摘 要: 為了確定2023年春季廣西賀州地區(qū)豬場仔豬腹瀉病原,采用宏轉(zhuǎn)錄組測(cè)序技術(shù)篩查該地區(qū)豬群發(fā)病和感染情況,為當(dāng)?shù)刈胸i腹瀉疾病的防控提供依據(jù)。(方法)采集2023年3月廣西賀州地區(qū)10 km范圍內(nèi)6個(gè)相鄰并同時(shí)暴發(fā)腹瀉的豬場仔豬的肛拭子和糞便,運(yùn)用MGISEQ 200測(cè)序平臺(tái)進(jìn)行宏轉(zhuǎn)錄組測(cè)序開展豬病原感染組學(xué)研究,系統(tǒng)性地篩查該區(qū)域仔豬腹瀉的病原譜,使用實(shí)時(shí)熒光定量RT-PCR對(duì)最主要病毒進(jìn)行確認(rèn),定量分析各病原的豐度并選取鑒定到的病毒基因序列進(jìn)行系統(tǒng)發(fā)育分析,Pearson分析解析病原混合感染的相關(guān)性。結(jié)果顯示:通過宏轉(zhuǎn)錄組測(cè)序技術(shù)在這些樣品中共檢測(cè)到17種致病性細(xì)菌、12種病毒和3種寄生蟲。病毒以豬流行性腹瀉病毒(porcine epidemic diarrhea virus,PEDV)代表的腹瀉相關(guān)病毒為主,包括豬札幌病毒(porcine sapovirus,SaV)、豬嵴病毒(porcine kobuvirus,PKV)、豬星狀病毒(porcine astrovirus,PAstV)、豬猴禽豬腸病毒(porcine sapelovirus,PSV)、輪狀病毒A(rotavirus,RVA)等;細(xì)菌主要包括3種腸桿菌科(Enterobacteriaceae)、3種乳桿菌科(Lactobacillaceae)、2種芽胞桿菌科(Bacillaceae)等;寄生蟲包括兩種滴蟲和碘阿米巴原蟲。來自5個(gè)場區(qū)的PEDV刺突基因(spike gene,S基因)系統(tǒng)發(fā)育分析顯示,毒株均屬于G2c簇群,毒株之間核苷酸相似性為99.99%,毒株S基因存在重組情況;其中,一發(fā)病豬場還檢測(cè)到P[6]基因型的rotavirus A部分VP4序列,與人源輪狀病毒的核苷酸相似性最高。此外,在4個(gè)豬場檢測(cè)到2種以上的仔豬腹瀉相關(guān)病毒,系統(tǒng)發(fā)育分析結(jié)果提示,此區(qū)域存在腹瀉病原多譜系共同流行的情況。病原相關(guān)性分析顯示,PEDV/PSV(Plt;0.001)、PEDV/豬環(huán)曲病毒(porcine torovirus,PToV)(Plt;0.001)和PEDV/PAstV(Plt;0.05)有顯著的負(fù)相關(guān),而PEDV/PKV(Plt;0.05)有顯著的正相關(guān)。以上結(jié)果提示,在該地區(qū)相鄰養(yǎng)殖區(qū)域中,仔豬腹瀉的病原譜具有多樣性,其中,直接致病病原是PEDV,同時(shí),PEDV與樣品中其他腹瀉相關(guān)病毒之間存在關(guān)聯(lián)。本研究較為全面地展示該地區(qū)仔豬腹瀉病原的感染譜,并鑒定出導(dǎo)致腹瀉發(fā)生最直接的病原體;同時(shí)也能分析小范圍養(yǎng)殖區(qū)域內(nèi)腹瀉相關(guān)病原的相關(guān)性,為該區(qū)域仔豬腹瀉疾病防控提供更加精準(zhǔn)的參考和指導(dǎo)。
關(guān)鍵詞: 宏轉(zhuǎn)錄組測(cè)序技術(shù);仔豬腹瀉疾病;病原識(shí)別;PEDV;遺傳進(jìn)化分析;相關(guān)性分析
中圖分類號(hào):S852.65
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2024)08-3579-11
收稿日期:2023-09-25
基金項(xiàng)目:“十四五”國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD1800804);國家自然科學(xué)基金項(xiàng)目(32102704);茂名實(shí)驗(yàn)室科研啟動(dòng)項(xiàng)目(2021TDQD002);財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助(CARS-35)
作者簡介:李 躍(2000-),女,河南南陽人,碩士生,主要從事獸醫(yī)傳染病和生物信息學(xué)研究,E-mail: liyue20222028024@stu.scau.edu.cn
通信作者:孫彥闊,主要從事獸醫(yī)傳染病研究,E-mail:yankuosun@scau.edu.cn
Application and Analysis of Meta-transcriptomics Sequencing Technology in the Diagnosis
of Viral Diarrhea Diseases in Piglets
LI" Yue1,2, ZHANG" Changchun1,2, LIU" Guangyu1,2, GAO" Mengyuan1,2, FU" Chaojun1,2, XING" Jiabao
1,2, XU" Sijia1,2, KUANG" Qiyuan1,2, LIU" Jing1,2, GAO" Xiaopeng1,4, WANG"" Heng1,2, GONG" Lang
2, ZHANG" Guihong2,3, SUN" Yankuo1,2,3*
(1.College of Veterinary Medicine, South China Agricultural University/Key Laboratory of Prevention
and Control of Animal-borne Zoonoses in Guangdong Province, Guangzhou 510642," China;
2.Maoming
Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming
525000," China;
3.National Engineering Research Center for Breeding Swine Industry, South China
Agricultural University, Guangzhou 510642," China;
