摘" 要: 旨在比較3種qPCR方法檢測少量豬早期胚胎細(xì)胞多能性和組蛋白乙?;揎椣嚓P(guān)基因的動態(tài)表達(dá)情況。本研究收集不同時期(1-細(xì)胞、2-細(xì)胞、4-細(xì)胞、8-細(xì)胞、桑葚胚和囊胚)豬孤雌激活胚胎,利用常規(guī)RT-qPCR、cDNA預(yù)擴(kuò)增qPCR和樣本直接預(yù)擴(kuò)增qPCR檢測微量胚胎細(xì)胞多能性和組蛋白乙?;揎椣嚓P(guān)基因的表達(dá)情況。結(jié)果顯示,預(yù)擴(kuò)增qPCR具有穩(wěn)定的擴(kuò)增曲線,熔解曲線呈現(xiàn)穩(wěn)定單峰,而常規(guī)RT-qPCR檢測的擴(kuò)增曲線循環(huán)閾值在35以上,熔解曲線呈現(xiàn)多峰;胚胎細(xì)胞直接預(yù)擴(kuò)增后的樣品稀釋20 000倍仍能檢測目的基因的表達(dá),且能穩(wěn)定檢測單個胚胎細(xì)胞的基因表達(dá)情況;多能性和組蛋白乙酰化修飾相關(guān)基因在豬孤雌激活早期胚胎發(fā)育過程中呈現(xiàn)先升高后降低的表達(dá)趨勢,在基因組激活階段的表達(dá)水平最高。綜上表明,樣本直接預(yù)擴(kuò)增qPCR的檢測靈敏性和準(zhǔn)確性更高,且操作相對簡單、成本較低,適用于微量胚胎細(xì)胞的基因表達(dá)檢測,可為研究早期胚胎發(fā)育機(jī)制提供方法參考。
關(guān)鍵詞: 預(yù)擴(kuò)增;qPCR;豬早期胚胎;微量細(xì)胞;基因表達(dá)
中圖分類號:S828.3
文獻(xiàn)標(biāo)志碼:A
文章編號:0366-6964(2024)12-5567-08
doi: 10.11843/j.issn.0366-6964.2024.12.021
開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
收稿日期:2024-04-15
基金項目:廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金委員會區(qū)域聯(lián)合基金—青年基金項目(2021A1515110046);深圳市可持續(xù)發(fā)展科技專項項目(KCXFZ20201221173213037);國家自然科學(xué)基金青年項目(32302747)
作者簡介:晏" 超(1999-),男,江西宜春人,碩士生,主要從事動物遺傳育種與繁殖研究,E-mail: 15170529593@163.com
*通信作者:唐中林,主要從事豬重要經(jīng)濟(jì)性狀的遺傳改良研究,E-mail: tangzhonglin@caas.cn;陳指龍,主要從事豬繁殖與胚胎發(fā)育研究,E-mail: chenzhilong@caas.cn
Detection of Gene Expression in Trace Cells of Early Porcine Embryo by Pre-amplified
Quantitative PCR
YAN" Chao1,2, LIU" Yonggang2, XIE" Hao1, PENG" Cuiting1, ZHANG" Caiyong1, ZHAO" Yulan1,3, QI" Lin1, CHEN" Zhilong1,3,4,5*, TANG" Zhonglin1,3,4,5*
(1.Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000," China;
2.College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201," China;
3.Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528225," China;
4.Shenzhen Branch Center of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Shenzhen 518000," China;
5.Key Laboratory of Livestock and Poultry Biohistology of Ministry of Agriculture and Rural Affairs, Shenzhen 518000," China)
Abstract: This study aimed to compare 3 quantitative polymerase chain reaction (qPCR) methods for detecting the dynamic expression of genes associated with pluripotency and histone acetylase modification in trace cells of porcine early embryo. Porcine parthenogenetic activated embryos at different stages (1-cell, 2-cell, 4-cell, 8-cell, morula and blastocyst) were collected, and the expression of genes associated with cell pluripotency and histone acetylase modification were detected by conventional RT-qPCR, cDNA pre-amplified qPCR and sample direct pre-amplified qPCR. The results indicated that the pre-amplified qPCR exhibited a stable amplification curve, and the melt curve displayed a consistent single peak, the conventional RT-qPCR produced cyclic thresholds above 35 and multiple peaks in the melt curve. Notably, target gene expression was successfully detected even after a 20 000-fold dilution of embryonic cells using pre-amplification, and gene expression at the single embryonic cells could be reliably assessed. The expression patterns of genes related to pluripotency and histone acetylase modification exhibited an initial increase followed by a decline across different stages of porcine parthenogenetic activated embryos, with the highest expression levels occurring at the genome activation stage. In conclusion, pre-amplified qPCR demonstrates superior sensitivity and accuracy, with a relatively simple operational protocol and lower costs, making it a suitable approach for gene expression analysis in trace cells of embryo. This methodology has the potential to advance the understanding for the mechanisms underlying early embryonic development.
