茆俊花 李建中 綜述 戴春筍 審校
遠(yuǎn)端腎單位是指位于致密斑遠(yuǎn)端的腎小管部分,主要由遠(yuǎn)曲小管(DCT)、連接小管(CNT)及集合管(CD)組成。根據(jù)蛋白表達(dá)及組織學(xué)差異,DCT又進(jìn)一步分為DCT1和DCT2。遠(yuǎn)端腎單位在腎臟離子轉(zhuǎn)運(yùn)過(guò)程中起著非常重要的作用,負(fù)責(zé)轉(zhuǎn)運(yùn)的調(diào)節(jié)電解質(zhì)中最主要的Na+、K+和Cl-。盡管僅有2%~3%經(jīng)腎小球?yàn)V出的氯化鈉在遠(yuǎn)端腎單位中被重吸收[1,2],因受到醛固酮的直接調(diào)控,其在調(diào)節(jié)腎臟對(duì)氯化鈉的重吸收和分泌、細(xì)胞外液容量控制及高血壓中至關(guān)重要。
遠(yuǎn)端腎單位Na+轉(zhuǎn)運(yùn)由DCT上噻嗪類敏感型Na/Cl共轉(zhuǎn)運(yùn)子(NCC)及DCT2、CNT和CD上的阿米洛利敏感型上皮細(xì)胞鈉通道(ENaC)實(shí)現(xiàn)[3];K+轉(zhuǎn)運(yùn)則由位于遠(yuǎn)端腎單位全程小管上的K+通道(ROMK)和大型流量依賴型鈣激活鉀通道(BK通道) 共 同 完 成[4,5]。 絲 氨 酸/蘇 氨 酸 蛋 白 激 酶(WNKs),在人體多種組織中都有表達(dá)。腎組織主要表達(dá) WNK1、KS-WNK1、WNK3 及 WNK4,其中WNK1和WNK4在遠(yuǎn)端腎單位全程表達(dá),而缺乏激酶區(qū)域的KS-WNK1只特異性地表達(dá)于DCT。近年研究發(fā)現(xiàn)WNKs在調(diào)控遠(yuǎn)端腎單位鈉鉀轉(zhuǎn)運(yùn)中起著非常重要的作用[3,6]。
WNK1和WNK4的基因突變是造成Ⅱ型假性醛固酮減少癥(PHAⅡ)的根本原因[4,6]。正常WNK4蛋白的主要功能是抑制NCC、ENaC和ROMK的活性。PHAⅡ患者中突變WNK4對(duì)ROMK的抑制作用進(jìn)一步加重,反而能激活NCC和ENaC[7-9],造成遠(yuǎn)端腎單位Na+重吸收增加和K+分泌減少,最終導(dǎo)致高血壓、高血鉀等PHAⅡ的典型臨床表現(xiàn)。研究證實(shí),血管緊張素Ⅱ(AngⅡ)可反轉(zhuǎn)WNK4對(duì)NCC的抑制作用[10],但卻加重 WNK4對(duì)ROMK的抑制作用[11],說(shuō)明 PHAⅡ中突變 WNK4與AngⅡ?qū)CC和ROMK的作用相似。PHAⅡ患者中WNK1的過(guò)表達(dá)也會(huì)影響NCC和ROMK的活性。首先,WNK1可直接抑制ROMK活性[12];其次,WNK1有抑制WNK4的作用[13]。生理情況下,DCT中KS-WNK1的表達(dá)水平數(shù)倍于WNK1,導(dǎo)致WNK1對(duì)WNK4的抑制作用受到KS-WNK1的拮抗,WNK4的活性得到釋放,進(jìn)而抑制NCC和ROMK的活性。PHAⅡ患者中WNK1高表達(dá),明顯超過(guò)了生理濃度KS-WNK1的拮抗能力,從而WNK4的功能受到抑制,最終解除WNK4對(duì)NCC的抑制作用,患者出現(xiàn)高血鈉等表現(xiàn)。
慢性心力衰竭、肝硬化、腎病綜合征等患者,由于細(xì)胞外液增加,循環(huán)的平均灌注壓降低,遠(yuǎn)端腎單位尿流量相對(duì)減少,腎素-血管緊張素-醛固酮系統(tǒng)(RAAS)激活,醛固酮繼發(fā)性的產(chǎn)生增多。在CNT和CD中,尿流量減少直接抑制了BK通道的活性[14],也間接地抑制了 ENaC/ROMK的活性,從而減少了K+排泌,維持血鉀濃度。由于伴AngⅡ和醛固酮分泌增加,會(huì)造成NCC和ENaC激活,使遠(yuǎn)端腎單位對(duì)水和Na+的重吸收增加,此時(shí)血清鉀并未下降,其可能的原因一方面是由于AngⅡ通過(guò)WNK對(duì)ROMK的抑制作用超過(guò)了醛固酮對(duì)ROMK的活化作用,另一方面 DCT中 Na+重吸收增加造成CNT/CD中尿流量降低和鈉鹽減少,最終也會(huì)使K+分泌減少,維持血鉀濃度。由于循環(huán)容量的增加是以水鈉潴留為代價(jià),并不伴膠體滲透壓的增加,因此導(dǎo)致液體主要積聚在細(xì)胞外,最終造成水腫。