4.Guangdong Provincial Key Laboratory of Livestock
and Poultry Health Breeding and Environmental Control, Wens Food Group Co., Ltd, Yunfu 527400,
China)
Abstract:" The purpose of this research is to determine the pathogen of piglet diarrhea in pig farms in Hezhou area of Guangxi in the spring of 2023 by using the Meta-transcriptomics sequencing technology to screen the incidence and infection of pigs in this area, so as to provide theoretical basis for the prevention and control of piglet diarrhea diseases in local pig farms. In March 2023, swabs and feces of six adjacent pig farms with simultaneous outbreak of diarrhea within a range of 10 kilometers were collected in Hezhou, Guangxi, and Meta-transcriptomics sequencing was performed by MGISEQ 200 sequencing platform for porcine pathogenic infectomes research. The pathogenic spectrum of piglet diarrhea in this area was systematically screened and the abundance of each pathogen was quantitatively analyzed. The most important viruses were confirmed by Real-time RT-PCR, after which the identified viral gene sequences were selected for phylogenetic analysis.Pearson analysis was used to analyze the correlation of pathogenic co-infection. The results showed that a total of 17
pathogenic bacteria, 12 viruses, and 3 parasites were detected in these samples by Meta-transcriptomics sequencing. The predominant viruses were diarrhea-associated viruses represented by the porcine epidemic diarrhea virus (PEDV), including porcine sapovirus (SaV), porcine kobuvirus (PKV), porcine astrovirus (PAstV), porcine sapelovirus (PSV), and rotavirus A (RVA). The bacteria mainly consisted of three kinds of Enterobacteriaceae, three kinds of Lactobacillaceae, and two kinds of Bacillaceae. The parasites included two kinds of Trichomonads and Iodamoeba. The phylogenetic analysis of spike gene (S gene) of PEDV from five farms showed that the strains all belonged to the G2c cluster group, that the nucleotide similarity between the strains was 99.99%, and that S gene was recombined. Additionally, partial VP4 gene of rotavirus A, of the P[6] genotype, was detected in one of the farms,which had the highest nucleotide similarity with human rotavirus. In addition, more than 2 piglet diarrhea-related viral infections were detected in 4 pig farms. Phylogenetic analysis showed that there was a multi-lineage co-epidemic of diarrheal pathogens in this region, and even different lineages of the same virus were circulating in the same farm. Pathogen correlation analysis showed that there was a significant negative correlation between PEDV/PSV (Plt;0.001), PEDV/porcine torovirus (PToV) (Plt;0.001) and PEDV/PAstV (Plt;0.05), while PEDV/PKV had a significant positive correlation (Plt;0.05). The above findings indicate