Key words: preamplification; qPCR; porcine early embryo; trace cells; gene expression
*Corresponding authors:" TANG Zhonglin, E-mail: tangzhonglin@caas.cn; CHEN Zhilong, E-mail: chenzhilong@caas.cn
豬早期胚胎發(fā)育過程涉及復(fù)雜的基因轉(zhuǎn)錄變化和表觀重塑,包括母源RNA降解和合子基因組激活,伴隨著細(xì)胞由全能性向多能性的轉(zhuǎn)變,關(guān)鍵基因的特定時空表達(dá)是確保胚胎正常發(fā)育的基礎(chǔ)[1-3]?;蜣D(zhuǎn)錄豐度的檢測有助于判斷早期胚胎的發(fā)育潛能和解析發(fā)育機(jī)制,為后續(xù)提高體外生產(chǎn)胚胎的發(fā)育率奠定基礎(chǔ)[4,5]。
實時定量PCR(real-time quantitative PCR, qPCR)和RNA測序(RNA sequencing, RNA-seq)技術(shù)是檢測基因表達(dá)譜的常規(guī)方法。由于胚胎細(xì)胞數(shù)量有限,基因轉(zhuǎn)錄豐度較低,利用低輸入RNA-seq需經(jīng)過多輪全轉(zhuǎn)錄組擴(kuò)增后進(jìn)行測序分析,費(fèi)時又費(fèi)力,且容易出現(xiàn)全轉(zhuǎn)錄組擴(kuò)增偏差,比實時定量PCR的靈敏度更低,變化更大[6,7]。qPCR檢測表達(dá)豐度低的基因需要足夠數(shù)量的模板,且多基因檢測對模板數(shù)量的要求更高[8]。預(yù)擴(kuò)增檢測技術(shù)可通過增加樣本特異性核苷酸序列的拷貝數(shù),實現(xiàn)低表達(dá)豐度目的基因被高效檢測,廣泛應(yīng)用于人類植入前胚胎遺傳學(xué)檢測、哺乳動物性別鑒定、胚胎基因組選擇育種等領(lǐng)域[9-13]。核酸特異性預(yù)擴(kuò)增反應(yīng)使用低濃度引物(比常規(guī)PCR低10~20倍),在有限的循環(huán)次數(shù)(20個循環(huán)或更短)內(nèi)延長退火時間(3 min或更長時間),確保所有待測核酸穩(wěn)定形成特異性PCR擴(kuò)增產(chǎn)物;此外,預(yù)擴(kuò)增反應(yīng)適用于大批量核酸檢測(引物庫≥96 次),檢測效率比常規(guī)qPCR高[14]。本研究比較了常規(guī)反轉(zhuǎn)錄qPCR(reverse transcription-qPCR, RT-qPCR)和預(yù)擴(kuò)增qPCR檢測少量豬早期胚胎細(xì)胞基因表達(dá)的準(zhǔn)確性和靈敏性,揭示了多能性和組蛋白乙?;揎椣嚓P(guān)基因在豬孤雌激活胚胎發(fā)育過程中的動態(tài)表達(dá)水平,為進(jìn)一步研究豬早期胚胎發(fā)育機(jī)制奠定基礎(chǔ)。
1" 材料與方法
1.1" 試驗材料與試劑
