with English abstract).

[54] Liu K, Chen Y, Huang J, Qiu Y Y, Li S Y, Zhuo X X, Yu F, Gao J, Li G M, Zhang W Y, Zhang H, Gu J F, Liu L J, Yang J C. Spikelet differentiation and degeneration in rice varieties with different panicle sizes., 2022, 11: e320.

[55] 王亞梁, 張玉屏, 曾研華, 武輝, 向鏡, 陳惠哲, 張義凱, 朱德峰. 水稻穗分化期高溫對(duì)穎花分化及退化的影響. 中國農(nóng)業(yè)氣象, 2015, 36: 724–731.

Wang Y L, Zhang Y P, Zeng Y H, Wu H, Xiang J, Chen H Z, Zhang Y K, Zhu D F. Effects of high temperature stress on rice spikelet differentiation and degeneration during panicle initiation stage., 2015, 36: 724–731 (in Chinese with English abstract).

[56] 曹云英, 段驊, 楊立年, 王志琴, 周少川, 楊建昌. 減數(shù)分裂期高溫脅迫對(duì)耐熱性不同水稻品種產(chǎn)量的影響及其生理原因. 作物學(xué)報(bào), 2008, 34: 2134–2142.

Cao Y Y, Duan H, Yang L N, Wang Z Q, Zhou S C, Yang J C. Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism., 2008, 34: 2134–2142 (in Chinese with English abstract).

[57] Oshino T, Abiko M, Saito R, Ichiishi E, Endo M, Kawagishi- Kobayashi M, Higashitani A. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants., 2007, 278: 31–42.

[58] 劉航江, 袁新捷, 陳國興. 高溫脅迫下粳稻產(chǎn)量因子的變化以及對(duì)抗氧化酶活性的影響. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)), 2021, 36(1): 14–21.

Liu H J, Yuan X J, Chen G X. Changes ofrice factors and effects on antioxidant enzyme activities under high temperature stress.(Nat Sci Edn), 2021, 36(1): 14–21 (in Chinese with English abstract).

[59] 曾研華, 張玉屏, 向鏡, 王亞梁, 陳惠哲, 朱德峰. 秈型常規(guī)早稻穗分化期低溫對(duì)穎花形成和籽粒充實(shí)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26: 2007–2014.

Zeng Y H, Zhang Y P, Xiang J, Wang Y L, Chen H Z, Zhu D F. Effects of low temperature on formation of spikelets and grain filling ofinbred rice during panicle initiation in early-season., 2015, 26: 2007–2014 (in Chinese with English abstract).

[60] 王亞梁, 張玉屏, 向鏡, 王磊, 陳惠哲, 張義凱, 張文倩, 朱德峰. 秈稻穎花分化與退化對(duì)不同播期溫光的響應(yīng). 應(yīng)用生態(tài)學(xué)報(bào), 2017, 28: 3571–3580.

Wang Y L, Zhang Y P, Xiang J, Wang L, Chen H Z, Zhang Y K, Zhang W Q, Zhu D F. Response ofrice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates., 2017, 28: 3571–3580 (in Chinese with English abstract).

[61] 盛家艷, 張偉楊, 王志琴, 楊建昌. 水稻穎花退化機(jī)理與調(diào)控途徑. 作物雜志, 2019, (2): 20–27.

Sheng J Y, Zhang W Y, Wang Z Q, Yang J C. Mechanism and regulation spikelet degeneration of rice., 2019, (2): 20–27 (in Chinese with English abstract).

[62] Han Y Y, Yang H B, Jiao Y L. Regulation of inflorescence architecture by cytokinins., 2014, 5: 669.

[63] Talla S K, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes., 2016, 67: 1839–1851.

[64] Kim H J, Ryu H, Hong S H, Woo H R, Lim P O, Lee I C, Sheen J, Nam H G, Hwang I. Cytokinin-mediated control of leaf longevity by Ahk3 through phosphorylation of ARR2 in, 2006, 103: 814–819.

[65] Shimizu-Sato S, Tanaka M, Mori H. Auxin-cytokinin interactions in the control of shoot branching., 2008, 69: 429–435.

[66] Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T. Cytokinin-deficient transgenicplants show multiple developmental alterations indicating opposite functions of cytokinins in regulating shoot and root meristem activity., 2003, 15: 2532–2550.

