国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

豬源hnRNPA1基因克隆及其真核表達(dá)載體構(gòu)建

2024-02-09 00:00:00王文鋒高躍美金奕欣張麗媛宋丹丹羅廷榮李曉寧
關(guān)鍵詞:生物信息學(xué)分析

摘要:【目的】克隆豬源異質(zhì)性核糖核蛋白A1(hnRNPA1)基因編碼區(qū)(CDS)序列并構(gòu)建其真核表達(dá)載體,為探究豬源hnRNPA1蛋白結(jié)構(gòu)及其生物學(xué)特性提供理論參考。【方法】利用總RNA提取試劑盒提取PK-15細(xì)胞總RNA并反轉(zhuǎn)錄合成cDNA,以此為模板,采用SnapeGene設(shè)計(jì)hnRNPA1基因特異性擴(kuò)增引物,PCR擴(kuò)增獲得hnRNPA1基因CDS序列。通過(guò)ProtParam、ExPASy-ProtScale、TMHMM-1.0、SignalP-6.0、SPOMA、SWISS-MODEL和NetPhos 3.1等預(yù)測(cè)hnRNPA1蛋白的理化性質(zhì)、結(jié)構(gòu)及磷酸化位點(diǎn)。構(gòu)建pcDNA3.0-hnRNPA1-Flag真核表達(dá)載體并轉(zhuǎn)染HEK-293T細(xì)胞,通過(guò)實(shí)時(shí)熒光定量PCR、Western blottiing和免疫熒光染色試驗(yàn)檢測(cè)hnRNPA1基因真核表達(dá)載體構(gòu)建情況、hnRNPA1蛋白在細(xì)胞中的表達(dá)及分布情況?!窘Y(jié)果】成功克隆豬源hnRNPA1基因CDS序列。生物信息學(xué)分析結(jié)果顯示,hnRNPA1基因CDS序列全長(zhǎng)963 bp,編碼320個(gè)氨基酸殘基,hnRNPA1蛋白分子量約為35 kD,理論等電點(diǎn)(pI)為9.27,脂肪系數(shù)為38.34,不穩(wěn)定系數(shù)為43.87(大于40.00),蛋白結(jié)構(gòu)相對(duì)不穩(wěn)定,總平均親水性指數(shù)(GRAVY)為-0.879,屬于親水性蛋白,不含跨膜結(jié)構(gòu)域和信號(hào)肽,二級(jí)結(jié)構(gòu)由α-螺旋(16.56%)、無(wú)規(guī)則卷曲(72.50%)和延伸鏈(10.94%)組成,存在48個(gè)潛在的磷酸化位點(diǎn)。Western blotting檢測(cè)結(jié)果顯示,真核表達(dá)載體pcDNA3.0-hnRNPA1-Flag轉(zhuǎn)染HEK-293T細(xì)胞后能成功表達(dá)hnRNPA1蛋白。免疫熒光染色結(jié)果顯示,hnRNPA1蛋白主要在胞質(zhì)中表達(dá)。【結(jié)論】成功克隆豬源hnRNPA1基因CDS序列。豬源hnRNPA1蛋白為不穩(wěn)定的親水性蛋白,不含跨膜結(jié)構(gòu)域和信號(hào)肽,二級(jí)結(jié)構(gòu)主要為無(wú)規(guī)則卷曲。成功構(gòu)建pcDNA3.0-hnRNPA1-Flag真核表達(dá)載體,hnRNPA1蛋白主要在胞質(zhì)中表達(dá)。

關(guān)鍵詞:豬;hnRNPA1基因;生物信息學(xué)分析;表達(dá)載體構(gòu)建

中圖分類(lèi)號(hào):S828文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-1191(2024)11-3426-10

Cloning of porcine hnRNPA1 gene and construction of its eukaryotic expression vector

WANG Wen-feng1,2, GAO Yue-mei1,2, JIN Yi-xin1,2, ZHANG Li-yuan1,2,SONG Dan-dan1,2, LUO Ting-rong1,2,3,4* LI Xiao-ning1,2,3,4*

(1College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi 530004, China;Guangxi University/State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, Guangxi 530004, China; 3Guangxi Zhuang Autonomous Region Veterinary Biologics ProductsEngineering Research Center, Nanning, Guangxi 530004, China; 4Guangxi Key Laboratory of Animal Breeding and Diseases Control and Prevention, Nanning, Guangxi 530004, China)

Abstract:【Objective】In this study, the coding sequence( CDS) of the porcine heterogeneous ribonucleoprotein A1 (hnRNPA1) gene was cloned, the eukaryotic expression vector was constructed in order to investigate the structure and biological characteristics of porcine hnRNPA1 protein. 【Method】Total RNA of PK-15 cells was extracted by total RNA extraction kit and cDNA was synthesized by reverse transcription. Using this as a template, hnRNPA1 gene specific ampli‐fication primers were designed using SnapeGene, and the CDS sequence of hnRNPA1 gene was amplified by PCR. The physicochemical properties, structure and phosphorylation site of hnRNPA1 protein were predicted by ProtParam, ExPASy-ProtScale, TMHMM-1.0, SignalP-6.0, SPOMA, SWISS-MODEL and NetPhos 3.1. pcDNA3.0-hnRNPA1-Flag eukaryotic expression vector was constructed and transfected into HEK-293T cells. The construction of hnRNPA1 gene eu‐karyotic expression vector and the expression and distribution of hnRNPA1 protein in cells were detected by real-time fluo‐rescence quantitative PCR, Western blotting and immunofluorescence staining. 【Result】The coding sequence of porcine hnRNPA1 gene was successfully cloned. The full length of hnRNPA1 gene CDS sequence was 963 bp, encoding 320 amino acid residues with a molecular weight of 35 kD in hnRNPA1 protein. The theoretical isoelectric point (pI) was 9.27, fat coefficient was 38.34 and instability coefficient was 43.87( greater than 40.00). The protein structure was rela‐tively unstable and the total average hydrophilic index( GRAVY) was -0.879. It belonged to hydrophilic protein, which did not contain transmembrane domain and signal peptide. The secondary structure consisted of α-helix( 16.56%), ran‐dom coil (72.50%) and extended chain (10.94%), with 48 potential phosphorylation sites. Western blotting results showed that the eukaryotic expression vector pcDNA3.0-hnRNPA1-Flag could successfully express hnRNPA1 protein after transfection into HEK-293T cells. Immunofluorescence staining showed that hnRNPA1 protein was mainly expressed in the cytoplasm.【 Conclusion】The CDS sequence of porcine hnRNPA1 gene is successfully cloned. Porcine hnRNPA1 pro‐tein is an unstable hydrophilic protein, which does not contain transmembrane domains and signal peptides, and the se-condary structure is mainly random coil. pcDNA3.0-hnRNPA1-Flag eukaryotic expression vector was successfully con‐structed, and hnRNPA1-Flag protein is mainly expressed in cytoplasm.