豬卵巢來源于當(dāng)?shù)赝涝讏觥T旭R血清促性腺激素和人絨毛膜促性腺激素購于ProSpec生物公司,TCM-199粉末、胎牛血清(fetal bovine serum, FBS)、杜氏磷酸鹽緩沖液(dulbecco’s phosphate buffered saline, DPBS)和青-鏈霉素購于Gibco公司,微量RNA提取試劑盒購于天根生化科技有限公司,SYBR qPCR Master Mix、單細(xì)胞特異序列擴(kuò)增試劑盒和cDNA反轉(zhuǎn)錄試劑盒購于諾唯贊生物公司,其他試劑無特殊說明外均購于Sigma公司。
1.2" 豬卵母細(xì)胞的分離與成熟培養(yǎng)
屠宰場采集的卵母細(xì)胞用33℃恒溫箱在4 h內(nèi)運(yùn)送回實驗室,用含2%青-鏈霉素的生理鹽水清洗后,用刀片劃破2~6 mm的卵泡,收集卵泡液至15 mL圓底管。卵泡液靜置15 min后,去除上清,用清洗液(含3% FBS的DPBS)清洗一遍,再加入體外操作液(含3%牛血清白蛋白的TCM-199溶液),顯微鏡下挑取形態(tài)飽滿、含3層致密卵丘細(xì)胞包裹的卵丘-卵母細(xì)胞復(fù)合體(COCs),每50個COCs放入含400 μL卵母細(xì)胞體外成熟液[15]的4孔板中,置于38.5 ℃、5% CO2培養(yǎng)箱中培養(yǎng)42~44 h。
1.3" 豬卵母細(xì)胞孤雌激活胚胎的收集
體外成熟后的豬卵母細(xì)胞用含1 mg·mL-1 透明質(zhì)酸酶的TCM-199液吹打脫落卵丘細(xì)胞,挑取形態(tài)飽滿、極體明顯的卵母細(xì)胞至T2(含2% FBS的TCM-199液)液滴中清洗3次,移入激活液(含0.05 mmol·L-1 CaCl2,0.1 mmol·L-1 MgSO4,0.3 mol·L-1 甘露醇,1 mg·mL-1 聚乙烯醇)中平衡3 min,置于融合槽電極中間,以200 V·mm-1、30 μs·次-1電激活1次,T20(含20%FBS的TCM-199液)清洗3次再轉(zhuǎn)移至含5 mg·mL-1 細(xì)胞松弛素B和10 mg·mL-1 環(huán)己亞胺的PZM-3胚胎體外培養(yǎng)基中[16],置于38.5 ℃、5% CO2、5% O2和90% N2培養(yǎng)箱中進(jìn)行培養(yǎng)。
收集豬MII期卵母細(xì)胞和不同發(fā)育時期豬孤雌激活胚胎(1-細(xì)胞、2-細(xì)胞、4-細(xì)胞、8-細(xì)胞、桑葚胚和囊胚),先用含有0.1%聚乙烯醇的DPBS溶液清洗3遍,再用酸性Tyrode’s液去除透明帶,清洗液清洗后將每組樣本裝入含350 μL裂解液(來源于RNA提取試劑盒)的1.5 mL無菌無核酸酶的離心管中,用于微量RNA提取。預(yù)擴(kuò)增胚胎細(xì)胞樣本則在去除透明帶后移入200 μL無菌無核酸酶的空離心管中,迅速放入液氮中,用于預(yù)擴(kuò)增qPCR。
1.4" 實時熒光定量PCR
將收集的胚胎樣本分以下3組進(jìn)行試驗:1)常規(guī)RT-qPCR。根據(jù)微量RNA提取試劑盒說明書操作步驟提取胚胎細(xì)胞樣本(25個細(xì)胞)總RNA,用反轉(zhuǎn)錄試劑盒將mRNA反轉(zhuǎn)錄成cDNA。2)cDNA預(yù)擴(kuò)增qPCR。將上述反轉(zhuǎn)錄的cDNA樣本進(jìn)行預(yù)擴(kuò)增反應(yīng),10 μL體系包含5 μL 2×反應(yīng)MIX、0.2 μL RT/Taq酶、2.8 μL無核酸酶水、0.1 μmol·L-1引物混合液和1 μL cDNA樣本。