高鉀飲食或原發(fā)性醛固酮增多癥患者往往不伴RAAS的激活。此類患者升高的醛固酮可上調(diào)血清及糖皮質(zhì)激素誘導(dǎo)型蛋白激酶1(SGK1)的表達(dá),SGK1一方面使ENaC的表達(dá)上調(diào)[15],另一方面通過(guò)促進(jìn)WNK4磷酸化,解除其對(duì)ENaC和ROMK的抑制作用[16]。此外,因?yàn)?DCT1缺少11β-羥化類固醇脫氫酶Ⅱ,醛固酮可上調(diào)DCT2中NCC蛋白的表達(dá),卻不影響 DCT1 中的 NCC 蛋白表達(dá)[17,18]。由于AngⅡ并未相應(yīng)增加,DCT1中NCC仍受WNK4的抑制,導(dǎo)致CNT/CD中Na+和尿流量增加,從而激活ENaC、BK通道和ROMK,導(dǎo)致Na+/K+交換增加,最終引起K+排泌增加,使血鉀水平降低。然而此類患者并不容易發(fā)生水腫,可能原因是DCT1中的NCC并未被醛固酮活化,患者可通過(guò)增加尿鈉排泄來(lái)排出Na+。因此,原發(fā)性醛固酮增多癥患者DCT1中NCC的活性抑制足以克服ENaC的活化作用,從而防止水腫,但會(huì)發(fā)生動(dòng)脈高壓。
遠(yuǎn)端腎單位不僅調(diào)控腎臟對(duì)鈉鉀的轉(zhuǎn)運(yùn),在氯轉(zhuǎn)運(yùn)的調(diào)控中也起著非常重要的作用(圖1)[19,20]。Cl-在DCT1的重吸收依賴Na+/Cl-協(xié)同轉(zhuǎn)運(yùn)蛋白NCC,是噻嗪類藥物作用的靶點(diǎn)[21,22];在 CNT 和 CD的轉(zhuǎn)運(yùn),則通過(guò)噻嗪類敏感型電中性離子轉(zhuǎn)運(yùn)和閉合蛋白(claudins)介導(dǎo)的細(xì)胞旁通道來(lái)實(shí)現(xiàn)[23]。
圖1 集合管上皮細(xì)胞管腔面離子轉(zhuǎn)運(yùn)模式圖
噻嗪類敏感型電中性離子轉(zhuǎn)運(yùn)主要包括鈉驅(qū)動(dòng)Cl-/HCO3-交換子(NDCBE/SLC4A8)和Pendrin交換子。NDCBE主要位于大腦和睪丸,在腎髓質(zhì)集合管的β閏細(xì)胞的頂膜也有表達(dá)[24]。在SLC4a8-/-大鼠中,予低鹽飲食,Na+的重吸收能夠被氫氯噻嗪阻斷,表明NDCBE參與噻嗪類敏感型鈉轉(zhuǎn)運(yùn)。通過(guò)NDCBE,Na+和HCO3-經(jīng)β閏細(xì)胞重吸收,而Cl-則被分泌到管腔內(nèi),其轉(zhuǎn)運(yùn)比率是 1∶2∶1[23]。Pendrin交換子是由SLC26a4基因編碼的位于β閏細(xì)胞頂膜的Cl-/HCO3-交換蛋白,最先在耳聾-甲狀腺腫綜合征中被發(fā)現(xiàn)。β閏細(xì)胞通過(guò)pendrin蛋白攝取Cl-,同時(shí)排出HCO3-,轉(zhuǎn)運(yùn)比率是1∶1。通過(guò)NDCBE和pendrin交換子的協(xié)作,β閏細(xì)胞在氯化鈉重吸收的過(guò)程中并未形成跨上皮電勢(shì)差[25]。
皮質(zhì)集合管主細(xì)胞的頂膜有鹽酸阿米洛利敏感型ENaC。ENaC在介導(dǎo)主細(xì)胞對(duì)鈉重吸收的同時(shí)會(huì)造成管腔負(fù)電壓(~-25 mV)。腔內(nèi)跨上皮負(fù)電壓為氯重吸收及K+和H+的分泌提供驅(qū)動(dòng)力。細(xì)胞內(nèi)的鉀通過(guò)主細(xì)胞頂膜ROMK分泌入管腔[26-28]。H+則通過(guò)位于 α 閏細(xì)胞頂膜上的H+-ATP酶分泌到管腔。氯則經(jīng)主細(xì)胞旁通道重吸收,其重吸收量應(yīng)與重吸收鈉相等,否則會(huì)加大跨上皮細(xì)胞負(fù)電壓,造成管腔面胞膜去極化,最終抑制ENaC 活性[29]。