a diverse pathogenic spectrum of piglet diarrhea in adjacent breeding regions of this area, with PEDV identified as the primary pathogen. Furthermore, a correlation between PEDV and other diarrhea-related viruses was observed in the samples. This study offers a comprehensive overview of the infection spectrum of diarrhea pathogens in piglets in this region, pinpointing the most direct causes of diarrhea. Additionally, it enables the analysis of the relationship between diarrhea-associated pathogens in small-scale breeding areas, providing precise guidance and reference for the prevention and control of piglet diarrhea in this region.
Key words: meta-transcriptomics; piglet diarrhea disease; pathogen identification; PEDV; genetic evolution analysis; correlation analysis
*Corresponding author:" SUN Yankuo, E-mail:yankuosun@scau.edu.cn
仔豬腹瀉是豬場的常見疾病,由于仔豬腹瀉的發(fā)生率和病死率高,且控制難度大,已嚴(yán)重危害養(yǎng)殖業(yè)的健康發(fā)展[1-2]。目前,在臨床中引起仔豬腹瀉的病原相對(duì)較多,包括細(xì)菌、寄生蟲、病毒等,并且感染和發(fā)病情況相對(duì)復(fù)雜[3]。據(jù)報(bào)道,能引起仔豬腹瀉的細(xì)菌病原:產(chǎn)腸毒素大腸桿菌[4] 、沙門菌[5]、艱難梭菌[6]、細(xì)胞內(nèi)勞森菌[7]等;由寄生蟲引起的仔豬腹瀉病原有賈第鞭毛蟲[8]、內(nèi)阿米巴屬[9]等;由病毒引起的仔豬腹瀉尤為復(fù)雜,包括常見的豬流行性腹瀉病毒(PEDV)、輪狀病毒A(rotavirus A,RVA)、豬傳染性胃腸炎病毒(transmissible gastroenteritis virus,TGEV)、豬丁型冠狀病毒(porcine deltacoronavirus,PDCoV)等,還有新興的仔豬腹瀉病原,如豬腸道ɑ冠狀病毒(porcine enteric alphacoronavirus, PEAV)、豬猴禽豬腸病毒(porcine sapelovirus,PSV)[10-13]。臨床常規(guī)動(dòng)物疫病檢測(cè)方法如病毒檢測(cè)、核酸檢測(cè)、血清學(xué)試驗(yàn)等[14-15],能檢測(cè)的病原種類和通量相對(duì)有限,無法從全局角度解析仔豬腹瀉病因,具有一定的局限性。在臨床生產(chǎn)中仔豬發(fā)生腹瀉常由多種病原混合感染引起,目前常規(guī)診斷方法無法全面了解仔豬真實(shí)的感染狀態(tài)[16-18],因此,在臨床中急需一種全面和準(zhǔn)確的病原篩查技術(shù)為仔豬腹瀉診斷和防控提供指導(dǎo)。
宏轉(zhuǎn)錄組學(xué)(meta-transcriptomics)是宏基因組學(xué)的一類,宏轉(zhuǎn)錄組測(cè)序技術(shù)目前已在揭示生物的微生物組成和功能信息方面展示了其強(qiáng)大的潛力,并在生態(tài)學(xué)、生物醫(yī)學(xué)研究以及環(huán)境監(jiān)測(cè)等領(lǐng)域取得了顯著的成果[19-22]。宏轉(zhuǎn)錄組測(cè)序技術(shù)可以監(jiān)測(cè)細(xì)菌、寄生蟲、病毒,并且具有高靈敏性和更大的檢測(cè)范圍,具有廣闊的應(yīng)用前景[23]。隨著不斷的優(yōu)化和技術(shù)進(jìn)步,其操作復(fù)雜性和檢測(cè)成本在不斷降低,具有較高的實(shí)用價(jià)值。但是,目前為止該技術(shù)在畜禽疫病診斷領(lǐng)域的運(yùn)用仍相對(duì)較少。
本研究通過對(duì)廣西賀州地區(qū)在2023年暴發(fā)腹瀉疾病6個(gè)不同豬場(10 km范圍內(nèi))的發(fā)病仔豬的糞便和肛拭子進(jìn)行宏轉(zhuǎn)錄組測(cè)序和感染組學(xué)研究,以鑒定豬群中的病原,探尋不同豬場病原的優(yōu)勢(shì)流行株的類型和遺傳多樣性,并研究腹瀉病毒間的相關(guān)性。這對(duì)了解該地區(qū)腹瀉仔豬群病原種類多樣性和遺傳多樣性具有重要意義,并初步探究宏轉(zhuǎn)錄組技術(shù)在豬場疫病診斷中的應(yīng)用的可能性,為該技術(shù)進(jìn)一步運(yùn)用到養(yǎng)殖生產(chǎn)中打下了奠定良好的基礎(chǔ)。
1 材料與方法
1.1 樣本收集
2023年3月,從廣西賀州10 km范圍內(nèi)6個(gè)豬場產(chǎn)房仔豬(15日齡內(nèi))各采集腹瀉仔豬糞便、肛拭子10~20份,共計(jì)78份,將樣本按場區(qū)混合后進(jìn)行高通量測(cè)序。6個(gè)場區(qū)分別命名為Farm 1~Farm 6。樣品采集后低溫運(yùn)至華南農(nóng)業(yè)大學(xué)獸醫(yī)學(xué)院動(dòng)物疫病高通量診斷中心。
1.2 宏轉(zhuǎn)錄組測(cè)序