先將反應(yīng)混合液置于液氮2 min,3 000 r·min-1 離心2 min,再在PCR儀上95 ℃ 3 min,17個循環(huán)(95 ℃ 15 s,60 ℃ 4 min),加入5 μL Exonuclease I(1 U·μL-1),PCR儀中37℃反應(yīng)30 min,85℃反應(yīng)15 min去除引物。3)直接預(yù)擴(kuò)增qPCR。將豬胚胎細(xì)胞用0.5 μL DNase I(1 U·μL-1)在37℃反應(yīng)15 min去除基因組DNA后進(jìn)行預(yù)擴(kuò)增反應(yīng)。15 μL體系包含7.5 μL 2×反應(yīng)MIX、0.3 μL RT/Taq酶、4 μL無核酸酶水、0.1 μmol·L-1 引物混合液和1.7 μL樣本。先將反應(yīng)混合液置于液氮2 min,3 000 r·min-1 離心2 min,再到PCR儀上50℃ 60 min,95℃ 3 min,17個循環(huán)(95 ℃ 15 s,60 ℃ 4 min),用Exonuclease I去除引物。
將上述3種樣本用SYBR qPCR Master Mix試劑盒進(jìn)行qPCR檢測。10 μL反應(yīng)體系:2×SYBR Mix 5 μL,上、下游引物各0.2 μL,樣本1 μL,無核酸酶水3.6 μL。引物信息見表1。反應(yīng)條件:95 ℃預(yù)變性30 s,40個循環(huán)(95 ℃變性10 s,60 ℃退火延伸30 s)。熔解曲線:95 ℃ 15 s , 60 ℃ 60 s, 95 ℃ 15 s。目的基因表達(dá)水平對比內(nèi)參基因后采用2-ΔΔCt法計算結(jié)果。
1.5" 數(shù)據(jù)的處理與分析
上述試驗獨(dú)立重復(fù)4次,結(jié)果利用GraphPad Prism軟件繪制數(shù)據(jù)圖例。
2" 結(jié)" 果
2.1" 三種qPCR方法的檢測靈敏性
采用3種qPCR方法檢測25個豬MⅡ期卵母細(xì)胞的內(nèi)參基因EF1A1表達(dá)情況。結(jié)果如圖1所示,常規(guī)RT-qPCR的擴(kuò)增曲線CT在35以上,且熔解曲線出現(xiàn)多峰,cDNA和直接預(yù)擴(kuò)增qPCR的擴(kuò)增曲線CT在30以內(nèi),熔解曲線呈現(xiàn)穩(wěn)定的單峰。說明預(yù)擴(kuò)增qPCR的靈敏性高于常規(guī)RT-qPCR。
2.2" 不同樣本量的預(yù)擴(kuò)增qPCR
用直接預(yù)擴(kuò)增qPCR分別檢測1個、5個和25個MⅡ期卵母細(xì)胞的EF1A1基因表達(dá)情況。結(jié)果如圖2A和2B所示,3組細(xì)胞樣本的擴(kuò)增曲線CT值均在22~24之間,熔解曲線呈現(xiàn)穩(wěn)定單峰。進(jìn)一步對25個MⅡ期卵母細(xì)胞的預(yù)擴(kuò)增后樣本進(jìn)行5、100、1 000和20 000倍稀釋。結(jié)果顯示,隨著稀釋倍數(shù)的增加,CT值相應(yīng)增加,保持在28之內(nèi),熔解曲線呈現(xiàn)穩(wěn)定的單峰(圖2C和2D)。結(jié)果說明,直接預(yù)擴(kuò)增qPCR可檢測單個細(xì)胞樣本的基因表達(dá),細(xì)胞樣本稀釋20 000倍后仍能有效檢測目的基因的表達(dá)。
2.3" 三種qPCR檢測方法的準(zhǔn)確性比較