Key words: pig; hnRNPA1 gene; bioinformatics analysis; construction of expression vector

Foundation items: National Natural Science Foundation of China(32360869,31660722); Guangxi Natural Science Foundation(2021GXNSFAA220007,2023GXNSFDA026043)

0 引言

【研究意義】真核細(xì)胞表達(dá)多種RNA結(jié)合蛋白(RNA binding protein,RBP),RBP能通過(guò)結(jié)合轉(zhuǎn)錄本中特定序列或二級(jí)結(jié)構(gòu)而調(diào)節(jié)RNA的成熟、轉(zhuǎn)錄、定位和翻譯,RBP對(duì)RNA有不同的親和力和特異性,所有RBP均可能存在多種靶標(biāo)RNA,進(jìn)而在RNA生物合成、表達(dá)和功能等方面發(fā)揮作用(Dreyfuss et al.,2002)。異質(zhì)性核糖核蛋白(Heterogeneous nuclear ribonucleoprotein,hnRNP)家族成員是一類(lèi)復(fù)雜且多樣化的RNA結(jié)合蛋白,hnRNP在異質(zhì)核RNA加工為成熟信使RNA的過(guò)程中發(fā)揮重要作用(Geuens et al.,2016)。hnRNP具有由一個(gè)或多個(gè)RNA結(jié)合結(jié)構(gòu)域(RNA binding domain,RBD)組成的模塊化結(jié)構(gòu),RNA識(shí)別基序(RNA recognition motif,RRM)是hnRNP中最常見(jiàn)的RBD。除RBD外,hnRNP還具有輔助結(jié)構(gòu)域,如富含甘氨酸和脯氨酸的結(jié)構(gòu)域,這些結(jié)構(gòu)域能介導(dǎo)蛋白間的相互作用、亞細(xì)胞定位及蛋白的功能特異性等(Han et al.,2010)。異質(zhì)性核糖核蛋白A1(Heterogeneous nuclear ribonucleo‐protein A1,hnRNPA1)是hnRNP家族成員中表達(dá)最廣泛的成員之一,其能通過(guò)調(diào)節(jié)新生RNA轉(zhuǎn)錄本的加工,而在基因轉(zhuǎn)錄、剪接、細(xì)胞和病毒轉(zhuǎn)錄物翻譯、microRNA加工、轉(zhuǎn)錄因子活性調(diào)節(jié)等生物學(xué)過(guò)程中發(fā)揮關(guān)鍵作用(Jean-Philippe et al.,2013;Wang et al.,2016)。研究表明,hnRNPA1基因與多種疾病的發(fā)生相關(guān),還參與癌癥調(diào)控和病毒感染等生物學(xué)過(guò)程(Kattimani and Veerappa,2018;Zhang et al.,2023)。因此,克隆豬源hnRNPA1基因編碼區(qū)(CDS)序列并構(gòu)建其真核表達(dá)載體對(duì)豬病毒性疾病的研究具有重要意義?!厩叭搜芯窟M(jìn)展】hnRNPA1有A1-A、A1-B兩個(gè)轉(zhuǎn)錄本,蛋白大小分別為38和34 kD,包含2個(gè)RNA結(jié)合結(jié)構(gòu)域、一個(gè)富含甘氨酸的輔助結(jié)構(gòu)域和一個(gè)M9核定位序列(Levin et al.,2017;Pic‐chiarelli and Dupuis,2020;Han et al.,2022;Li et al.,2023)。研究表明,hnRNPA1與多種疾病相關(guān)。Zhu等(2020)研究發(fā)現(xiàn),hnRNPA1能通過(guò)調(diào)節(jié)Bcl-xl而改善大鼠腦出血引起的繼發(fā)性腦損傷,上調(diào)hnRNPA1對(duì)減輕腦出血引起的繼發(fā)性腦損傷有益,而下調(diào)hnRNPA1則會(huì)加劇腦出血引起的繼發(fā)性腦損傷,提示hnRNPA1可能是治療腦出血引起的繼發(fā)性腦損傷的潛在靶點(diǎn);Beijer等(2021)研究證實(shí),hnRNPA1突變能造成肌萎縮側(cè)索硬化癥(Amyo‐trophic lateral sclerosis,ALS)和多系統(tǒng)蛋白病(Mul‐tisystem proteinopathy,MSP);Li等(2021)研究表明,乳腺癌、結(jié)直腸癌和前列腺癌細(xì)胞中高水平表達(dá)的精氨酸甲基轉(zhuǎn)移酶與高水平的hnRNPA1精氨酸甲基化和異常選擇性剪切相關(guān),抑制精氨酸甲基轉(zhuǎn)移酶后可抑制癌細(xì)胞生長(zhǎng),且兩者的共同抑制呈現(xiàn)協(xié)同效應(yīng),提示精氨酸甲基轉(zhuǎn)移酶和hnRNPA1可作為癌癥治療的潛在靶點(diǎn);Zhang等(2022)在環(huán)狀RNA調(diào)控牛肌肉發(fā)育的分子機(jī)制研究中發(fā)現(xiàn),hnRNPA1能負(fù)向調(diào)控circMEF2D,進(jìn)而通過(guò)miR-486-PI3K/AKT軸抑制成肌細(xì)胞的增殖和分化;Zhang等(2023)研究表明,hnRNPA1能通過(guò)SUMOylation依賴性機(jī)制參與神經(jīng)性疾病的調(diào)控,為篩選炎癥性痛覺(jué)過(guò)敏的治療靶點(diǎn)提供了新思路。此外,hnRNPA1在調(diào)節(jié)病毒復(fù)制過(guò)程中也發(fā)揮著重要作用。Huang等(2004)、Luo等(2005)研究發(fā)現(xiàn),hnRNPA1的C端區(qū)域具有高親和力,可直接與嚴(yán)重急性呼吸綜合征冠狀病毒(SARS CoV)的核衣殼蛋白(SARS-N)結(jié)合;Kaur等(2022)研究發(fā)現(xiàn),hnRNPA1能與甲型流感病毒(InfluenzaA virus,IAV)核蛋白相互作用并阻礙IAV的復(fù)制;Liu等(2023)研究表明,hnRNPA1為抗烏鱧水泡病毒(Snakehead vesiculo virus,SHVV)因子,SHVV感染能降低hnRNPA表達(dá)并誘導(dǎo)hnRNPA1的核質(zhì)穿梭,hnRNPA1能通過(guò)其富含甘氨酸的輔助結(jié)構(gòu)域與病毒磷蛋白相互作用而競(jìng)爭(zhēng)性破壞病毒磷蛋白和氮蛋白間的相互作用?!颈狙芯壳腥朦c(diǎn)】豬瘟是由豬瘟病毒引起的一種具有高發(fā)病率、高死亡率的傳染病,給我國(guó)養(yǎng)豬業(yè)帶來(lái)了巨大的經(jīng)濟(jì)損失(Beer et al.,2015)。hnRNPA1基因參與多種病毒的復(fù)制,在人類(lèi)疾病及癌癥領(lǐng)域中的研究較為深入(Harrison and Shorter,2017),但鮮見(jiàn)hnRNPA1基因在豬病毒性疾病方面的研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】克隆豬源hnRNPA1基因并構(gòu)建其真核表達(dá)載體,探究其在真核細(xì)胞中的分布情況及其生物學(xué)特性,為研究hnRNPA1基因與病毒蛋白的互作及明確hnRNPA1基因是否參與豬瘟病毒的復(fù)制提供理論參考。