同一豬場的拭子放在一起加入PBS 緩沖液揉搓,再將糞便樣本混合研磨,4℃ 8 000 r·min-1離心10 min,將拭子與糞便研磨液上清混合共取200 μL上清液,用RNA Fast200(Fastagen)試劑盒提取病原總RNA。RNA進(jìn)行反轉(zhuǎn)錄成為cDNA,對(duì)cDNA進(jìn)行片段化、接頭連接和文庫擴(kuò)增,構(gòu)建好的文庫使用Qsep100全自動(dòng)核酸蛋白分析系統(tǒng)(光鼎生物)和Invitrogen Qubit 4 熒光儀(ThermoFisher Scientific)質(zhì)檢,質(zhì)檢通過后進(jìn)行pooling上機(jī)測(cè)序,使用MGISEQ-200測(cè)序儀進(jìn)行測(cè)序。
1.3 實(shí)時(shí)熒光定量RT-PCR檢測(cè)
按“1.2”方法提取樣品中病原總RNA,采用豬流行性腹瀉病毒/豬A群輪狀病毒/豬德爾塔冠狀病毒三重?zé)晒釸T-PCR檢測(cè)試劑盒V2.0(廣州悅洋生物技術(shù)有限公司,批號(hào):PDCoV32230407)進(jìn)行實(shí)時(shí)熒光定量RT-PCR驗(yàn)證PEDV的感染。
1.4 測(cè)序數(shù)據(jù)質(zhì)控、組裝和注釋
測(cè)序完成后進(jìn)行數(shù)據(jù)拆分,并儲(chǔ)存文件格式為(sample.fastq.gz)的原始數(shù)據(jù)。將原始測(cè)序數(shù)據(jù)使用FastQC進(jìn)行數(shù)據(jù)質(zhì)檢。首先使用 Trimmomatic 程序刪除接頭和低質(zhì)量讀數(shù)。對(duì)獲得的Clean reads使用 Megahit從頭組裝得到的contigs重疊群,組裝數(shù)據(jù)分別使用BLASTN和BLASTX與NCBI非冗余核酸數(shù)據(jù)庫(NT)和非冗余蛋白質(zhì)數(shù)據(jù)庫(NR)中的序列進(jìn)行比對(duì)。選擇具有最佳BLAST值的比對(duì)readcontigs進(jìn)行分類。對(duì)于病毒、細(xì)菌和寄生蟲,以E value≤0.001的閾值用 BLASTn和Diamond軟件注釋和鑒定出contigs的物種信息和分類,并手動(dòng)復(fù)檢拼接相關(guān)基因。
1.5 數(shù)據(jù)分析
生物信息學(xué)工具Bowtie2和SAMtools用于統(tǒng)計(jì)病原豐度,細(xì)菌和病毒使用全基因組序列作為參考序列,寄生蟲使用小亞基基因序列作為參考序列。在NCBI在線網(wǎng)站(https:∥ncbi.nlm.nih.gov)上下載參考序列。利用MAFFT軟件把基因組進(jìn)行對(duì)齊,trimal軟件對(duì)非對(duì)齊區(qū)域剪切后再利用IQ-Tree軟件構(gòu)建最大似然系統(tǒng)發(fā)育樹,利用IQ-TREE內(nèi)置模型校正進(jìn)行最佳核苷酸替換模型確定,使用1000次自舉重復(fù)進(jìn)行拓?fù)浣Y(jié)構(gòu)的穩(wěn)定性評(píng)估。應(yīng)用Figtree和Adobe Illustrator軟件將系統(tǒng)發(fā)育樹進(jìn)一步進(jìn)行可視化分析。利用Megalign軟件分析本研究獲得的毒株與參考序列的相似性。使用simplot軟件和RDP軟件中的RDP、Bootscan、MaxChi、GENECONV、Chimaera和 3Seq方法進(jìn)行重組分析,識(shí)別基因組內(nèi)潛在的重組事件。使用Sangerbox在線網(wǎng)站(http:∥sangerbox.com/)進(jìn)行感染病毒豐度柱狀堆疊圖繪制。利用R軟件corrplot包的Pearson方法進(jìn)行病毒相關(guān)性分析以及可視化,以Plt;0.05進(jìn)行r值校正。
2 結(jié) 果
2.1 總感染組特征
2023年3月,中國廣西賀州地區(qū)6個(gè)地理位置相鄰的豬場幾乎同時(shí)暴發(fā)腹瀉,對(duì)6個(gè)豬場采集糞便和肛拭子樣本進(jìn)行文庫構(gòu)建,運(yùn)用宏轉(zhuǎn)錄測(cè)序技術(shù)進(jìn)行文庫構(gòu)建和測(cè)序。經(jīng)質(zhì)量控制,每個(gè)文庫產(chǎn)生56 492 200~92 368 049條可用于下游分析的clean reads。經(jīng)拼接,基因組注釋,在6個(gè)豬場中共檢出17種致病性細(xì)菌、12種病毒和3種寄生蟲(如圖1A),根據(jù)6個(gè)場區(qū)感染病毒豐度差異繪制病毒豐度柱狀堆疊圖(如圖1B)。使用RPM(Reads Per Million,每百萬映射的reads)來衡量體內(nèi)感染豐度,選取RPMgt;1的微生物確定為存在,排除假陽性。經(jīng)校正,將6個(gè)場區(qū)流行的病毒按reads數(shù)進(jìn)行排序,依次是PEDV、豬札幌病毒(porcine sapovirus,SaV)、豬嵴病毒(porcine kobuvirus,PKV)、豬星狀病毒(PAstV)、豬腸道病毒G(Enterovirus G,EV-G)、 豬捷申病毒(porcine teschovirus,PTV)、豬環(huán)曲病毒(PToV)、豬猴禽豬腸病毒(PSV)、輪狀病毒A(RVA)、豬呼吸道病毒(respirovirus suis)、豬小雙節(jié)RNA病毒(porcine picobinavirus),以及戊型肝炎病毒(swine hepatitis E virus),這些病毒主要為腹瀉相關(guān)病毒;細(xì)菌主要包括腸桿菌科(Enterobacteriaceae)成員:大腸桿菌(Escherichia coli)、肺炎克雷伯菌(Klebsiella pneumoniae)和沙門菌(Salmonella),乳桿菌科(Lactobacillaceae)成員:糞腸球菌(Enterococcus faecalis)、屎腸球菌(Enterococcus faecium)和肺炎鏈球菌(Streptococcus pneumoniae),芽胞桿菌科(Bacillaceae)成員:金黃色葡萄球菌(Staphylococcus aureus subsp. aureus)和產(chǎn)單核細(xì)胞李氏桿菌(Listeria monocytogenes),以及艱難梭菌(Clostridioides difficile)、結(jié)核分枝桿菌(Mycobacterium tuberculosis)、副豬革拉瑟菌(Glaesserella parasuis)、細(xì)胞內(nèi)勞森菌(Lawsonia intracellularis)、薩特菌(Sutterella)、幽門螺桿菌(Helicobacter pylori)、彎曲桿菌(Campylobacter)、琥珀密螺旋體(Treponema succinifaciens)、豬鼻支原體(Mesomycoplasma hyorhinis)。