利用3種qPCR方法檢測不同發(fā)育時期豬孤雌激活胚胎細(xì)胞(25個1-細(xì)胞、20個2-細(xì)胞、15個4-細(xì)胞、12個8-細(xì)胞、10個桑葚胚和10個囊胚)中多能性和組蛋白修飾相關(guān)基因的表達(dá)情況。結(jié)果如圖3所示,常規(guī)RT-qPCR檢測目的基因的CT值均在35以上,且熔解曲線出現(xiàn)多峰,而兩種預(yù)擴(kuò)增qPCR的CT明顯下降,熔解曲線呈現(xiàn)穩(wěn)定的單峰。兩種預(yù)擴(kuò)增qPCR檢測的多能性和組蛋白修飾相關(guān)基因表達(dá)趨勢較為一致,基因表達(dá)檢測結(jié)果的組內(nèi)誤差較低。綜上說明,預(yù)擴(kuò)增qPCR的檢測準(zhǔn)確性要優(yōu)于常規(guī)RT-qPCR。
3" 討" 論
隨著下一代測序(二代)技術(shù)的發(fā)展,微量細(xì)胞測序技術(shù)陸續(xù)被開發(fā)并廣泛應(yīng)用于胚胎發(fā)育機(jī)制研究[17-19]。RNA-seq和RT-qPCR是檢測微量細(xì)胞樣本mRNA水平的常用方法[11,20]。對于特定基因或基因集的表達(dá)檢測,qPCR相比RNA-seq操作更簡便、成本較低且具有更高的靈敏性和準(zhǔn)確性[9,21]。預(yù)擴(kuò)增qPCR可在進(jìn)行PCR反應(yīng)前通過增加樣本中特異性核苷酸序列的拷貝數(shù)來檢測有限核酸數(shù)量樣本的基因表達(dá)水平[22]。早在2010年,Hernndez-Arteage和Lpez-Revilia[23]應(yīng)用預(yù)擴(kuò)增qPCR技術(shù),將樣本稀釋50倍后進(jìn)行15個循環(huán)數(shù)的預(yù)擴(kuò)增反應(yīng),可使樣本中癌基因表達(dá)檢測的靈敏度提高10 750倍。Ankica等[10]利用預(yù)擴(kuò)增qPCR技術(shù)高效檢測了血液中微量Micro RNAs的表達(dá)情況。此外,Xiao等[24]利用預(yù)擴(kuò)增qPCR技術(shù)確定了單個牛囊胚的性別和性染色體相關(guān)基因的表達(dá)情況。本研究通過3種qPCR方法檢測不同發(fā)育時期豬胚胎多能性和組蛋白乙?;揎椣嚓P(guān)基因的表達(dá)水平,發(fā)現(xiàn)預(yù)擴(kuò)增qPCR的檢測靈敏性高于傳統(tǒng)
RT-qPCR,傳統(tǒng)RT-qPCR無法有效檢測少量細(xì)胞中目的基因的表達(dá),擴(kuò)增曲線和熔解曲線均不穩(wěn)定,且組內(nèi)誤差較大。預(yù)擴(kuò)增反應(yīng)能有效增加樣本模板數(shù)量,同時可減少樣品提取核酸過程造成的組別差異,但有限數(shù)量的胚胎細(xì)胞樣本很難估算RNA濃度,只能通過擴(kuò)增曲線和熔解曲線反應(yīng)預(yù)擴(kuò)增效果[25,26]。Kroneis等[9]研究表明,24個擴(kuò)增循環(huán)數(shù)足夠使30 pg RNA預(yù)擴(kuò)增成cDNA。本研究在前期摸索了不同循環(huán)數(shù)對25個豬卵母細(xì)胞的預(yù)擴(kuò)增效果,發(fā)現(xiàn)17個循環(huán)數(shù)進(jìn)行預(yù)擴(kuò)增反應(yīng)能有效檢測20個基因的表達(dá)水平。