“氯分流”是指氯經(jīng)集合管主細(xì)胞間的緊密連接進(jìn)行重吸收[30]。氯分流異常增加可能是造成PHAⅡ患者高氯血癥的重要原因。有證據(jù)表明集合管的緊密連接中存在 WNK4 蛋白[30,31]。WNK4突變會(huì)造成氯經(jīng)主細(xì)胞旁通道的重吸收增加。緊密連接由咬合蛋白(ocludin)、claudins、連接黏附分子(JAMs)和閉合小環(huán)蛋白(ZO-1,ZO-2和ZO-3)等組成。claudins分子由4個(gè)跨膜結(jié)構(gòu)域組成,是構(gòu)成緊密連接的主要骨架蛋白,其對(duì)緊密連接功能的維持也最為重要[32]。claudins對(duì)細(xì)胞連接選擇性滲透的調(diào)節(jié)主要通過(guò)蛋白激酶途徑實(shí)現(xiàn)。蛋白激酶A(PKA)或蛋白激酶C(PKC)促進(jìn)claudins蛋白中絲/蘇氨酸位點(diǎn)磷酸化,造成緊密連接處對(duì)氯的滲透性增加[33]。Hou 等[34]研究發(fā)現(xiàn) claudin 家族中下調(diào)claudin-4或claudin-8表達(dá)可降低細(xì)胞對(duì)氯的通透性,但對(duì)鈉通透性無(wú)影響;進(jìn)一步研究表明claudin-8需要與claudin-4結(jié)合并引導(dǎo)claudin-4到細(xì)胞緊密連接處發(fā)揮作用,其自身不能形成氯通道。大量研究結(jié)果證實(shí)了claudin蛋白在維持緊密連接對(duì)氯選擇性通透性中的重要作用。
小結(jié):遠(yuǎn)端腎單位是調(diào)控腎臟離子轉(zhuǎn)運(yùn)的主要組成部分。WNKs和細(xì)胞旁路途徑在調(diào)控遠(yuǎn)端腎單位對(duì)Na+、K+和Cl-及水的轉(zhuǎn)運(yùn)中起著非常重要的作用。WNKs、NDCBE和pendrin交換子可能是治療高血壓的潛在靶點(diǎn)。WNKs參與遠(yuǎn)端腎單位離子轉(zhuǎn)運(yùn)調(diào)控、claudins蛋白介導(dǎo)細(xì)胞旁氯分流,但是對(duì)于這些蛋白分子的調(diào)控機(jī)制及其與腎臟疾病的關(guān)系仍有待進(jìn)一步研究。
1 Guyton AC.Blood pressure control--special role of the kidneys and body fluids.Science,1991,252(5014):1813-1816.
2 Lifton RP,Gharavi AG,Geller DS.Molecular mechanisms of human hypertension.Cell,2001,104(4):545-556.
3 Loffing J,Loffing-Cueni D,Valderrabano V,et al.Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron.Am J Physiol Renal Physiol,2001,281(6):F1021-F1027.
4 Mayan H,Vered I,Mouallem M,et al.Pseudohypoaldosteronism typeⅡ:marked sensitivity to thiazides,hypercalciuria,normomagnesemia,and low bone mineral density.J Clin Endocrinol Metab,2002,87(7):3248-3254.
5 Hebert SC,Desir G,Giebisch G,et al.Molecular diversity and regulation of renal potassium channels.Physiol Rev,2005,85(1):319-371.
6 Wilson FH,Disse-Nicodème S,Choate KA,et al.Human hypertension caused by mutations in WNK kinases.Science,2001,293(5532):1107-1112.
7 Grimm PR,Sansom SC.BK channels and a new form of hypertension.Kidney Int,2010,78(10):956-962.
8 Kahle KT,Wilson FH,Leng Q,et al.WNK4 regulates the balance between renal NaCl reabsorption and K+secretion.Nat Genet,2003,35(4):372-376.
