魏 靜(綜述),張建榮,李建民(審校)
(1.武裝警察部隊(duì)總醫(yī)院腎內(nèi)科,北京100039; 2.北京中西醫(yī)結(jié)合醫(yī)院腎內(nèi)科,北京100039)
內(nèi)質(zhì)網(wǎng)應(yīng)激在糖尿病及糖尿病腎病中的研究進(jìn)展
魏靜1△(綜述),張建榮1※,李建民2(審校)
(1.武裝警察部隊(duì)總醫(yī)院腎內(nèi)科,北京100039; 2.北京中西醫(yī)結(jié)合醫(yī)院腎內(nèi)科,北京100039)
摘要:內(nèi)質(zhì)網(wǎng)是控制蛋白質(zhì)量的場(chǎng)所。大量的病理生理因素?cái)_亂了內(nèi)質(zhì)網(wǎng)的功能,引起了內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)的失調(diào),導(dǎo)致內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)。ERS主要由3條信號(hào)通路構(gòu)成,適度的ERS能增強(qiáng)細(xì)胞的存活能力,過(guò)長(zhǎng)、過(guò)強(qiáng)的ERS則會(huì)誘導(dǎo)細(xì)胞凋亡。1型糖尿病、2型糖尿病及糖尿病腎病(DN)中不同因素均可導(dǎo)致ERS,ERS通路的激活在這3種疾病的發(fā)生、發(fā)展過(guò)程中發(fā)揮著重要的作用,這或許會(huì)成為糖尿病及DN治療的新思路。
關(guān)鍵詞:內(nèi)質(zhì)網(wǎng)應(yīng)激;細(xì)胞凋亡;糖尿??;糖尿病腎病
內(nèi)質(zhì)網(wǎng)是細(xì)胞內(nèi)的一個(gè)精細(xì)的膜系統(tǒng),對(duì)維持細(xì)胞內(nèi)穩(wěn)態(tài)起重要作用。其基本生理功能包括蛋白質(zhì)的合成轉(zhuǎn)運(yùn)、信號(hào)肽識(shí)別、糖基化修飾、鈣離子的儲(chǔ)存和調(diào)節(jié)及細(xì)胞內(nèi)鈣離子的再分布等[1]。內(nèi)質(zhì)網(wǎng)提供了高保真質(zhì)量控制系統(tǒng)以保證只有正確折疊的蛋白才可以被運(yùn)輸?shù)絻?nèi)質(zhì)網(wǎng)外[2]。內(nèi)質(zhì)網(wǎng)的內(nèi)穩(wěn)態(tài)失衡即內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)[3]。ERS的適應(yīng)性反應(yīng)可減少蛋白質(zhì)的生物合成,增強(qiáng)內(nèi)質(zhì)網(wǎng)的降解功能,從而降低內(nèi)質(zhì)網(wǎng)負(fù)擔(dān),恢復(fù)內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài),并繼續(xù)保持細(xì)胞活性,而過(guò)長(zhǎng)、過(guò)度的ERS則會(huì)損傷細(xì)胞甚至導(dǎo)致細(xì)胞凋亡。ERS以這種方式在多變的環(huán)境和細(xì)胞狀態(tài)下維持蛋白的完整?,F(xiàn)就ERS的主要通路及其在1型糖尿病、2型糖尿病及糖尿病腎病(diabetic nephropathy,DN)中的研究進(jìn)展予以綜述。
1ERS的三條信號(hào)通路