由于收集的胚胎細(xì)胞數(shù)量有限,在某些特定情況下,可能需要對極少量甚至1個胚胎或者細(xì)胞進(jìn)行測定。Xiao等[11]將單個囊胚預(yù)擴(kuò)增后的cDNA樣本稀釋1 024倍,還可有效檢測目的基因的表達(dá)。本研究對預(yù)擴(kuò)增樣本稀釋20 000倍后仍能有效檢測到EF1A1基因的表達(dá),根據(jù)擴(kuò)增曲線CT值,25個細(xì)胞預(yù)擴(kuò)增后稀釋1 000倍進(jìn)行qPCR較為合適。此外,1個、5個和25個細(xì)胞進(jìn)行預(yù)擴(kuò)增qPCR,其CT值相近,說明預(yù)擴(kuò)增反應(yīng)可穩(wěn)定檢測單個細(xì)胞中基因表達(dá),且25個之內(nèi)細(xì)胞數(shù)進(jìn)行預(yù)擴(kuò)增后的cDNA含量相近。
哺乳動物早期胚胎發(fā)育經(jīng)歷了合子基因組激活和細(xì)胞由全能性向多能性轉(zhuǎn)變的過程,組蛋白乙?;揎椩谂咛ズ献踊蚪M激活過程中起著重要的調(diào)控作用[27,28],先鋒轉(zhuǎn)錄因子OCT4、SOX2和NANOG是調(diào)控胚胎細(xì)胞多能性的重要基因[29-31]。本研究通過預(yù)擴(kuò)增qPCR檢測發(fā)現(xiàn),豬孤雌激活胚胎多能性和組蛋白乙?;揎椈騍OX2、NANOG、HADAC1、HADAC2、HAT1、MBD3、CBP和DUXC在合子基因組激活階段(4-~8-細(xì)胞時期)呈現(xiàn)高表達(dá),與Li等[32]的報道基本一致。豬胚胎4-~8-細(xì)胞階段母源mRNA不斷降解,合子基因被激活,多能性和組蛋白乙?;揎椈蛱囟〞r空的動態(tài)表達(dá)是確保胚胎正常發(fā)育的基礎(chǔ)[33-36]。
cDNA預(yù)擴(kuò)增qPCR檢測豬胚胎多能性和組蛋白乙酰化修飾基因的表達(dá)趨勢與預(yù)擴(kuò)增qPCR相似,但cDNA預(yù)擴(kuò)增qPCR的目的基因表達(dá)水平相對較高,可能是cDNA預(yù)擴(kuò)增樣本殘留RNA導(dǎo)致。綜上,樣本直接預(yù)擴(kuò)增qPCR的檢測準(zhǔn)確性更高。
4" 結(jié)" 論
本研究優(yōu)化的樣本直接預(yù)擴(kuò)增qPCR技術(shù)比常規(guī)RT-qPCR和cDNA預(yù)擴(kuò)增qPCR具有更高的準(zhǔn)確性和靈敏性。通過少量胚胎細(xì)胞樣本直接預(yù)擴(kuò)增qPCR技術(shù)揭示了不同發(fā)育時期豬孤雌激活胚胎多能性和組蛋白乙酰化修飾相關(guān)基因的動態(tài)表達(dá)水平,呈現(xiàn)先升高后降低的表達(dá)趨勢,在合子基因組激活階段的表達(dá)水平最高。本研究可為進(jìn)一步解析豬早期胚胎發(fā)育機(jī)制提供參考。
參考文獻(xiàn)(References):
[1]" ZHU W,BU G W,HU R F,et al.KLF4 facilitates chromatin accessibility remodeling in porcine early embryos[J].Sci China Life Sci,2024,67(1):96-112.