大腸桿菌、糞腸球菌和屎腸球菌在6個(gè)豬場都被檢到;3種寄生蟲,包括碘阿米巴原蟲(Iodamoeba)、巴特里四毛滴蟲(Tetratrichomonas buttreyi)以及豬毛滴蟲(Tritrichomonas suis)。除Farm4和Farm5外,其余4個(gè)豬場存在兩種以上腹瀉病毒共同感染的情況,F(xiàn)arm 6腹瀉相關(guān)病毒混合感染數(shù)量最高(10/11)。巴特里四毛滴蟲(Tetratrichomonas buttreyi)以及豬毛滴蟲(Tritrichomonas suis)在6個(gè)場區(qū)檢出率分別為50%和66.67%,其豐度分別為169 RPM~26231 RPM和529 RPM~39010 RPM,所有豬場均檢測(cè)到了碘阿米巴原蟲,豐度水平較高(范圍在690 RPM~120321 RPM)。以上結(jié)果共同顯示,PEDV在該區(qū)域具有很高的檢出率和病毒豐度,并且伴隨多種腸道病原混合感染。實(shí)時(shí)熒光定量RT-PCR的結(jié)果驗(yàn)證了PEDV的感染(表1)。
2.2 遺傳演化分析
2.2.1 PEDV和RVA系統(tǒng)發(fā)育分析及同源性分析
經(jīng)過基因組拼接和注釋,除Farm 6僅獲得部分PEDV編碼膜蛋白的M基因外,其余5個(gè)豬場均獲得了PEDV全基因組序列。根據(jù)S基因系統(tǒng)發(fā)育分析結(jié)果顯示,這些PEDV序列為G2c型高致病性PEDV亞群,且5株病毒均為同一譜系(圖2A)。在不同豬場中獲得的PEDV的S基因和全基因組核苷酸序列的同源相似性為99.99%,提示該區(qū)域流行的PEDV毒株為同一毒株,命名為PEDV/GX/2023-03。將毒株S基因與數(shù)據(jù)庫代表毒株進(jìn)行同源性分析,結(jié)果顯示,與CH/HLJJS/2022(ON968723)有較高的同源性,基因相似性達(dá)99.2%,并與NH-TA2020(ON155919)、SDLY2020(OL762458)屬于相同分支,表明該區(qū)域流行的毒株與近年我國多地暴發(fā)流行的PEDV毒株相近。
從Farm 3中成功獲得Human rotavirus A的部分VP4基因序列,命名為RVA/GX/2023-03。VP4基因進(jìn)化分析結(jié)果提示(圖2B),毒株屬于P[6]基因型,與中國檢測(cè)出的Human rotavirus A聚為同一簇群。該毒株與人輪狀病毒SZ18-2049株(OM920726)的親緣關(guān)系最近,同源性分析結(jié)果顯示RVA/GX/2023-03毒株與SZ18-2049毒株的基因相似性達(dá)97.8%(圖2B)。
2.2.2 其他病毒譜系多樣性分析
對(duì)鑒定到的新發(fā)病毒序列進(jìn)行進(jìn)化分析結(jié)果顯示,通過宏轉(zhuǎn)錄鑒定該區(qū)域大多數(shù)病毒處于多譜系共同流行的狀態(tài)。PTV和EV-G在豬場間流行的基因型最多(三種),分別位于3個(gè)不同的進(jìn)化分枝以上;PKV和PAstV(兩種)分別位于兩個(gè)不同的進(jìn)化分枝,其中Farm 6鑒定出兩株P(guān)AstV分別屬于PAstV2型和PAstV4型。PEDV、PToV、SaV和PSV該4種病毒僅有一個(gè)基因型在該區(qū)域流行,其他幾種病毒均為多譜系感染形式在該地區(qū)流行。
2.3 重組分析和同源性分析
為鑒定該區(qū)域流行的PEDV毒株是否存在基因重組現(xiàn)象,利用RDP4進(jìn)行重組檢測(cè),結(jié)果顯示(圖4A)PEDV/GX/2023-03的S基因是OH851(主要親本)與LW/L(次要親本)重組產(chǎn)生的,重組斷點(diǎn)位于S基因核苷酸的726~1 322 nt,該結(jié)果得到7種檢測(cè)方法的支持(Plt;0.05),有顯著的重組信號(hào)。進(jìn)一步利用Simplot軟件對(duì)流行株及其選取的親本株進(jìn)行相似性比對(duì)驗(yàn)證其重組現(xiàn)象(圖4B),結(jié)果顯示該區(qū)域的流行株S1基因N端的部分序列(1~955 nt)來自G2b 亞型毒株LW/L,而S基因其余部分來自于S-INDEL毒株OH851(955~4 182 nt)。
2.4 Pearson相關(guān)性分析
進(jìn)一步根據(jù)該區(qū)域病毒感染豐度(RPM)計(jì)算不同毒株在該地區(qū)流行的關(guān)聯(lián)性(圖5)。Pearson關(guān)聯(lián)性分析表示PEDV和PSV,PEDV和PToV豐度之間的相關(guān)系數(shù)(即correlation coefficient)為-0.964,提示PEDV和PSV,PEDV和PToV豐度之間有著極顯著的負(fù)相關(guān)(Plt;0.001),PEDV和PAstV豐度之間的相關(guān)系數(shù)值為-0.518,提示PEDV和PAstV豐度之間有著顯著的負(fù)相關(guān)(Plt;0.05),而PEDV和PKV豐度之間的相關(guān)系數(shù)值為0.418,提示PEDV和PKV豐度之間有著顯著的正相關(guān)(Plt;0.05),提示當(dāng)PEDV出現(xiàn)時(shí),顯著影響其他病原的豐度。
3 討 論
仔豬腹瀉性疾病嚴(yán)重威脅中國養(yǎng)豬業(yè)健康,因病原種類繁多,常規(guī)診斷和血清學(xué)鑒定難以全面揭示感染情況[24]。本研究采用宏轉(zhuǎn)錄測(cè)序技術(shù),系統(tǒng)性檢測(cè)病原并量化病原豐度,解析混合感染特征,凸顯該技術(shù)在疫病診斷中的優(yōu)勢(shì)。