1 材料與方法

1. 1 試驗(yàn)材料

PK-15細(xì)胞、HEK-293T細(xì)胞、pcDNA3.0真核載體、PFEX-4T-1載體、馬抗小鼠IgG、山羊抗兔IgG、大腸桿菌TOP10感受態(tài)細(xì)胞、胎牛血清、DMEM/F12基礎(chǔ)培養(yǎng)基和磷酸鹽緩沖液(PBS)均由廣西畜禽繁育與疾病防控重點(diǎn)實(shí)驗(yàn)室保存提供;β-Actin抗體購(gòu)自北京康為世紀(jì)生物科技有限公司;Flag抗體、2×Universal SYBR Green Fast qPCR Mix購(gòu)自武漢愛(ài)博泰克生物科技有限公司;氨芐青霉素、質(zhì)粒提取試劑盒購(gòu)自天根生化科技(北京)有限公司;Lipo‐fectamineTM 2000 Transfection Reagent脂質(zhì)體、DNA回收純化試劑盒購(gòu)自美國(guó)Thermo Fisher Scientific公司;總RNA提取試劑盒、快速反轉(zhuǎn)錄試劑盒購(gòu)自南京諾唯贊生物科技股份有限公司;高保真酶、dNTPs、M-MuLV reverse transcriptase、RNasin、pMD18-T載體、T4 DNA連接酶、限制性內(nèi)切酶Hind Ⅲ和NotⅠ購(gòu)自日本TaKaRa公司。

1. 2 hnRNPA1基因CDS序列擴(kuò)增與pMD18-T-hnRNPA1載體構(gòu)建

收取培養(yǎng)24 h的PK-15細(xì)胞,利用總RNA提取試劑盒提取細(xì)胞總RNA,使用快速反轉(zhuǎn)錄試劑盒將RNA反轉(zhuǎn)錄合成cDNA,以此為模板進(jìn)行hnRNPA1基因CDS序列擴(kuò)增。利用NCBI數(shù)據(jù)庫(kù)查找豬源hnRNPA1基因序列,下載其編碼序列,使用SnapeGene設(shè)計(jì)hnRNPA1基因特異性擴(kuò)增引物(表1),委托深圳華大基因科技有限公司合成。PCR反應(yīng)體系25.0 μL:高保真酶12.5 μL,上、下游引物各1.0 μL,cDNA模板2.0 μL,ddH2O 8.5 μL。擴(kuò)增程序:98 ℃預(yù)變性5 min;98 ℃ 15 s,58 ℃ 15 s,72 ℃ 14 s,進(jìn)行28個(gè)循環(huán);72 ℃延伸5 min。向擴(kuò)增產(chǎn)物中加入12.5 μL 2×Taq PCR 預(yù)混試劑連接A尾,連接程序:72 ℃ 30 min,產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳檢測(cè)后使用凝膠回收試劑盒進(jìn)行回收,將回收產(chǎn)物和pMD18-T載體按1∶1比例混合后在4 ℃下連接10 h。連接產(chǎn)物轉(zhuǎn)化TOP10感受態(tài)細(xì)胞,涂板后倒置培養(yǎng)12 h。挑取單克隆菌落接種至LB液體培養(yǎng)基中,搖至渾濁后進(jìn)行菌液PCR鑒定,將鑒定結(jié)果為陽(yáng)性的菌液送至深圳華大基因科技有限公司測(cè)序。測(cè)序正確的陽(yáng)性菌液經(jīng)擴(kuò)大培養(yǎng)后,利用質(zhì)粒抽提試劑盒提取菌液獲得pMD18-T-hnRNPA1載體。

1. 3 hnRNPA1蛋白生物信息學(xué)分析

分別使用ProtParam(https://web.expasy.org/prot‐param/)網(wǎng)站預(yù)測(cè)hnRNPA1蛋白的理化性質(zhì),Expasy-ProtScale(https://web.expasy.org/protscale/)網(wǎng)站分析hnRNPA1蛋白的親疏水性,TMHMM-1.0(https://ser‐vices.healthtech.dtu.dk/services/DeepTMHMM-1.0/)網(wǎng)站預(yù)測(cè)蛋白跨膜結(jié)構(gòu)域,SignalP-6.0(https://ser‐vices.healthtech.dtu.dk/services/SignalP-6.0/)網(wǎng)站預(yù)測(cè)hnRNPA1蛋白是否含信號(hào)肽,SPOMA(https://npsa.lyon.inserm.fr/cgi-bin/npsa_automat.pl?page=/NPSA/ npsa_sopma.html)網(wǎng)站預(yù)測(cè)蛋白二級(jí)結(jié)構(gòu),SWISS-MODEL(https://swissmodel.expasy.org/)網(wǎng)站對(duì)蛋白的三級(jí)結(jié)構(gòu)進(jìn)行建模,NetPhos 3.1(https://services.healthtech.dtu.dk/services/NetPhos-3.1/)網(wǎng)站預(yù)測(cè)蛋白的磷酸化位點(diǎn)。