[67] 王夏雯, 王紹華, 李剛?cè)A, 王強(qiáng)盛, 劉正輝, 余翔, 丁艷鋒. 氮素穗肥對(duì)水稻幼穗細(xì)胞分裂素和生長(zhǎng)素濃度的影響及其與穎花發(fā)育的關(guān)系. 作物學(xué)報(bào), 2008, 34: 2184–2189.

Wang X W, Wang S H, Li G H, Wang Q S, Liu Z H, Yu X, Ding Y F. Effect of panicle nitrogen fertilizer on concentrations of cytokinin and auxin in young panicle ofrice and its relation with spikelet development., 2008, 34: 2184–2189 (in Chinese with English abstract).

[68] Pandey G K. Mechanism of Plant Hormone Signaling under Stress, 2nd edn. New Jersey: Wiley Blackwell, 2017. pp 453–459.

[69] Yang J C, Liu K, Zhang S F, Wang X M, Wang Z Q, Liu L J. Hormones in rice spikelets in responses to water stress during meiosis., 2008, 34: 111–118.

[70] Yang J C, Zhang J H, Liu K, Wang Z Q, Liu L J. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling., 2010, 171: 293–303.

[71] Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long- distance signaling., 2018, 556: 235–238.

[72] Feng H Y, Wang Z M, Kong F N, Zhang M J, Zhou S L. Roles of carbohydrate supply and ethylene, polyamines in maize kernel set., 2011, 53: 388–398.

[73] 趙宏偉, 李曉, 賈琰, 張盛楠, 張妍, 王喆, 韓東. 水楊酸對(duì)孕穗期低溫脅迫寒地粳稻穎花形成的影響. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019, 50(6): 1–9.

Zhao H W, Li X, Jia Y, Zhang S N, Zhang Y, Wang Z, Han D. Effects of salicylic acid on formation of spikelet inrice under low-temperature stress at booting stage., 2019, 50(6): 1–9 (in Chinese with English abstract).

[74] 陳睿. 茉莉素、生長(zhǎng)素和表觀遺傳調(diào)控水稻穎花發(fā)育的研究進(jìn)展. 福建農(nóng)業(yè)科技, 2021, 51(1): 62–67.

Chen R. Research progress on the regulation of jasmonates, auxin and epigenetics on rice floret development., 2021, 51(1): 62–67 (in Chinese with English abstract).

[75] 符冠富, 張彩霞, 楊雪芹, 楊永杰, 陳婷婷, 趙霞, 符衛(wèi)蒙, 奉保華, 章秀福, 陶龍興, 金千瑜. 水楊酸減輕高溫抑制水稻穎花分化的作用機(jī)理研究. 中國水稻科學(xué), 2015, 29: 637–647.

Fu G H, Zhang C X, Yang X Q, Yang Y J, Chen T T, Zhao X, Fu W M, Feng B H, Zhang X F, Tao L X, Jin Q Y. Action mechanism by which SA alleviates high temperature-induced inhibition to spikelet differentiation., 2015, 29: 637–647 (in Chinese with English abstract).

[76] Zhang C X, Feng B H, Chen T T, Zhang X F, Tao L X, Fu G F. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress., 2017, 83: 313–323.

[77] Cai Q, Yuan Z, Chen M J, Yin C S, Luo Z J, Zhao X X, Liang W Q, Hu J P, Zhang D B. Jasmonic acid regulates spikelet development in rice., 2014, 5: 3476.

[78] 姚佳瑜, 于吉祥, 王志琴, 劉立軍, 周娟, 張偉楊, 楊建昌. 水稻內(nèi)源油菜素甾醇對(duì)施氮量的響應(yīng)及其對(duì)穎花退化的調(diào)控作用. 作物學(xué)報(bào), 2021, 45: 894–903.

Yao J Y, Yu J X, Wang Z Q, Liu L J, Zhou J, Zhang W Y, Yang J C. Response of endogenous brassinosteriods to nitrogen rates and its regulatory effect on spikelet degeneration in rice., 2021, 45: 894–903 (in Chinese with English abstract).

[79] Zhang W Y, Sheng J Y, Fu L D, Xu Y J, Xiong F, Wu Y F, Wang W L, Wang Z Q, Zhang J H, Yang J C. Brassinosteroids mediate the effect of soil-drying during meiosis on spikelet degeneration in rice., 2020, 169: 103887.