1.1由蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶(proteinkinase R-like ER kinase,PERK)介導(dǎo)的信號(hào)通路ERS中的雙鏈RNA依賴PERK通路通過(guò)其eIF2a(eukaryotic initiation factor 2 alpha)亞基的磷酸化抑制蛋白翻譯[4-5],繼而減少蛋白產(chǎn)生,引起ERS的適度反應(yīng);PERK通路同樣可導(dǎo)致翻譯蛋白亞型的活化,誘導(dǎo)活化轉(zhuǎn)錄因子(activating transcription factor,ATF)4的表達(dá)增加,繼而誘導(dǎo)抗氧化劑和氨基酸應(yīng)答元件的激活[6-7],最終導(dǎo)致促凋亡轉(zhuǎn)錄因子C/EBP同源蛋白(CCAAT enhancer binding protein homologous protein,CHOP)的表達(dá),而CHOP是作為轉(zhuǎn)錄因子在細(xì)胞凋亡中起調(diào)節(jié)作用的,繼而導(dǎo)致細(xì)胞凋亡。
1.2由活化的肌醇需求激酶1(type-1 ER transmembrane protein kinase,IRE1)介導(dǎo)的信號(hào)通路IRE1可導(dǎo)致X盒結(jié)合蛋白1(X-box binding protein 1,XBP-1)信使RNA成為片段和片段形式的翻譯,導(dǎo)致細(xì)胞核的半透明并在內(nèi)質(zhì)網(wǎng)相關(guān)的降解過(guò)程中調(diào)節(jié)內(nèi)質(zhì)網(wǎng)分子伴侶和蛋白的表達(dá)[8]。IRE1通過(guò)與其他蛋白形成復(fù)合物同樣可誘導(dǎo)凋亡和炎癥信號(hào),特別是IRE1的細(xì)胞溶質(zhì)區(qū)域可與腫瘤壞死因子相關(guān)受體因子2(tumor necrosis factor receptor associated factor 2,TRAF2)相關(guān)聯(lián),繼而活化c-Jun氨基末端激酶通路;另外,Bcl-2相關(guān)的前凋亡信號(hào)Bax和Bak亦可與IRE1結(jié)合繼而加快凋亡[9-10]。研究表明,IRE1核糖核酸酶的活性可以切割其他雙鏈信使RNA(包括XBP-1),這個(gè)功能有助于信使RNA的降解,但可能會(huì)導(dǎo)致壽命短促信號(hào)分子的產(chǎn)生[11-12]。
1.3由ATF6介導(dǎo)的信號(hào)通路ERS的第3條經(jīng)典通路是由ATF6轉(zhuǎn)錄家族組成的。ATF6易位至高爾基體,繼而成為有活性的氨基末端形式[13]。這個(gè)N端ATF6可轉(zhuǎn)位至細(xì)胞核,調(diào)節(jié)內(nèi)質(zhì)網(wǎng)分子伴侶的表達(dá)[14-15 ],產(chǎn)生適度的ERS。另外,ATF6可誘導(dǎo)XBP-1的表達(dá),研究發(fā)現(xiàn),ATF6可通過(guò)XBP-1片段異源二聚體的形成提高內(nèi)質(zhì)網(wǎng)降解蛋白的產(chǎn)生[16]。
2ERS與糖尿病
研究表明,ERS對(duì)于糖尿病而言是雙刃劍,生理狀態(tài)下ERS參與調(diào)節(jié)由高血糖引起的胰腺β細(xì)胞的胰島素分泌,但嚴(yán)重持久的應(yīng)激則會(huì)引起胰腺β細(xì)胞功能受損并最終導(dǎo)致胰腺β細(xì)胞的凋亡,這可能是糖尿病發(fā)病機(jī)制中的關(guān)鍵因素[17]。
2.1ERS與1型糖尿病ERS介導(dǎo)的β細(xì)胞凋亡在1型糖尿病發(fā)病機(jī)制中起著重要的作用。任何遺傳或環(huán)境因素均可能導(dǎo)致β細(xì)胞發(fā)生錯(cuò)誤,繼而導(dǎo)致ERS。1型糖尿病中炎癥反應(yīng)因子、一氧化氮、活性氧類等均可通過(guò)激活ERS信號(hào)轉(zhuǎn)導(dǎo)通路,誘導(dǎo)胰腺β細(xì)胞的凋亡,導(dǎo)致胰島素分泌的絕對(duì)不足[18]。另有研究指出,1型糖尿病患者血中抗內(nèi)質(zhì)網(wǎng)分子伴侶氧調(diào)節(jié)蛋白150自身抗體明顯增高,這也提示過(guò)高的ERS水平可能參與1型糖尿病的發(fā)生[19]。