1. 4 hnRNPA1基因真核表達(dá)載體構(gòu)建與鑒定

以1.2中抽提的pMD18-T-hnRNPA1質(zhì)粒為模板,利用pcDNA3.0-hnRNPA1-F、pcDNA3.0-hnRNPA1-R引物進(jìn)行PCR擴(kuò)增。PCR反應(yīng)體系及擴(kuò)增程序同1.2。將擴(kuò)增產(chǎn)物與pMD18-T載體連接并轉(zhuǎn)化TOP10感受態(tài)細(xì)胞,涂板后倒置培養(yǎng)12 h。挑取單克隆菌落接種至LB液體培養(yǎng)基中。搖至渾濁后進(jìn)行菌液PCR鑒定,將鑒定結(jié)果為陽(yáng)性的菌液送至深圳華大基因科技有限公司測(cè)序。測(cè)序正確的陽(yáng)性菌液經(jīng)擴(kuò)大培養(yǎng)后,利用質(zhì)粒抽提試劑盒提取菌液獲得pMD18-T-hnRNPA1pcDNA3.0-hnRNPA1-F/R質(zhì)粒。根據(jù)設(shè)計(jì)的酶切位點(diǎn),采用限制性內(nèi)切酶Hind Ⅲ和NotⅠ對(duì)載體pMD18-T-hnRNPA1pcDNA3.0-hnRNPA1-F/R和pcDNA3.0在37 ℃下雙酶切12 h。酶切產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳檢測(cè)后回收目的片段和載體片段,并利用T4 DNA連接酶連接目的片段和載體片段,連接產(chǎn)物轉(zhuǎn)化TOP10感受態(tài)細(xì)胞,涂板培養(yǎng)并挑取單克隆菌落接種至LB液體培養(yǎng)基中,菌液渾濁后進(jìn)行PCR鑒定,將鑒定結(jié)果為陽(yáng)性的菌液送至深圳華大基因科技有限公司測(cè)序,測(cè)序正確的陽(yáng)性菌液經(jīng)擴(kuò)大培養(yǎng)后,利用質(zhì)粒抽提試劑盒提取菌液獲得pcDNA3.0-hnRNPA1-Flag真核表達(dá)載體。

生長(zhǎng)狀態(tài)良好的HEK293T細(xì)胞接種至12孔細(xì)胞培養(yǎng)板中,待細(xì)胞匯合度達(dá)70%時(shí)進(jìn)行轉(zhuǎn)染。取真核表達(dá)載體pcDNA3.0-hnRNPA1-Flag和空載體pcDNA3.0各1.0 μg與200 μL Opti-MEMTM減血清培養(yǎng)基混合,同時(shí)取2.5 μL LipofectamineTM 2000 Transfection Rea‐gen與等體積Opti-MEMTM減血清培養(yǎng)基混合,室溫靜置5 min。將質(zhì)粒混合液和脂質(zhì)體混合液充分混勻,室溫靜置20 min,棄上清液,將質(zhì)粒混合液和脂質(zhì)體混合液按每孔400 μL加入12孔細(xì)胞培養(yǎng)板中,于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)4 h。棄上清液,加入含3% FBS的DMEM/F12基礎(chǔ)培養(yǎng)基培養(yǎng)24 h。

1. 5 實(shí)時(shí)熒光定量PCR檢測(cè)

使用RNA提取試劑盒提取細(xì)胞總RNA并根據(jù)反轉(zhuǎn)錄試劑盒說(shuō)明反轉(zhuǎn)錄合成cDNA。實(shí)時(shí)熒光定量PCR反應(yīng)體系20 μL:2×ChamQ Universal SYBR qPCR Master Mix 10 μL,ddH2O 6 μL,上、下游引物各1 μL,cDNA模板2 μL。擴(kuò)增程序:95 ℃預(yù)變性5 min;95 ℃ 10 s,60 ℃ 20 s,72 ℃ 20 s,進(jìn)行34個(gè)循環(huán)。以GAPDH為內(nèi)參基因,采用2-ΔΔCt計(jì)算目的基因的相對(duì)表達(dá)量。

1. 6 Western blotting檢測(cè)

棄上清液,加入RIPA裂解液于冰上裂解30 min;收集裂解樣品于1.5 mL EP管,4 ℃下12000 r/min離心5 min,收集上清液;加入蛋白上樣緩沖液充分混勻后沸煮10 min,于-80 ℃冰箱保存?zhèn)溆?;使?2%的蛋白凝膠進(jìn)行SDS-PAGE檢測(cè),120 V至溴酚藍(lán)染液到達(dá)分離膠底部停止;使用PVDF膜于20 V、60 mA下轉(zhuǎn)膜70 min;使用5%的脫脂牛奶在37 ℃下封閉3 h,加入一抗Flag(1∶2000)、β-Actin(1∶1000)在37 ℃下孵育2 h;使用TBST洗膜3次,每次10 min,洗滌結(jié)束后加入二抗在37 ℃下孵育1 h;洗膜后用BCIP/NBT堿性磷酸酶顯色試劑盒進(jìn)行顯色。使用ODYSSEY成像系統(tǒng)進(jìn)行圖像掃描。

1. 7 免疫熒光染色

生長(zhǎng)狀態(tài)良好的HEK-293T細(xì)胞接種至鋪有細(xì)胞爬片的6孔細(xì)胞培養(yǎng)板中,細(xì)胞匯合度達(dá)70%時(shí)轉(zhuǎn)染真核表達(dá)載體pcDNA3.0-hnRNPA1-Flag;轉(zhuǎn)染24 h后棄上清液,用PBS洗滌細(xì)胞3次后晾干,加入預(yù)冷的固定液于冰上固定30 min;PBST洗滌細(xì)胞3次,加入一抗Flag(1∶100)于37 ℃下孵育4 h;PBST洗滌細(xì)胞3次,加入二抗(1∶1000)于37 ℃下閉光孵育2 h;PBST洗滌細(xì)胞3次,加入DAPI染液室溫孵育20 min;PBST洗滌細(xì)胞3次后制片。于尼康共聚焦顯微鏡下采集圖像。