[2]" BU G W,ZHU W,LIU X,et al.Coordination of zygotic genome activation entry and exit by H3K4me3 and H3K27me3 in porcine early embryos[J].Genome Res,2022,32(8):1487-1501.
[3]" HE T Y,PENG J Y,YANG S,et al.SINE-associated LncRNA SAWPA regulates porcine zygotic genome activation[J].Adv Sci (Weinh),2024,11(2):2307505.
[4]" GAO R N,LI Q C,QIU M Y,et al.Serum exosomal miR-192 serves as a potential detective biomarker for early pregnancy screening in sows[J].Anim Biosci,2023,36(9):1336-1349.
[5]" ZOLINI A M,BLOCK J,RABAGLINO M B,et al.Genes associated with survival of female bovine blastocysts produced in vivo[J].Cell Tissue Res,2020,382(3):665-678.
[6]" GROFF A F,RESETKOVA N,DIDOMENICO F,et al.RNA-seq as a tool for evaluating human embryo competence[J].Genome Res,2019,29(10):1705-1718.
[7]" LUO Q K,ZHANG H.Emergence of bias during the synthesis and amplification of cDNA for scRNA-seq[J].Adv Exp Med Biol,2018,1068:149-158.
[8]" STHLBERG A,KUBISTA M.The workflow of single-cell expression profiling using quantitative real-time PCR[J].Expert Rev Mol Diagn,2014,14(3):323-331.
[9]" KRONEIS T,JONASSON E,ANDERSSON D,et al.Global preamplification simplifies targeted mRNA quantification[J].Sci Rep,2017,7:45219.
[10]" SEKOVANIC′ A,DOROTIC′ A,JURASOVIC′ J,et al.Pre-amplification as a method for improvement of quantitative RT-PCR analysis of circulating miRNAs[J].Biochem Med (Zagreb),2021,31(1):010901.
[11]" XIAO Y,SOSA F,DE ARMAS L R,et al.An improved method for specific-target preamplification PCR analysis of single blastocysts useful for embryo sexing and high-throughput gene expression analysis[J].J Dairy Sci,2021,104(3):3722-3735.
[12]" MOGHADDASZADEH-AHRABI S,F(xiàn)ARAJNIA S,RAHIMI-MIANJI G,et al.A short and simple improved-primer extension preamplification (I-PEP) procedure for whole genome amplification (WGA) of bovine cells[J].Anim Biotechnol,2012,23(1):24-42.
[13]" SUN S Q,ABOELENAIN M,ARIAD D,et al.Identifying risk variants for embryo aneuploidy using ultra-low coverage whole-genome sequencing from preimplantation genetic testing[J].Am J Hum Genet,2023,110(12):2092-2102.
[14]" ANDERSSON D,AKRAP N,SVEC D,et al.Properties of targeted preamplification in DNA and cDNA quantification[J].Expert Rev Mol Diagn,2015,15(8):1085-1100.
[15]" YUAN Y,SPATE L D,REDEL B K,et al.Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation[J].Proc Natl Acad Sci U S A,2017,114(29):E5796-E5804.
[16]" YOSHIOKA K,SUZUKI C,TANAKA A,et al.Birth of piglets derived from porcine zygotes cultured in a chemically defined medium[J].Biol Reprod,2002,66(1):112-119.
[17]" ZHOU F,WANG R,YUAN P,et al.Reconstituting the transcriptome and DNA methylome landscapes of human implantation[J].Nature,2019,572(7771):660-664.
[18]" WU Y,XU X C,QI M J,et al.N6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition[J].Nat Cell Biol,2022,24(6):917-927.