在6個(gè)暴發(fā)仔豬腹瀉的場區(qū)均檢出PEDV,PEDV是引起這起腹瀉的直接致病病原。Farm 6在實(shí)時(shí)熒光定量RT-PCR檢測(cè)中未檢出PEDV陽性結(jié)果,是由于樣本中病毒含量過低,另外,商品化試劑盒檢測(cè)PEDV的靶向基因?yàn)镾基因,靈敏度可能存在不足。而宏轉(zhuǎn)錄測(cè)序技術(shù)有極高的敏感性能測(cè)到極低拷貝的樣品,F(xiàn)arm 6中PEDV豐度為5.56 RPM,因此根據(jù)宏轉(zhuǎn)錄結(jié)果判定Farm 6中存在PEDV。PEDV是目前引起我國仔豬發(fā)生腹瀉的主要病因[25]。PEDV G2 型是主要的流行毒株,目前仍沒有能夠?qū)ζ渫耆Wo(hù)的商品化疫苗[2,25]。在本研究中發(fā)現(xiàn)引起本次疫情的5株流行株均為G2c亞群,其S基因來源于S-INDEL株OH851與G2b型疫苗株LW/L重組。毒株OH851于2014年在美國被報(bào)道,屬于S-INDEL型[26];LW/L屬于變異疫苗株,屬于PEDV G2b基因型?;蛑亟M現(xiàn)象是導(dǎo)致PEDV病毒不斷變異的原因,重組有利于產(chǎn)生高致病力的毒株,G2c型重組毒株在之前研究中均顯示出高致病性,對(duì)養(yǎng)殖業(yè)造成巨大的危害[27-28]。此外,在Farm 3檢測(cè)到與Human rotavirus A相關(guān)的部分VP4基因序列,屬于P[6]基因型;在豬群中檢測(cè)到人輪狀病毒基因片段的事件已被多次報(bào)道,并且人與動(dòng)物、動(dòng)物與動(dòng)物之間輪狀病毒重組的常常被檢測(cè)到[26-30]。這提醒人們要加強(qiáng)豬輪狀病毒的監(jiān)測(cè),為防控人輪狀病毒的傳播提供參考。
本次利用宏轉(zhuǎn)錄組技術(shù)共檢出了8種腹瀉相關(guān)病毒,均為RNA病毒,獲得了完整或部分的24條基因組序列。PKV、PToV 病原在收集的樣品中有檢出,是否與豬腹瀉有關(guān)仍缺乏直接的證據(jù)[31-32] 。EV-G、SaV、PTV、PSV、PAstV被確認(rèn)與胃腸道疾病有關(guān)[13,31-37]。本研究測(cè)定與腹瀉相關(guān)的細(xì)菌病原有大腸桿菌(Escherichia coli)、副豬革拉瑟菌(Glaesserella parasuis)、細(xì)胞內(nèi)勞森菌(Lawsonia intracellularis)、薩特菌(Sutterella)、幽門螺桿菌(Helicobacter pylori)、沙門菌(Salmonella)等潛在機(jī)會(huì)致病菌。同時(shí)也鑒定了豬群中存在的寄生蟲有的巴特里四毛滴蟲、豬毛滴蟲和碘阿米巴原蟲等。雖然通過宏轉(zhuǎn)錄測(cè)序技術(shù)還原了豬群的感染狀態(tài),但是除了可以判定直接導(dǎo)致仔豬腹瀉的直接病原外(如PEDV、RV等),對(duì)其他病原微生物在仔豬腹瀉發(fā)病中作用的了解仍相對(duì)有限,要得出確切的結(jié)論,需要對(duì)大量樣本的觀察分析和進(jìn)一步地研究病原感染譜病原間的關(guān)聯(lián)性。
在臨床仔豬腹瀉暴發(fā)的案例中,PEDV與其他腹瀉病原體以共同感染的狀態(tài)呈現(xiàn),并發(fā)揮協(xié)同致病作用[16,38]。多數(shù)研究著眼于表征能導(dǎo)致相同癥狀的不同病毒之間的混合感染情況或病毒與環(huán)境因子的關(guān)聯(lián)[39-40],但是對(duì)于致病能力不同的病毒之間的關(guān)聯(lián)研究卻相對(duì)較少。有研究運(yùn)用多變量分析觀察到PKV、PSV、PAstV-1和HEV之間存在明顯的關(guān)聯(lián)趨勢(shì)[41]。根據(jù)本研究內(nèi)容提出假設(shè),在致病力強(qiáng)的病毒存在下,致病力相對(duì)較弱的其他病原的存在會(huì)影響前者在種群內(nèi)的流行。通過對(duì)各場區(qū)流行病毒的豐度進(jìn)行Pearson的相關(guān)分析,提示PEDV/PSV,PEDV/PToV,PEDV/PAstV之間有著顯著的負(fù)相關(guān),PEDV/PKV之間有著顯著的正相關(guān)。因此,在致病力強(qiáng)的病毒(PEDV)存在下,致病力相對(duì)較弱的其他病毒的存在是否能夠影響前者在種群內(nèi)的流行仍需要進(jìn)一步研究。
本研究通過宏轉(zhuǎn)錄測(cè)序技術(shù),還原了該養(yǎng)殖區(qū)域仔豬腹瀉的感染病原譜,是把宏轉(zhuǎn)錄測(cè)序技術(shù)運(yùn)用到養(yǎng)殖場診斷的一次探索。宏轉(zhuǎn)錄技術(shù)具有常規(guī)檢測(cè)無法比擬的優(yōu)勢(shì),但目前運(yùn)用到豬場的常規(guī)病原檢測(cè)上成本相對(duì)較高,隨著技術(shù)的發(fā)展,宏轉(zhuǎn)錄測(cè)序技術(shù)將更好地為動(dòng)物疫病診斷提供強(qiáng)大的支持。
4 結(jié) 論
利用宏轉(zhuǎn)錄組測(cè)序技術(shù)在此區(qū)域腹瀉仔豬群檢測(cè)到17種致病性細(xì)菌、12種病毒和3種寄生蟲,確定主要腹瀉致病原為G2c高致病性PEDV,還檢測(cè)到P[6]型人輪狀病毒VP4基因序列,且腹瀉豬群呈現(xiàn)多種腹瀉相關(guān)病原混合感染的現(xiàn)象。在腹瀉仔豬群中還檢測(cè)到致病力較弱的腹瀉相關(guān)病毒呈多譜系共同流行,具有較高的遺傳多樣性。PEDV與其他腹瀉相關(guān)病毒豐度之間顯著的相關(guān)趨勢(shì)提示致病力較強(qiáng)的病毒與致病力較弱的病毒存在關(guān)聯(lián)。宏轉(zhuǎn)錄組測(cè)序技術(shù)憑借其技術(shù)優(yōu)勢(shì)篩查仔豬腹瀉疾病的感染病原譜,還原豬感染狀態(tài),從而幫助確定腹瀉病因,為采取有效的防治措施提供依據(jù)。
參考文獻(xiàn)(References):
[1] JUNG K, SAIF L J, WANG Q H. Porcine epidemic diarrhea virus (PEDV): an update on etiology, transmission, pathogenesis, and prevention and control[J]. Virus Res, 2020, 286:198045.