2 結(jié)果與分析

2. 1 hnRNPA1基因CDS序列擴(kuò)增與pMD18-T-hnRNPA1載體構(gòu)建結(jié)果

hnRNPA1基因CDS序列擴(kuò)增結(jié)果如圖1-A所示,在約1000 bp處得到單一明亮條帶,與預(yù)期結(jié)果相符,表明豬源hnRNPA1基因CDS序列擴(kuò)增成功。hnRNPA1基因與pMD18-T載體連接后轉(zhuǎn)化TOP10感受態(tài)細(xì)胞,挑取單克隆菌落進(jìn)行菌液PCR鑒定(圖1-B),將鑒定結(jié)果為陽(yáng)性的菌液送測(cè)序,測(cè)序結(jié)果顯示,擴(kuò)增序列與NCBI數(shù)據(jù)庫(kù)中豬源hnRNPA1基因CDS序列(GenBank:KM051509.1,963 bp)同源性為100%。測(cè)序正確的陽(yáng)性菌液經(jīng)擴(kuò)大培養(yǎng)后,利用質(zhì)粒抽提試劑盒提取菌液獲得pMD18-T-hnRNPA1載體。

2. 2 hnRNPA1蛋白理化性質(zhì)預(yù)測(cè)結(jié)果

蛋白理化性質(zhì)預(yù)測(cè)結(jié)果顯示,hnRNPA1蛋白由320個(gè)氨基酸殘基組成,包含42個(gè)帶正電荷的氨基酸殘基和35個(gè)帶負(fù)電荷的氨基酸殘基(表2)。hnRNPA1蛋白分子式為C1472H2237N455O477S8,分子量約為35 kD,理論等電點(diǎn)(pI)為9.27,脂肪系數(shù)為38.34,不穩(wěn)定系數(shù)為43.87(大于40.00),蛋白結(jié)構(gòu)相對(duì)不穩(wěn)定。hnRNPA1蛋白總平均親水性指數(shù)(GRAVY)為-0.879,屬于親水性蛋白(圖2-A),不含跨膜結(jié)構(gòu)域(圖2-B)和信號(hào)肽(圖2-C)。

2. 3 hnRNPA1蛋白結(jié)構(gòu)預(yù)測(cè)結(jié)果

蛋白結(jié)構(gòu)預(yù)測(cè)結(jié)果顯示,hnRNPA1蛋白二級(jí)結(jié)構(gòu)包含α-螺旋(16.56%)、無(wú)規(guī)則卷曲(72.50%)和延伸鏈(10.94%)(圖3)。全域模型質(zhì)量估計(jì)值(GMQE)高達(dá)0.72,說(shuō)明該模型的預(yù)測(cè)結(jié)果可靠性較高。hnRNPA1蛋白與模板序列(AlphaFold DB數(shù)據(jù)庫(kù)中牛源hnRNPA1蛋白序列)相似性為100%,說(shuō)明預(yù)測(cè)結(jié)果可用(圖4)。

2. 4 hnRNPA1蛋白磷酸化位點(diǎn)預(yù)測(cè)結(jié)果

使用NetPhos 3.1 Server在線預(yù)測(cè)hnRNPA1蛋白的磷酸化位點(diǎn),結(jié)果(圖5)顯示,hnRNPA1蛋白存在48個(gè)潛在的磷酸化位點(diǎn),包含31個(gè)絲氨酸(Ser)、10個(gè)蘇氨酸(Thr)和7個(gè)酪氨酸(Tyr)位點(diǎn)。

2. 5 hnRNPA1基因真核表達(dá)載體構(gòu)建結(jié)果

以pMD18-T-hnRNPA1載體為模板,利用pcDNA3.0-hnRNPA1-F、pcDNA3.0-hnRNPA1-R引物進(jìn)行PCR擴(kuò)增(圖6-A),并與pMD18-T載體連接并轉(zhuǎn)化TOP10感受態(tài)細(xì)胞,得到pMD18-T-hnRNPA1pcDNA3.0-hnRNPA1-F/R載體(圖6-B),根據(jù)設(shè)計(jì)的酶切位點(diǎn),采用Hind Ⅲ和NotⅠ對(duì)載體pMD18-T-hnRNPA1pcDNA3.0-hnRNPA1-F/R

和pcDNA3.0進(jìn)行雙酶切,并用T4 DNA連接酶連接得到pcDNA3.0-hnRNPA1-Flag真核表達(dá)載體(圖6-C)。將構(gòu)建好的pcDNA3.0-hnRNPA1-Flag真核表達(dá)載體送測(cè)序,測(cè)序結(jié)果正確,表明pcDNA3.0-hnRNPA1-Flag真核表達(dá)載體構(gòu)建成功

2. 6 hnRNPA1蛋白真核表達(dá)與鑒定結(jié)果

將構(gòu)建好的真核表達(dá)載體pcDNA3.0-hnRNPA1-Flag和真核載體pcDNA3.0轉(zhuǎn)染HEK-293T細(xì)胞,轉(zhuǎn)染后24 h提取細(xì)胞總蛋白進(jìn)行Western blotting檢測(cè)。結(jié)果如圖7所示,在35 kD處,轉(zhuǎn)染真核表達(dá)載體pcDNA3.0-hnRNPA1-Flag的HEK-293T細(xì)胞能檢測(cè)到單一條帶,而未轉(zhuǎn)染真核表達(dá)載體cDNA3.0-hnRNPA1-Flag(空白對(duì)照)和轉(zhuǎn)染空載體pcDNA3.0的HEK-293T細(xì)胞未檢測(cè)出單一條帶,表明pcDNA3.0-hnRNPA1-Flag真核表達(dá)載體構(gòu)建成功,且能在細(xì)胞中正常表達(dá)。

2. 7 hnRNPA1蛋白分布檢測(cè)結(jié)果

免疫熒光染色結(jié)果如圖8所示,HEK-293T細(xì)胞質(zhì)中呈現(xiàn)紅色熒光,細(xì)胞核呈現(xiàn)藍(lán)色熒光,紅色熒光和藍(lán)色熒光一一對(duì)應(yīng),hnRNPA1蛋白主要在胞質(zhì)中表達(dá)。