[19]" XU R M,ZHU Q S,ZHAO Y Y,et al.Unreprogrammed H3K9me3 prevents minor zygotic genome activation and lineage commitment in SCNT embryos[J].Nat Commun,2023,14(1):4807.
[20]" LAVAGI I,KREBS S,SIMMET K,et al.Single-cell RNA sequencing reveals developmental heterogeneity of blastomeres during major genome activation in bovine embryos[J].Sci Rep,2018,8(1):4071.
[21]" KOLODZIEJCZYK A A,LNNBERG T.Global and targeted approaches to single-cell transcriptome characterization[J].Brief Funct Genomics,2018,17(4):209-219.
[22]" KORENKOV V,SCOTT J,NOVOSADOV V,et al.Pre-amplification in the context of high-throughput qPCR gene expression experiment[J].BMC Mol Biol,2015,16:5.
[23]" HERNNDEZ-ARTEAGA S,LPEZ-REVILLA R.Ultrasensitive quantitation of human papillomavirus type 16 E6 oncogene sequences by nested real time PCR[J].Infect Agent Cancer,2010,5:9.
[24]" XIAO Y,SOSA F,DE ARMAS L R,et al.An improved method for specific-target preamplification PCR analysis of single blastocysts useful for embryo sexing and high-throughput gene expression analysis[J].J Dairy Sci,2021,104(3):3722-3735.
[25]" ANDERSSON D,AKRAP N,SVEC D,et al.Properties of targeted preamplification in DNA and cDNA quantification[J].Expert Rev Mol Diagn,2015,15(8):1085-1100.
[26]" JANNAMAN E A,XIAO Y,HANSEN P J.Actions of colony-stimulating factor 3 on the maturing oocyte and developing embryo in cattle[J].J Anim Sci,2020,98(4):skaa115.
[27]" WU K L,F(xiàn)AN D D,ZHAO H,et al.Dynamics of histone acetylation during human early embryogenesis[J].Cell Discov,2023, 9(1):29.
[28]" YANG G,ZHANG L F,LIU W Q,et al.Dux-mediated corrections of aberrant H3K9ac during 2-cell genome activation optimize efficiency of somatic cell nuclear transfer[J].Cell Stem Cell,2021,28(1):150-163.e5.
[29]" LI L J,LAI F N,HU X Y,et al.Multifaceted SOX2-chromatin interaction underpins pluripotency progression in early embryos[J].Science,2023,382(6676):eadi5516.
[30]" STIRPARO G G,KUROWSKI A,YANAGIDA A,et al.OCT4 induces embryonic pluripotency via STAT3 signaling and metabolic mechanisms[J].Proc Natl Acad Sci U S A,2021,118(3):e2008890118.
[31]" LAI F N,LI L J,HU X Y,et al.NR5A2 connects zygotic genome activation to the first lineage segregation in totipotent embryos[J].Cell Res,2023,33(12):952-966.
[32]" LI X,ZOU C,LI M X,et al.Transcriptome analysis of in vitro fertilization and parthenogenesis activation during early embryonic development in pigs[J].Genes (Basel),2021,12(10):1461.
[33]" WEI Q Q,LI R Q,ZHONG L,et al.Lineage specification revealed by single-cell gene expression analysis in porcine preimplantation embryos[J].Biol Reprod,2018,99(2):283-292.
[34]" KONG Q R,YANG X,ZHANG H,et al.Lineage specification and pluripotency revealed by transcriptome analysis from oocyte to blastocyst in pig[J].FASEB J,2020,34(1):691-705.
[35]" LEE M,CHOI K H,OH J N,et al.SOX2 plays a crucial role in cell proliferation and lineage segregation during porcine pre-implantation embryo development[J].Cell Prolif,2021,54(8):e13097.
[36]" DE MACEDO M P,GLANZNER W G,GUTIERREZ K,et al.Simultaneous inhibition of histone deacetylases and RNA synthesis enables totipotency reprogramming in pig SCNT embryos[J].Int J Mol Sci,2022,23(22):14142.
(編輯" 郭云雁)