9 Ring AM,Cheng SX,Leng Q,et al.WNK4 regulates activity of the epithelial Na+channel in vitro and in vivo.Proc Natl Acad Sci U S A,2007,104(10):4020-4024.
10 San-Cristobal P,Pacheco-Alvarez D,Richardson C,et al.Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway.Proc Natl Acad Sci U S A,2009,106(11):4384-4389.
11 Yue P,Sun P,Lin DH,et al.Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels.Kidney Int,2011,79(4):423-431.
12 Cheng CJ,Huang CL.Activation of PI3-kinase stimulates endocytosis of ROMK via Akt1/SGK1-dependent phosphorylation of WNK1.J Am Soc Nephrol,2011,22(3):460-471.
13 Subramanya AR,Yang CL,Zhu X,et al.Dominant-negative regulation of WNK1 by its kidney-specific kinase-defective isoform.Am J Physiol Renal Physiol,2006,290(3):F619-F624.
14 Woda CB,Bragin A,Kleyman TR,et al.Flow-dependent K+secretion in the cortical collecting duct is mediated by a maxi-K channel.Am J Physiol Renal Physiol,2001,280(5):F786-F793.
15 Abriel H,Staub O.Ubiquitylation of ion channels.Physiology(Bethesda),2005,20:398-407.
16 Ring AM,Leng Q,Rinehart J,et al.An SGK1 site in WNK4 regulates Na+channel and K+channel activity and has implications for aldosterone signaling and K+homeostasis.Proc Natl Acad Sci U S A,2007,104(10):4025-4029.
17 Kim GH,Masilamani S,Turner R,et al.The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein.Proc Natl Acad Sci U S A,1998,24;95(24):14552-14557.
18 Bostanjoglo M,Reeves WB,Reilly RF,et al.11Beta-hydroxysteroid dehydrogenase,mineralocorticoid receptor,and thiazide-sensitive Na-Cl cotransporter expression by distal tubules.J Am Soc Nephrol,1998,9(8):1347-1358.
19 Stoner LC,Burg MB,Orloff J,et al.Ion transport in cortical collecting tubule;effect of amiloride.Am J Physiol,1974,227(2):453-459.
20 O'NeilRG, Boulpaep EL.Ionic conductive properties and electrophysiology of the rabbit cortical collecting tubule.Am J Physiol,1982,243(1):F81-F95.
21 Guyton AC.Blood pressure control--special role of the kidneys and body fluids.Science,1991,252(5014):1813-1816.
22 Lifton RP,Gharavi AG,Geller DS.Molecular mechanisms of human hypertension.Cell,2001,104(4):545-556.
23 Wall SM.Recent advances in our understanding of intercalated cells.Curr Opin Nephrol Hypertens,2005,14(5):480-484.
24 Scott DA,Wang R,Kreman TM,et al.The Pendred syndrome gene encodes a chloride-iodide transport protein.Nat Genet,1999,21(4):440-443.
25 Leviel F,Hübner CA,Houillier P,et al.The Na+-dependent chloridebicarbonate exchanger SLC4A8 mediates an electroneutral Na+reabsorption process in the renal cortical collecting ducts of mice.J Clin Invest,2010,120(5):1627-1635.
26 Bonny O, Rossier BC.Disturbances of Na/K balance:pseudohypoaldosteronism revisited.J Am Soc Nephrol,2002,13(9):2399-2414.
27 Hanley MJ,Kokko JP.Study of chloride transport across the rabbit cortical collecting tubule.J Clin Invest,1978,62(1):39-44.
28 Hanley MJ,Kokko JP,Gross JB,et al.Electrophysiologic study of the cortical collecting tubule of the rabbit.Kidney Int,1980,17(1):74-81.
29 Pao AC.SGK regulation of renal sodium transport.Curr Opin Nephrol Hypertens,2012,21(5):534-540.
30 Yamauchi K,Rai T,Kobayashi K,et al.Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins.Proc Natl Acad Sci U S A,2004,101(13):4690-4694.
31 Wilson FH,Disse-Nicodème S,Choate KA,et al.Human hypertension caused by mutations in WNK kinases.Science,2001,293(5532):1107-1112.
32 Van Itallie CM,Anderson JM.Claudins and epithelial paracellular transport.Annu Rev Physiol,2006,68:403-429.
33 Morin PJ.Claudin proteins in human cancer:promising new targets for diagnosis and therapy.Cancer Res,2005,65(21):9603-9606
34 Hou J,Renigunta A,Yang J,et al.Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization.Proc Natl Acad Sci U S A,2010,107(42):18010-18015.