[2] LI M, PAN Y Y, XI Y, et al. Insights and progress on epidemic characteristics, genotyping, and preventive measures of PEDV in China:a review[J]. Microb Pathog, 2023, 181:106185.
[3] JACOBSON M. On the infectious causes of neonatal piglet Diarrhoea—a review[J]. Vet Sci, 2022, 9(8):422.
[4] DUBREUIL J D. Pig vaccination strategies based on enterotoxigenic Escherichia coli toxins[J]. Braz J Microbiol, 2021, 52(4):2499-2509.
[5] KYLLA H, DUTTA T K, ROYCHOUDHURY P, et al. Prevalence and molecular characterization of Salmonella species associated with piglet diarrhea in North East India[J]. Pol J Vet Sci, 2019, 22(4):793-797.
[6] UZAL F A, NAVARRO M A, ASIN J, et al. Clostridial diarrheas in piglets:a review[J]. Vet Microbiol, 2023, 280:109691.
[7] CAMPILLO M, SMITH S H, GALLY D L, et al. Review of methods for the detection of Lawsonia intracellularis infection in pigs[J]. J Vet Diagn Invest, 2021, 33(4):621-631.
[8] ASGHARI A, EBRAHIMI M, SHAMSI L, et al. Global molecular prevalence of Giardia duodenalis in pigs (Sus domesticus):a systematic review and meta-analysis[J]. Heliyon, 2023, 9(2):e13243.
[9] WANG P, LI S, ZOU Y, et al. Molecular characterization of Entamoeba spp." in pigs with diarrhea in southern China[J]. Animals, 2022, 12(14):1764.
[10] THAKOR J C, DINESH M, MANIKANDAN R, et al. Swine coronaviruses (SCoVs) and their emerging threats to swine population, inter-species transmission, exploring the susceptibility of pigs for SARS-CoV-2 and zoonotic concerns[J]. Vet Quart, 42(1):125-147.
[11] KUMAR D, SHEPHERD F K, SPRINGER N L, et al. Rotavirus infection in swine:genotypic diversity, immune responses, and role of gut microbiome in rotavirus immunity[J]. Pathogens, 2022, 11(10):1078.
[12] PAN Y F, TIAN X Y, QIN P, et al. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China[J]. Vet Microbiol, 2017, 211:15-21.
[13] CHEN J N, SUO X P, CAO L Y, et al. Virome analysis for identification of a novel porcine sapelovirus isolated in western China[J]. Microbiol Spectr, 2022, 10(4):e0180122.
[14] 谷長維, 谷長樂, 胡 博. 豬流行性腹瀉病毒血清中特異性IgG抗體間接ELISA檢測(cè)方法的建立[J]. 中國動(dòng)物傳染病學(xué)報(bào), 2022, 30(3):106-112.
GU C W, GU C L, HU B. Development of indirect ELISA assay for detection of porcine epidemic diarrhea virus antibodies in sera of naturally infected pigs[J]. Chinese Journal of Animal Infectious Diseases, 2022, 30(3):106-112. (in Chinese)
[15] DING G M, FU Y G, LI B Y, et al. Development of a multiplex RT-PCR for the detection of major diarrhoeal viruses in pig herds in China[J]. Transbound Emerg Dis, 2020, 67(2):678-685.
[16] PUENTE H, ARGUELLO H, CORTEY M, et al. Detection and genetic characterization of enteric viruses in diarrhoea outbreaks from swine farms in Spain[J]. Porcine Health Manag, 2023, 9(1):29.
[17] SMO?AK D, ?ALAMNOVá S, JACKOVá A, et al. Analysis of RNA virome in rectal swabs of healthy and diarrheic pigs of different age[J]. Comp Immunol Microbiol Infect Dis, 2022, 90-91:101892.
[18] HUANG X Y, WU W C, TIAN X X, et al. A total infectome approach to understand the etiology of infectious disease in pigs[J]. Microbiome, 2022, 10(1):73.