3 討論

hnRNP家族成員是一類(lèi)宿主 RNA 結(jié)合蛋白,能調(diào)控病毒的復(fù)制(Wang et al.,2022)。迄今已鑒定出20余個(gè)hnRNP家族成員。研究表明,抗病毒因子hnRNPAB和hnRNPA2/B1能分別與甲型流感病毒的核蛋白和非結(jié)構(gòu)蛋白1相互作用,進(jìn)而限制病毒mRNA向細(xì)胞核輸出并抑制病毒復(fù)制(Wang et al.,2014);hnRNPL能與口蹄疫病毒基因組RNA 5'非翻譯區(qū)的內(nèi)部核糖體進(jìn)入位點(diǎn)(IRES)相互作用,進(jìn)而抑制病毒復(fù)制和RNA合成(Sun et al.,2020);促病毒因子hnRNPH1能與新城疫病毒的V蛋白相互作用而促進(jìn)病毒復(fù)制(Tong et al.,2021)。作為hnRNP家族中最豐富的成員,hnRNPA1不僅參與RNA轉(zhuǎn)錄和剪接的調(diào)節(jié)及細(xì)胞和病毒蛋白的翻譯等過(guò)程,還能調(diào)控多種病毒的生命周期,與各種疾病的發(fā)生息息相關(guān)(Geuens et al.,2016)。Levengood等(2013)研究發(fā)現(xiàn),hnRNPA1作為促病毒因子,能通過(guò)與病毒RNA 5'非翻譯區(qū)結(jié)合而促進(jìn)辛德比斯病毒、腸道病毒71型和人鼻病毒等病毒的復(fù)制;Kress等(2005)研究發(fā)現(xiàn),hnRNPA1還能作為抗病毒因子,并通過(guò)阻止病毒非結(jié)構(gòu)調(diào)節(jié)蛋白R(shí)EX與病毒RNA的結(jié)合而抑制人類(lèi)T細(xì)胞嗜淋巴病毒的復(fù)制;Kim等(2007)研究證實(shí),hnRNPA1能與病毒聚合酶NS5B結(jié)合而抑制丙型肝炎病毒復(fù)制;Li等(2018)研究證實(shí),hnRNPA1蛋白也能與豬流行性腹瀉病毒的N蛋白結(jié)合以促進(jìn)病毒復(fù)制。這些研究均表明,hnRNPA1作為宿主和病毒基因表達(dá)的中心調(diào)節(jié)因子在病毒感染過(guò)程中發(fā)揮重要作用。本研究結(jié)果通過(guò)生物信息學(xué)分析發(fā)現(xiàn),hnRNPA1蛋白是由α-螺旋(占16.56%)、延伸鏈(占10.94%)和無(wú)規(guī)則卷曲(占72.50%)構(gòu)成的不穩(wěn)定親水性蛋白,不含跨膜結(jié)構(gòu)域和信號(hào)肽,存在48個(gè)潛在的磷酸化位點(diǎn)。本研究構(gòu)建了pcDNA3.0-hnRNPA1-Flag真核表達(dá)載體,并能在HEK-293T細(xì)胞中成功表達(dá)hnRNPA1蛋白,可以在激光共聚焦顯微鏡下觀察與之互作的蛋白在細(xì)胞內(nèi)的定位情況(李夢(mèng)茹等,2023),也可以利用Co-IP技術(shù)來(lái)探究與hnRNPA1蛋白互作的其他蛋白(張文等,2023),為研究hnRNPA1蛋白的表觀遺傳功能位

點(diǎn)奠定了理論基礎(chǔ)。

豬瘟是由豬瘟病毒引起的一種極具傳染性的豬病,利用疫苗預(yù)防豬瘟可一定程度上控制疫情,但仍無(wú)法完全消除豬瘟病毒(高躍美等,2023)。豬瘟病毒是有囊膜的單股正鏈RNA病毒,屬于黃病毒科,而hnRNPA1又是RNA結(jié)合蛋白,提示hnRNPA1可能也參與豬瘟病毒復(fù)制。除在病毒感染過(guò)程中發(fā)揮作用外,hnRNPA1還參與細(xì)胞穩(wěn)態(tài)的調(diào)節(jié)。Park等(2015)研究表明,Drp1、cyclin D1和c-Myc mRNA等多個(gè)靶標(biāo)的轉(zhuǎn)錄均受到hnRNPA1的調(diào)節(jié);Park等(2021)研究發(fā)現(xiàn),hnRNPA1是過(guò)氧化物酶1(PEX1)表達(dá)的調(diào)節(jié)因子,而PEX1是一種AAA-ATP酶,可調(diào)節(jié)PEX5的再循環(huán),對(duì)于導(dǎo)入過(guò)氧化物酶體所需的基質(zhì)蛋白至關(guān)重要,進(jìn)一步研究發(fā)現(xiàn),hnRNPA1與PEX1的3'-UTR相互作用能激活細(xì)胞內(nèi)的PEX1,進(jìn)而導(dǎo)致PEX5積累并引發(fā)細(xì)胞自噬(Park et al.,2021)。

4 結(jié)論

成功克隆豬源hnRNPA1基因CDS序列。豬源hnRNPA1蛋白為不穩(wěn)定的親水性蛋白,不含跨膜結(jié)構(gòu)域和信號(hào)肽,二級(jí)結(jié)構(gòu)主要為無(wú)規(guī)則卷曲。成功構(gòu)建pcDNA3.0-hnRNPA1-Flag真核表達(dá)載體,hnRNPA1蛋白主要在胞質(zhì)中表達(dá)。

參考文獻(xiàn)((References)):

高躍美,梁晶晶,王文鋒,唐紫燕,陳俊蓉,周桂全,藍(lán)常力,劉芳,羅廷榮,李曉寧. 2023. 廣西豬瘟病毒變異株分離鑒定及其E2基因遺傳特性分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),54(5):1539-1548. [Gao Y M,Liang J J,Wang W F,Tang Z Y,Chen J R,Zhou G Q,Lan C L,Liu F,Luo T R,Li X N. 2023. Isolation and identification of mutant isolate of clas‐sical swine fever virus from Guangxi and genetic characteris-tic analysis of E2 gene[J]. Journal of Southern Agriculture,54(5):1539-1548.] doi:10.3969/j.issn.2095-1191.2023. 05.026.

李夢(mèng)茹,張文,段辰星,馬良,栗朵朵,彭璟,梁晶晶,羅廷榮,李曉寧. 2023. 鼠源eIF4A1基因克隆及其原核/真核表達(dá)構(gòu)建與鑒定[J]. 南方農(nóng)業(yè)學(xué)報(bào),54(10):3073-3082.[ Li M R,Zhang W,Duan C X,Ma L,Jia D D,Peng J,Liang J J,Luo T R,Li X N. 2023. Cloning of mouse eIF4A1 gene and its prokaryotic/eukaryotic expression identification[J]. Journal of Southern Agriculture,54(10):3073-3082.] doi:10.3969/j.issn.2095-1191.2023.10.026.