O′Sullivan-Murphyt和Urano[20]研究發(fā)現(xiàn),ERS在胰腺β細(xì)胞中發(fā)生早于1型糖尿病,ERS對(duì)胰腺β細(xì)胞功能及生存有破壞作用且可影響糖尿病的進(jìn)展。Tersey等[21]給非肥胖糖尿病大鼠胰腺β細(xì)胞注入巨噬細(xì)胞后導(dǎo)致胰島炎(非肥胖糖尿病大鼠的糖尿病前期階段),在這個(gè)過(guò)程中細(xì)胞因子信號(hào)通路在短期內(nèi)可導(dǎo)致誘生型一氧化氮合酶的產(chǎn)生,而這在長(zhǎng)期內(nèi)可活化ERS;同時(shí)發(fā)現(xiàn),ERS不能直接導(dǎo)致胰腺β細(xì)胞死亡,而只是導(dǎo)致胰島分泌的缺陷。這表明胰腺β細(xì)胞ERS可加快非肥胖糖尿病大鼠的1型糖尿病的發(fā)生。另一方面,ERS對(duì)于胰腺β細(xì)胞的生長(zhǎng)和生存同樣重要。已證實(shí)PERK-/-大鼠因胰腺β細(xì)胞缺陷可發(fā)展至糖尿病[22-23]。eIF2a非底物磷酸化的純合子大鼠有嚴(yán)重的胰腺β細(xì)胞缺陷,最終可導(dǎo)致大鼠在圍生期死亡[24]。另外,有研究表明,人類的PERK基因突變可因胰腺β細(xì)胞缺失引起嚴(yán)重的糖尿病[22]。這證明ERS很可能與青少年糖尿病有一定相關(guān)性。
2.2ERS與2型糖尿病外周組織(脂肪、肌肉和肝臟)的胰島素抵抗是2型糖尿病的早期主要特征,胰島素抵抗可導(dǎo)致胰腺β細(xì)胞中的胰島素過(guò)度產(chǎn)生,引起高胰島素血癥。當(dāng)這一代償作用大于β細(xì)胞的承受能力時(shí),就發(fā)生高血糖癥和2型糖尿病,同時(shí)發(fā)生ERS的慢性激活,進(jìn)而導(dǎo)致胰腺β細(xì)胞的功能障礙和死亡。同樣,非酯化脂肪酸等病理改變亦可通過(guò)ERS通路促進(jìn)胰腺β細(xì)胞凋亡,影響胰腺β細(xì)胞功能,最終導(dǎo)致胰腺β細(xì)胞數(shù)量減少和胰島素合成、分泌能力下降[25]。Marchetti等[26]發(fā)現(xiàn),2型糖尿病患者胰島β細(xì)胞中內(nèi)質(zhì)網(wǎng)密度較非糖尿病患者顯著升高,兩者胰島β細(xì)胞在正常糖(5 mmol/L)培養(yǎng)時(shí)ERS標(biāo)志物差異無(wú)統(tǒng)計(jì)學(xué)意義,而高糖(11.1 mmol/L)培養(yǎng)時(shí),糖尿病患者胰島細(xì)胞中ERS標(biāo)志葡萄糖調(diào)節(jié)蛋白78高表達(dá),提示2型糖尿病患者胰島β細(xì)胞在糖代謝紊亂時(shí)更易誘導(dǎo)ERS。朱佳杰等[27]研究表明,ERS不僅參與了2型糖尿病的發(fā)生,同時(shí)也在其心血管并發(fā)癥的發(fā)生中起著重要作用。血管內(nèi)皮的損傷是其并發(fā)癥的基本機(jī)制。高血糖可引發(fā)ERS,直接造成內(nèi)皮損傷,而ERS又可通過(guò)炎癥反應(yīng)間接損傷血管內(nèi)皮。在2型糖尿病和肥胖的環(huán)境中,胰島β細(xì)胞可能會(huì)因?yàn)橐葝u素抵抗和代謝性疾病而凋亡。這樣,在營(yíng)養(yǎng)過(guò)剩和胰島素抵抗的條件下,ERS會(huì)在胰島素抵抗至糖尿病的最后轉(zhuǎn)變上起重要作用,而這是以胰島β細(xì)胞丟失和功能不全為特征的。Hotamisligil等[28]認(rèn)為,肥胖可導(dǎo)致代謝活躍組織中的ERS。在鼠脂肪組織和肝組織中給予高脂肪飲食,PERK和IRE1磷酸化及c-Jun氨基末端激酶的活化均比無(wú)脂肪動(dòng)物增加明顯[10]。與其他的ERS標(biāo)志蛋白對(duì)比,ATF6的表達(dá)在肥胖大鼠的肝臟是減少的,而腺病毒ATF6的重建則提高了胰島素穩(wěn)態(tài)[29]。用內(nèi)質(zhì)網(wǎng)化學(xué)分子伴侶治療后觀察發(fā)現(xiàn),肥胖/胰島素抵抗和動(dòng)脈粥樣硬化均減少[30]。這些發(fā)現(xiàn)證明了在代謝性疾病的環(huán)境中內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)的重構(gòu)是有保護(hù)性的。