[19] MILLER A K, MIFSUD J C O, COSTA V A, et al. Slippery when wet:cross-species transmission of divergent coronaviruses in bony and jawless fish and the evolutionary history of the Coronaviridae[J]. Virus Evol, 2021, 7(2):veab050.
[20] LIU X Y, LI J, ZHANG Y M, et al. Kidney microbiota dysbiosis contributes to the development of hypertension[J]. Gut Microbes, 2022, 14(1):2143220.
[21] SHARMA P, SINGH S P, IQBAL H M N, et al. Omics approaches in bioremediation of environmental contaminants:an integrated approach for environmental safety and sustainability[J]. Environ Res, 2022, 211:113102.
[22] WANG J, PAN Y F, YANG L F, et al. Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential[J]. Nat Commun, 2023, 14(1):4079.
[23] HUANG X Y, WU W C, TIAN X X. 豬病原感染組學(xué):一種分析豬病原混合感染的新思路[J]. 中國預(yù)防獸醫(yī)學(xué)報(bào), 2022, 44(6):687.
HUANG X Y, WU W C, TIAN X X. A total infectome approach to understand the etiology of infectious disease in pigs[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(6):687. (in Chinese)
[24] OLECH M. Current state of molecular and serological methods for detection of porcine epidemic diarrhea virus[J]. Pathogens, 2022, 11(10):1074.
[25] ZHANG H, ZOU C C, PENG O Y, et al. Global dynamics of porcine enteric coronavirus PEDV epidemiology, evolution, and transmission[J]. Mol Biol Evol, 2023, 40(3):msad052.
[26] WANG L Y, BYRUM B, ZHANG Y. New variant of porcine epidemic diarrhea virus, United States, 2014[J]. Emerg Infect Dis, 2014, 20(5):917-919.
[27] LI X W, LI Y, HUANG J P, et al. Isolation and oral immunogenicity assessment of porcine epidemic diarrhea virus NH-TA2020 strain:one of the predominant strains circulating in China from 2017 to 2021[J]. Virol Sin, 2022, 37(5):646-655.
[28] GE F F, KANG L S, SHEN L P, et al. Pathogenicity and immunogenicity of a serially passaged attenuated genotype 2c porcine epidemic diarrhea virus cultured in suspended vero cells[J]. Front Microbiol, 2022, 13:864377.
[29] ABASS G, DUBAL Z B, RAJAK K K, et al. Molecular characterization of porcine rotavirus A from India revealing zooanthroponotic transmission[J]. Anim Biotechnol, 2022, 33(6):1073-1085.
[30] JOSHI M S, WALIMBE A M, ARYA S A, et al. Evolutionary analysis of all eleven genes of species C rotaviruses circulating in humans and domestic animals[J]. Mol Phylogenet Evol, 2023, 186:107854.
[31] KUNI? V, MIKULETICACˇG T, KOGOJ R, et al. Interspecies transmission of porcine-originated G4P[6] rotavirus A between pigs and humans:a synchronized spatiotemporal approach[J]. Front Microbiol, 2023, 14:1194764.
[32] MALAKALINGA J J, MISINZO G, MSALYA G M, et al. Prevalence and genomic characterization of rotavirus group A genotypes in piglets from southern highlands and eastern Tanzania[J]. Heliyon, 2022, 8(11):e11750.
[33] MIAO Q, PAN Y D, GONG L, et al. Full genome characterization of a human-porcine reassortment G12P[7] rotavirus and its pathogenicity in piglets[J]. Transbound Emerg Dis, 2022, 69(6):3506-3517.
[34] WOHLGEMUTH N, HONCE R, SCHULTZ-CHERRY S. Astrovirus evolution and emergence[J]. Infect Genet Evol, 2019, 69:30-37.
[35] XIAO D, ZHANG L W, LI S Q, et al. Characterization, phylogenetic analysis, and pathogenicity of a novel genotype 2 porcine Enterovirus G[J]. Virus Res, 2023, 335:199185.
[36] WEI R, SHANG R, CHENG K H, et al. A novel recombinant porcine sapovirus infection in piglets with diarrhea in Shandong Province, China, 2022[J]. Braz J Microbiol, 2023, 54(2):1309-1314.
[37] LIANG W Q, WU X D, DING Z, et al. Identification of a novel porcine Teschovirus 2 strainas causative agent of encephalomyelitis in suckling piglets with high mortality in China[J]. BMC Vet Res, 2023, 19(1):2.
[38] LEE D, JANG G, MIN K C, et al. Coinfection with porcine epidemic diarrhea virus and Clostridium perfringens type A enhances disease severity in weaned pigs[J]. Arch Virol, 2023, 168(6):166.
[39] NANTEL-FORTIER N, GAUTHIER M, L′HOMME Y, et al. The swine enteric virome in a commercial production system and its association with neonatal diarrhea[J]. Vet Microbiol, 2022, 266:109366.
[40] ZHANG B Z, QING J, YAN Z, et al. Investigation and analysis of porcine epidemic diarrhea cases and evaluation of different immunization strategies in the large-scale swine farming system[J]. Porcine Health Manag, 2023, 9(1):36.
[41] CAPAI L, PIORKOWSKI G, MAESTRINI O, et al. Detection of porcine enteric viruses (Kobuvirus, Mamastrovirus and Sapelovirus) in domestic pigs in Corsica, France[J]. PLoS One, 2022, 17(1):e0260161.
(編輯 白永平)