張文,李夢(mèng)茹,王菁,張傳亮,段辰星,宋丹丹,黃茂發(fā),羅廷榮,梁晶晶,李曉寧. 2023. 鼠源Desmin基因克隆表達(dá)及其生物信息學(xué)分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),54(2):609-617. [Zhang W,Li M R,W J,Zhang C L,Duan C X,Song D D,Huang M F,Luo T R,Liang J J,Li X N. 2023. Cloning and expression of murine Desmin gene and its bioinfor‐matics analysis[J]. Journal of Southern Agriculture,54(2):609-617.] doi:10.3969/j.issn.2095-1191.2023.02.029.

Beer M,Goller K V,Staubach C,Staubach C,Blome S. 2015. Genetic variability and distribution of classical swine fever virus[J]. Animal Health Research Reviews,16(1):33-39. doi:10.1017/S1466252315000109.

Beijer D,Kim H J,Guo L,O'Donovan K,Mademan I,Deconinck T,Van Schil K,F(xiàn)are C M,Drake L E,F(xiàn)ord A F,Kochanski A,Kabzinska D,Dubuisson N,Van den Bergh P,Voermans N C,Lemmers R J,van der Maarel S M,Bonner D,Sampson J B,Wheeler M T,Mehrabyan A,Palmer S,De Jonghe P,Shorter J,Taylor J P,Baets J. 2021. Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presenta‐tion[J]. JCI Insight,6(14):e148363. doi:10.1172/jci.in-sight.148363.

Dreyfuss G,Kim V N,Kataoka N. 2002. Messenger-RNA-binding proteins and the messages they carry[J]. Nature Reviews. Molecular Cell Biology,3(3):195-205. doi:10. 1038/nrm760.

Geuens T,Bouhy D,Timmerman V. 2016. The hnRNP family: Insights into their role in health and disease[J]. Human Genetics,135(8):851-867. doi:10.1007/s00439-016-1683-5.

Han S P,Tang Y H,Smith R. 2010. Functional diversity of the hnRNPs: Past,present and perspectives[J]. The Biochemi‐cal Journal,430(3):379-392. doi:10.1042/BJ20100396.

Han X C,Zhan F X,Yao Y X,Cao L,Liu J G,Yao S. 2022. Clinical heterogeneity in a family with flail arm syndrome and review of hnRNPA1-related spectrum[J]. Annals of Clinical and Translational Neurology,9(12):1910-1917. doi:10.1002/acn3.51682.

Harrison A F,Shorter J. 2017. RNA-binding proteins with prion-like domains in health and disease[J]. The Biochemi‐cal Journal,474(8):1417-1438. doi:10.1042/BCJ20160499.

Huang Q L,Yu L P,Petros A M,Gunasekera A,Liu Z H,Xu N,Hajduk P,Mack J,F(xiàn)esik S W,Olejniczak E T. 2004. Struc‐ture of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid Protein[J]. Biochemistry,43(20):6059-6063. doi: 10.1021/bi036155b.

Jean-Philippe J,Paz S,Caputi M. 2013. hnRNP A1: The Swiss army knife of gene expression[J]. International Journal of Molecular Sciences,14(9):18999-19024. doi:10.3390/ijms 140918999.

Kattimani Y,Veerappa A M. 2018. Complex interaction between mutant HNRNPA1 and gE of varicella zoster virus in pathogenesis of multiple sclerosis[J]. Autoimmu‐nity,51(4):147-151. doi:10.1080/08916934.2018.1482883.

Kaur R,Batra J,Stuchlik O,Reed M S,Pohl J,Sambhara S,Lal S K. 2022. Heterogeneous ribonucleoprotein A1(hnRNPA1) interacts with the nucleoprotein of the influen-za a virus and impedes virus replication[J]. Viruses,14(2):199. doi:10.3390/v14020199.

Kim C S,Seol S K,Song O K,Park J H,Jang S K. 2007. An RNA-binding protein,hnRNP A1,and a scaffold protein,septin 6,facilitate hepatitis C virus replication[J]. Journal of Virology,81(8):3852-3865. doi:10.1128/JVI.01311-06.

Kress E,Baydoun H H,Bex F,Gazzolo L,Duc Dodon M. 2005. Critical role of hnRNP A1 in HTLV-1 replication in human transformed T lymphocytes[J]. Retrovirology,2:8. doi:10.1186/1742-4690-2-8.

Levengood J D,Tolbert M,Li M L,Tolbert B S. 2013. High-affinity interaction of hnRNP A1 with conserved RNA structural elements is required for translation and replica‐tion of enterovirus 71[J]. RNA Biology,10(7):1136-1145. doi:10.4161/rna.25107.

Levin M C,Lee S,Gardner L A,Shin Y,Douglas J N,Salapa H. 2017. Autoantibodies to heterogeneous nuclear ribo‐nuclear protein A1(hnRNPA1) cause altered‘ ribostasis’ and neurodegeneration; The legacy of HAM/TSP as a model of progressive multiple sclerosis[J]. Journal of Neu‐roimmunology,304:56-62. doi:10.1016/j.jneuroim.2016. 07.005.

Li W J,He Y H,Yang J J,Hu G S,Lin Y A,Ran T,Peng B L,Xie B L,Huang M F,Gao X,Huang H H,Zhu H H,Ye F,Liu W. 2021. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth[J]. Nature Communications,12(1):1946. doi:10. 1038/s41467-021-21963-1.

Li Z Y,Cao Z Y,Li N X,Wang L Y,F(xiàn)u C,Huo R,Xu G Q,Tian C L,Bi J H. 2023. M2 macrophage-derived exosomal lncRNA MIR4435-2HG promotes progression of infantile hemangiomas by targeting HNRNPA1[J]. International Journal of Nanomedicine,18:5943-5960. doi:10.2147/IJN.S435132.

Li Z H,Zeng W,Ye S Y,Lv J,Nie A,Zhang B Z,Sun Y M,Han H Y,He Q G. 2018. Cellular hnRNP A1 interacts with nucleocapsid protein of porcine epidemic diarrhea virus and impairs viral replication[J]. Viruses,10(3):127. doi:10.3390/v10030127.