3ERS在DN發(fā)病機(jī)制中的研究進(jìn)展
DN是糖尿病常見(jiàn)的微血管并發(fā)癥,是引起終末期腎衰竭的重要原因之一[31]。DN的主要臨床表現(xiàn)是蛋白尿、水腫、腎功能減退,其主要病理特征是腎小球細(xì)胞外基質(zhì)的堆積、系膜增寬、基底膜增厚、腎小球硬化及腎間質(zhì)的纖維化。DN中存在高血糖、氧化應(yīng)激、腎素-血管緊張素系統(tǒng)激活、脂質(zhì)代謝障礙等多種可誘發(fā)ERS的因素,而糖尿病腎損害過(guò)程中可誘發(fā)ERS。在動(dòng)物實(shí)驗(yàn)和細(xì)胞培養(yǎng)的研究中發(fā)現(xiàn),ERS在腎臟病足細(xì)胞和腎小管上皮細(xì)胞的損傷乃至凋亡過(guò)程中起重要作用[32]。ERS相關(guān)的凋亡和腎臟損傷是導(dǎo)致大鼠DN的原因之一[33-34]。Lindenmeyer等[35]發(fā)現(xiàn),在蛋白尿中,ERS作為一種適應(yīng)性反應(yīng)對(duì)腎小管上皮細(xì)胞起保護(hù)作用,但持續(xù)的高血糖和蛋白尿最終會(huì)導(dǎo)致腎小管上皮細(xì)胞凋亡。Cybulsky[33]表明,ERS各方面作用可能為蛋白尿提供新的治療方法。Liu等[34]發(fā)現(xiàn),經(jīng)過(guò)4個(gè)月的糖尿病病程,糖尿病鼠的尿蛋白量明顯升高,鼠腎組織CHOP表達(dá)也升高,從而將ERS、細(xì)胞凋亡和DN聯(lián)系起來(lái)。Inagi等[36]認(rèn)為,大量蛋白尿加重了腎小管的負(fù)擔(dān),從而引起了ERS,并在DN中參與小管間質(zhì)性炎癥的形成。而白蛋白可在體外誘導(dǎo)腎小管上皮細(xì)胞發(fā)生ERS,激活胱天蛋白酶12,引起腎小管上皮細(xì)胞損傷,進(jìn)而凋亡[37]。Wu等[38]發(fā)現(xiàn),22月齡的DN小鼠其腎臟組織磷酸化PERK和磷酸化eIF2a表達(dá)水平較同齡野生型小鼠顯著升高,同時(shí),CHOP轉(zhuǎn)錄活性增強(qiáng),尿蛋白水平顯著增高,并伴有顯著腎小球硬化和腎小管間質(zhì)纖維化,提示過(guò)度ERS可能在糖尿病腎損傷進(jìn)程中扮演著重要角色;進(jìn)一步研究發(fā)現(xiàn),CHOP基因剔除的DN小鼠尿蛋白水平顯著低于野生型DN小鼠,并且腎小球損傷和腎小管間質(zhì)病變也顯著減輕,表明調(diào)控CHOP轉(zhuǎn)錄活性對(duì)延緩DN的進(jìn)程具有重要意義。
4小結(jié)
內(nèi)質(zhì)網(wǎng)中的基因突變、內(nèi)環(huán)境的改變等均可能導(dǎo)致ERS的活化,引起胰島β細(xì)胞缺陷或減少,這在1型糖尿病中起重要作用。2型糖尿病患者的肥胖、高糖及胰島素抵抗也會(huì)引起胰島細(xì)胞的ERS凋亡通路的激活,且ERS參與了2型糖尿病心血管并發(fā)癥的過(guò)程。而腎臟固有細(xì)胞(如腎小管上皮細(xì)胞、足細(xì)胞和系膜細(xì)胞)中均含有內(nèi)質(zhì)網(wǎng),這構(gòu)成了ERS發(fā)生的基礎(chǔ)。另外,DN中多種因素亦可導(dǎo)致ERS激活及腎臟固有細(xì)胞的凋亡和腎衰竭,這為后續(xù)的治療提供了新思路。
參考文獻(xiàn)
[1]Anelli T,Sitia R.Protein quality control in the early secretory pathway[J].EMBO J,2008,27(2):315-327.