[80] Bajguz A, Tretyn A. The chemical characteristic and distribution of brassinosteroids in plant., 2003, 62: 1027–1046.

[81] Zhang W Y, Sheng J Y, Xu Y J, Xiong F, Wu Y F, Wang W L, Wang Z Q, Yang J C, Zhang J H. Role of brassinosteroids in rice spikelet differentiation and degeneration under soil- drying during panicle development., 2019, 19: 409.

[82] Zhang W Y, Zhu K Y, Zhang H, Gu J F, Liu L J, Yang J C, Zhang J H. Brassinosteroids function in spikelet differentiation and degeneration in rice., 2019, 61: 943–963.

[83] 周磊, 劉秋員, 田晉鈺, 朱夢(mèng)華, 程爽, 車陽, 王志杰, 邢志鵬, 胡雅杰, 劉國棟, 魏海燕, 張洪程. 甬優(yōu)系列秈粳雜交稻產(chǎn)量及氮素吸收利用的差異. 作物學(xué)報(bào), 2020, 46: 772–786.

Zhou L, Liu Q Y, Tian J Y, Zhu M H, Cheng S, Che Y, Wang Z J, Xing Z P, Hu Y J, Liu G D, Wei H Y, Zhang H C.Differences in yield and nitrogen absorption and utilization ofhybrid rice varieties of Yongyou series., 2020, 46: 772–786 (in Chinese with English abstract).

[84] 汪峰, 諶江華, 陳若霞, 史駿, 任少鵬, 金樹權(quán), 姚紅燕, 朱德峰, 戴瑤璐. 減氮對(duì)甬優(yōu)秈粳雜交稻產(chǎn)量和氮肥利用率的影響. 浙江農(nóng)業(yè)學(xué)報(bào), 2021, 33: 984–992.

Wang F, Chen J H, Chen R X, Shi J, Ren S P, Jin S Q, Yao H Y, Zhu D F, Dai L Y. Effects of reduced nitrogen application on yield and nitrogen agronomic efficiency of Yongyou-hybrid rice., 2021, 33: 984–992 (in Chinese with English abstract).

[85] Liu K, Li T T, Chen Y, Huang J, Qiu Y Y, Li S Y, Wang H, Zhu A, Zhuo X X, Yu F, Zhang H, Gu J F, Liu L J, Yang J C. Effects of root morphology and physiology on the formation and regulation of large panicles in rice., 2020, 258, 107946.

[86] 楊建昌. 水稻根系形態(tài)生理與產(chǎn)量、品質(zhì)形成及養(yǎng)分吸收利用的關(guān)系. 中國農(nóng)業(yè)科學(xué), 2011, 44: 36–46.

Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization., 2011, 44: 36–46 (in Chinese with English abstract).

[87] 劉文兆, 李秧秧. 斷傷作物根系對(duì)籽粒產(chǎn)量與水分利用效率的影響研究現(xiàn)狀及問題. 西北植物學(xué)報(bào), 2003, 23: 1320–1324.

Liu W Z, Li Y Y. Effect of crop root-cutting on grain yield and water use efficiency., 2003, 23: 1320–1324 (in Chinese with English abstract).

[88] 汪強(qiáng), 樊小林, 劉芳, 李方敏, Klaus D, Sattemacher B. 斷根和覆草旱作條件下水稻的產(chǎn)量效應(yīng). 中國水稻科學(xué), 2004, 18: 437–442.

Wang Q, Fan X L, Liu F, Li F M, Klaus D, Sattemacher B. Effect of root cutting on rice yield by shifting normal paddy to upland cultivation., 2004, 18: 437–442 (in Chinese with English abstract).

[89] Liu L J, Zhang H, Ju C X, Xiong Y W, Bian J L, Zhao B H, Yang J C. Changes in grain yield and root morphology and physiology of mid-season rice in the Yangtze River basin of China during the last 60 years., 2014, 6: 1–15.

[90] 宋有金, 吳超. 高溫影響水稻穎花育性的生理機(jī)制綜述. 江蘇農(nóng)業(yè)科學(xué), 2020, 48(16): 41–48.

Song Y J, Wu C. A review on the physiological mechanism of high temperature affecting spikelet fertility in rice., 2020, 48(16): 41–48 (in Chinese).