Liu A Q,Qin X M,Wu H,F(xiàn)eng H,Zhang Y A,Tu J G. 2023. hnRNPA1 impedes snakehead vesiculovirus replication via competitively disrupting viral phosphoprotein-nucleoprotein interaction and degrading viral phosphoprotein[J]. Viru‐lence,14(1):2196847. doi:10.1080/21505594.2023.219 6847.

Luo H B,Chen Q,Chen J,Chen K K,Shen X,Jiang H L. 2005. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1[J]. FEBS Letters,579(12):2623-2628. doi:10.1016/j.febslet.2005.03.080.

Park N Y,Jo D S,Park S J,Lee H,Bae J E,Hong Y,Kim J B,Kim Y H,Park H J,Choi J Y,Lee H J,Ryoo Z Y,Lee H S,Kim J C,Lee E K,Cho D H. 2021. Depletion of HNRNPA1 induces peroxisomal autophagy by regulating PEX1 expression[J]. Biochemical and Biophysical Re-search Communications,545:69-74. doi:10.1016/j.bbrc. 2021.01.083.

Park S J,Lee H,Jo D S,Jo Y K,Shin J H,Kim H B,Seo H M,Rubinsztein D C,Koh J Y,Lee E K,Cho D H. 2015. Heterogeneous nuclear ribonucleoprotein A1 post-transcriptionally regulates Drp1 expression in neuroblas‐toma cells[J]. Biochimica Et Biophysica Acta,1849(12):1423-1431. doi:10.1016/j.bbagrm.2015.10.017.

Picchiarelli G,Dupuis L. 2020. Role of RNA Binding Proteins with prion-like domains in muscle and neuromuscular di-seases[J]. Cell Stress,4(4):76-91. doi:10.15698/cst2020. 04.217.

Sun C,Liu M M,Chang J T,Yang D C,Zhao B,Wang H W,Zhou G H,Weng C J,Yu L. 2020. Heterogeneous nuclear ribonucleoprotein L negatively regulates foot-and-mouth disease virus replication through inhibition of viral RNA synthesis by interacting with the internal ribosome entry site in the 5’ untranslated region[J]. Journal of Virology,94(10):e00282-20. doi:10.1128/JVI.00282-20.

Tong L,Chu Z L,Gao X L,Yang M Q,Adam F E A,Theodore D W P,Liu H J,Wang X L,Xiao S,Yang Z Q. 2021. New‐castle disease virus V protein interacts with hnRNP H1 to promote viral replication[J]. Veterinary Microbiology,260:109093. doi:10.1016/j.vetmic.2021.109093.

Wang H,Han L M,Zhao G Y,Shen H,Wang P F,Sun Z M,Xu C Z,Su Y Y,Li G D,Tong T J,Chen J. 2016. hnRNP A1 antagonizes cellular senescence and senescence‐associated secretory phenotype via regulation of SIRT1 mRNA stabi-lity[J]. Aging Cell,15(6):1063-1073. doi:10.1111/acel. 12511.

Wang J M,Sun D,Wang M S,Cheng A H,Zhu Y K,Mao S,Ou X M,Zhao X X,Huang J,Gao Q,Zhang S Q,Yang Q,Wu Y,Zhu D K,Jia R Y,Chen S,Liu M F. 2022. Multiple functions of heterogeneous nuclear ribonucleoproteins in the positive single-stranded RNA virus life cycle[J]. Fron‐tiers in Immunology,13:989298. doi:10.3389/fimmu.2022. 989298.

Wang Y M,Zhou J H,Du Y C. 2014. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus repli‐cation potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export[J]. Virology,449: 53-61. doi:10.1016/j.virol.2013.11.009.

Zhang Q,Weng W J,Gu X K,Xiang J H,Yang Y,Zhu M X,Gu W D,He Z Z,Li Y. 2023. hnRNPA1 SUMOylation pro‐motes cold hypersensitivity in chronic inflammatory pain by stabilizing TRPA1 mRNA[J]. Cell Reports,42(11):113401. doi:10.1016/j.celrep.2023.113401.

Zhang X Y,Yang S L,Kang Z H,Ru W X,Shen X M,Li M,Lan X Y,Chen H. 2022. CircMEF2D negatively regulated by HNRNPA1 inhibits proliferation and differentiation of myoblasts via miR-486-PI3K/AKT axis[J]. Journal of Agricultural and Food Chemistry,70(26):8145-8163. doi:10.1021/acs.jafc.2c01888.

Zhu W Y,Ding J S,Sun L,Wu J,Xu X,Wang W J,Li H Y,Shen H T,Li X,Yu Z Q,Chen G. 2020. Heterogeneous nuclear ribonucleoprotein A1 exerts protective role in intra‐cerebral hemorrhage-induced secondary brain injury in rats[J]. Brain Research Bulletin,165:169-177. doi:10.1016/j.brainresbull.2020.09.023.

(責(zé)任編輯 蘭宗寶)

猜你喜歡
生物信息學(xué)分析
雷公藤牻牛兒基焦磷酸合酶基因TwGPPS克隆與表達(dá)分析
斑節(jié)對(duì)蝦金屬硫蛋白全基因DNA克隆及生物學(xué)信息分析
雷公藤貝殼杉烯酸氧化酶基因的全長(zhǎng)cDNA克隆與表達(dá)分析
滇龍膽乙酰CoA轉(zhuǎn)移酶基因的克隆與表達(dá)分析
西瓜食酸菌CusB蛋白的生物信息學(xué)分析
羊種布氏桿菌3型Omp25基因序列及其表達(dá)蛋白生物信息學(xué)分析
禾谷鐮刀菌甾醇14α脫甲基酶基因cDNA克隆及生物信息學(xué)分析
湖羊SPLUNC1基因序列的生物信息學(xué)分析
西藏牦牛NGB基因克隆及生物信息學(xué)分析
地黃纖維素合酶基因的克隆與生物信息學(xué)分析
乾安县| 静海县| 项城市| 灵川县| 米易县| 岳普湖县| 德惠市| 秦皇岛市| 林甸县| 苏尼特左旗| 民勤县| 铜川市| 新郑市| 汽车| 泗阳县| 永善县| 通州市| 恩施市| 宁陕县| 区。| 罗城| 霍城县| 海淀区| 故城县| 扎兰屯市| 镇平县| 兴山县| 洞头县| 扎鲁特旗| 婺源县| 绥中县| 天祝| 祁阳县| 大庆市| 简阳市| 肥西县| 河北省| 夏津县| 汕头市| 巴塘县| 山阳县|