[2]Gething MJ,Sambrook J.Protein folding in the cell[J].Nature,1992,355(6355):33-45.
[3]Kaufman RJ.Stress signaling from the lumen of the endoplasmic reticulum:coordination of gene transcriptional and translational controls[J].Genes Dev,1999,13(10):1211-1233.
[4]Harding HP,Zhang Y,Ron D.Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase[J].Nature,1999,397(6716):271-274.
[5]Shi Y,Vattem KM,Sood R,etal.Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase,PEK,involved in translational control[J].Mol Cell Biol,1998,18 (12):7499-7509.
[6]Harding HP,Zhang Y,Bertolotti A,etal.PERK is essential for translational regulation and cell survival during the unfolded protein response[J].Mol Cell,2000,5(5):897-904.
[7]Ma Y,Brewer JW,Diehl JA,etal.Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response[J].J Mol Biol,2002,318(5):1351-1365.
[8]Sidrauski C,Walter P.The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response[J].Cell,1997,90(6):1031-1039.
[9]Hu P,Han Z,Couvillon AD,etal.Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1 alpha-mediated NF-kappaΒ activation and down-regulation of TRAF2 expression[J].Mol Cell Biol,2006,26(8):3071-3084.
[10]Ozcan U,Cao Q,Yilmaz E,etal.Endoplasmic reticulum stress links obesity,insulin action,and type 2 diabetes[J].Science,2004,306 (5695):457-461.
[11]Hollien J,Lin JH,Li H,etal.Regulated IRE1-dependent decay of messenger RNAs in mammalian cells[J].J Cell Biol,2009,186(3):323-331.
[12]Hollien J,Weissman JS.Decay of endoplasmic reticulum-localized mRNAs during the unfolded proteins response[J].Science,2006,313(5783):104-107.
[13]Haze K,Yoshida H,Yanagi H,etal.Mammalian transcription factor ATF6 is synthesized as a transmembrance protein and activated by proteolysis in response to endoplasmic reticulum stress[J].Mol Biol Cell,1999,10 (11):3787-3799.
[14]Chen X,Shen J,Prywes R.The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi[J].J Biol Chem,2002,277 (15):13045-13052.
[15]Shen J,Chen X,Hendershot L,etal.ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals[J].Dev Cell,2002,3(1):99-111.
[16]Yamamoto K,Sato T,Matsui T,etal.Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1[J].DeV Cell,2007,13(3):365-376.
[17]Araki E,Oyadomari S,Mori M.Impact of endoplasmic reticulum stress pathway on pancreatic beta-cells and diabetes mellitus[J].Exp Biol Med(Maywood),2003,228(10):1213-1217.
[18]Wang C,Guan Y,Yang J.Cytokines in the progression of pancreatic β-cell dysfunction[J].Int J Endocrinol,2010,2010:515136.
[19]Nakatani Y,Kaneto H,Hatazaki M,etal.Increased stress protein ORP150 autoantibody production in type 1 diabetic patients[J].Diabet Med,2006,23(2):216-219.
[20]O′Sullivan-Murphy B,Urano F.ER stress as a trigger for β-cell dysfunction and autoimmunty in type 1 diabetes[J].Diabetes,2012,61(4):780-781.
[21]Tersey SA,Nishiki Y,Templin AT,etal.Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model[J].Diabetes,2012,61(4):818-827.
[22]Zhang P,McGrath B,Li S,etal.The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system,postnatal growth,and the function and viability of the pancreas[J].Mol Cell Biol,2002,22(11):3864-3874.
[23]Harding HP,Zeng H,Zhang Y,etal.Diabetes mellitus and exocrine pancreatic dysfunction in PERK-/-mice reveals a role for translational control in secretory cell survival[J].Mol Cell,2001,7(6):1153-1163.