[91] 楊洪建, 王余龍, 黃建曄, 董桂春, 朱建國, 楊連新, 單玉華. 開放式空氣CO2濃度增高對(duì)水稻穎花分化和退化的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2002, 13: 1215–1218.

Yang H J, Wang Y L, Huang J Y, Dong G C, Zhu J G, Yang L X, Shan Y H. Effect of free-air CO2enrichment (FACE) on spikelets differentiation and retrogression in rice (L.)., 2002, 13: 1215–1218 (in Chinese with English abstract).

[92] Wang J Y, Jia J X, Xiong Z Q, Khalil M A K, Xing G X. Water regime-nitrogen fertilizer-straw incorporation interaction: field study on nitrous oxide emissions from a rice agroecosystem in Nanjing, China., 2011, 141: 437–446.

Research progress on the formation of large panicles in rice and its regulation

LIU Li-Jun*, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, and YANG Jian-Chang

Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, Jiangsu, China

The spikelet number per panicle is a key factor that constitutes the grain yield in rice. Modern high-yielding rice varieties mostly show high spikelet number per panicle. Increasing the spikelet number per panicle and promoting the formation of large panicles are important ways to improve rice yield. This paper reviewed the relationship between the formation of spikelet number per panicle and young panicle development in rice. Combined with the author’s related research, the mechanisms underlying genetic regulation in rice panicle size, the effects of nutritional status and nitrogen fertilizer management, water, temperature, light, and endogenous hormones on the formation of spikelet number per panicle in rice were reviewed. We put forward the future research focus on strengthening the formation of large panicles in rice from the aspects of root morphophysiology and young panicle development, water and nitrogen management, temperature and light conditions, and the physiological and molecular mechanisms of interaction between plant hormones regulating spikelet degeneration. The purpose of this study was to provide a basis for the selection and cultivation of high-yielding rice varieties with large panicles.

rice; large panicle; spikelet differentiation and degeneration; water and nutrient management; hormone

10.3724/SP.J.1006.2023.22035

本研究由國家自然科學(xué)基金項(xiàng)目(32071947, 31871557)資助。

This study was supported by the National Natural Science Foundation of China (32071947, 31871557).

通信作者(Corresponding author):劉立軍, E-mail: ljliu@yzu.edu.cn, Tel: 0514-87972133

2022-06-07;

2022-09-05;

2022-09-23.

URL: https://kns.cnki.net/kcms/detail/11.1809.S.20220922.1443.002.html

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

猜你喜歡
穎花枝梗幼穗
多穗型與大穗型超級(jí)稻品種幼穗分化期碳氮代謝與產(chǎn)量構(gòu)成
鹽逆境對(duì)耐鹽水稻穗部性狀及產(chǎn)量構(gòu)成因素的影響
增密減氮對(duì)不同類型水稻品種穎花形成的影響
播期對(duì)機(jī)插雜交秈稻不同莖蘗部位稻穗枝梗數(shù)和穎花數(shù)的影響
粳稻鹽粳188 航天誘變后代穗部性狀多樣性及相關(guān)性分析
水稻內(nèi)源油菜素甾醇對(duì)施氮量的響應(yīng)及其對(duì)穎花退化的調(diào)控作用
三個(gè)寒地水稻品種株高與穎花數(shù)的相關(guān)分析
水稻不同穗型品種幼穗分化相關(guān)基因表達(dá)分析
四分體期低溫脅迫對(duì)2個(gè)小麥品種幼穗結(jié)實(shí)率及生理特性的影響
不同穗型粳稻品種(系)稻曲病粒在穗內(nèi)粒位上的分布
台前县| 邢台县| 康平县| 黔东| 嵩明县| 昌邑市| 伊金霍洛旗| 讷河市| 赤水市| 鹿泉市| 广州市| 开原市| 琼海市| 通渭县| 焉耆| 泰和县| 合水县| 托里县| 漾濞| 柯坪县| 巴塘县| 龙南县| 方正县| 松原市| 山西省| 南和县| 拜城县| 长武县| 广州市| 乌审旗| 双流县| 秦皇岛市| 陕西省| 永春县| 工布江达县| 定南县| 时尚| 博兴县| 博白县| 沅陵县| 江北区|