[24]Scheuner D,Song B,McEwen E,etal.Translational control is required for the unfolded protein response and in vivo glucose homeostasis[J].Mol Cell,2001,7(6):1165-1176.
[25]Macdler K,Sehulthess FT,Bielman C,etal.Glucose and lepfin induce apoptesis in human beta-cells and impair glucose-stimulated insulin secretion through activation of c-Jun N-terminal kinases[J].FASEB J,2008,22(6):1905-1913.
[26]Marchetti P,Bugliani M,Lupi R,etal.The endoplsasmic reticulum in pancreatic beta cells of type 2 diabetes patients[J].Diabetologia,2007,50(12):2486-2494.
[27]朱佳杰,柴欣樓,張永生.2型糖尿病血管內(nèi)皮損傷與內(nèi)質(zhì)網(wǎng)應(yīng)激[J].生理科學(xué)進(jìn)展,2014,45(1):72-74.
[28]Hotamisligil GS,Shargill NS,Spiegelman BM.Adipose expression of tumour necrosis factor alpha:direct role in obesity linked insulin resistance[J].Science 1993,259(5091):87-91.
[29]Wang Y,Vera L,Fischer WH,etal.The CREΒ coactivator Crtc2 links hepatic ER stress and fasting gluconeogenesis[J].Nature,2009,460(7254):534-537.
[30]Ozcan U,Yilmaz E,Ozcan L,etal.Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes[J].Science,2006,313(5790):1137-1140.
[31]Dreyer G,Hull S,Aitken Z,etal.The effect of ethnicity on the prevalence of diabetes and associated chronic kidney disease[J].QJM,2009,102(4):261-269.
[32]Bijian K,Cybulsky AV.Stress proteins in glomerular epithelial cell injury[J].Contrib Nephrol,2005,148:8-20.
[33]Cybulsky AV.Endoplasmic reticulum stress in proteinuric kidney disease[J].Kidney Int,2010,77(3):187-193.
[34]Liu G,Sun Y,Li Z,etal.Apoptosis induced by endoplasmic reticulum stress involed in diabetic kidney disease[J].Biochem Biophys Res Commun,2008,370(4):651-656.
[35]Lindenmeyer MT,Rastaldi MP,Ikehata M,etal.Proteinuria and hyperglycemia induce endoplasmic reticulum stress[J].J Am Soc Nephrol,2008,19(11):2225-2236.
[36]Inagi R,Nangaku M,Onogi H,etal.Involvement of endoplasmic reticulum(ER) stress in podocyte injury induced by excessive protein accumulation[J].Kidney Int,2005,68(6):2639-2650.
[37]Ohse T,Inagi R,Tanaka T,etal.Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal bubular cells[J].Kidney Int,2006,70(8):1447-1455.
[38]Wu J,Zhang R,Torreggiani M,etal.Induction of diabetes in aged C57B6 mice results in severe nephropathy:an association with oxidative stress,endoplasmic reticulum stress,and inflammation[J].Am J Pathol,2010,176(5):2163-2176.
The Role of Endoplasmic Reticulum Stress in the Development of Diabetes and Diabetic Nephropathy
WEIJing1,ZHANGJian-rong1,LIJian-min2.
(1.DepartmentofNephrology,ChinesePeople′sArmedPoliceGeneralHospital,Beijing100039,China; 2.BeijingCityHospitalofCombinedTraditionalChineseMedicineandWesternMedicine,Beijing100039,China)
Abstract:Endoplasmic reticulum(ER) is a protein quality control machinery of the cell.Various conditions can disturb the functions of the ER and result in ER stress(ERS).There are three signaling pathways in ERS.Moderate ERS could enhance cell viability,however,prolonged or severe ERS will lead to apoptosis.Different factors in type 1 and type 2 diabetes and diabetic nephropathy(DN) can all result in ERS,and the activation of ERS plays an important role in the development of the three diseases,which may become a new method for the treatment of diabetes and DN.
Key words:Endoplasmic reticulum stress; Apoptosis; Diabetes; Diabetic nephropathy
收稿日期:2015-01-19修回日期:2015-06-20編輯:鄭雪
doi:10.3969/j.issn.1006-2084.2015.23.033
中圖分類號(hào):R587.1
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-2084(2015)23-4314-04