王麗麗,應(yīng)天雷
復(fù)旦大學(xué)基礎(chǔ)醫(yī)學(xué)院教育部/衛(wèi)生部醫(yī)學(xué)分子病毒學(xué)重點(diǎn)實(shí)驗(yàn)室,上海 200032
?
針對中東呼吸綜合征冠狀病毒的全人源單克隆抗體的研究進(jìn)展
王麗麗,應(yīng)天雷
復(fù)旦大學(xué)基礎(chǔ)醫(yī)學(xué)院教育部/衛(wèi)生部醫(yī)學(xué)分子病毒學(xué)重點(diǎn)實(shí)驗(yàn)室,上海 200032
摘要:中東呼吸綜合征冠狀病毒(MERS-CoV)是繼嚴(yán)重急性呼吸綜合征冠狀病毒(SARS-CoV)之后發(fā)現(xiàn)的一種能引起人類嚴(yán)重急性呼吸道疾病、具有高致死率的新型冠狀病毒。該病毒已從主要流行的中東地區(qū)逐漸蔓延至多個(gè)國家,具有全球流行的潛在趨勢,引起世界各國的極大關(guān)注。本文對近期抗MERS-CoV人中和單克隆抗體的研究進(jìn)展進(jìn)行總結(jié),描述這些抗體的作用機(jī)制,分析其防治MERS的潛在能力,并探討抗體類抗病毒藥物用于新發(fā)傳染病防治的應(yīng)用前景和發(fā)展方向。
關(guān)鍵詞:中東呼吸綜合征冠狀病毒;新型冠狀病毒;人中和單克隆抗體
中東呼吸綜合征冠狀病毒(Middle East respiratory syndrome coronavirus, MERS-CoV)是一種新型冠狀病毒,于2012年6月由沙特阿拉伯病毒學(xué)家Ali Moh Zaki在一例死于急性肺炎和急性腎功能衰竭的60歲男性患者的呼吸道上皮細(xì)胞中分離出來[1]。2012年9月23日,英國向世界衛(wèi)生組織(World Health Organization,WHO)報(bào)告了一例49歲男性患者出現(xiàn)該新型冠狀病毒的感染癥狀,且該患者有到沙特阿拉伯和卡塔爾的旅行史(http://www.who.int/csr/don/2012_09_23/en)。2012年11月,該病毒被確定為新的β屬冠狀病毒,由于該研究由荷蘭鹿特丹的伊拉茲馬絲醫(yī)學(xué)中心(Erasmus Medical Center)的Ron Fouchier研究小組進(jìn)行,當(dāng)時(shí)該病毒被命名為“hCoV-EMC”[2]。2013年5月15日,國際病毒分類委員會決定將此新型冠狀病毒命名為“中東呼吸綜合征冠狀病毒”,隨后該命名被WHO采用[3]。
MERS的臨床表現(xiàn)與嚴(yán)重急性呼吸綜合征(severe acute respiratory syndrome,SARS)非常相似,初期曾被稱為“類SARS病毒”。其主要癥狀有發(fā)熱、咳嗽、呼吸急促,并伴有較高比率的急性腎衰竭,致死率超過30%,遠(yuǎn)高于SARS流行期間約10%的致死率[4,5]。該病毒主要在中東地區(qū)流行,但目前在歐洲、北美和亞洲等地先后出現(xiàn)感染病例[6]。截至2015年7月21日,WHO報(bào)道全球范圍內(nèi)已有1 368例MERS-CoV感染確診病例,其中死亡至少490例(http://www.who.int/csr/don/21-july-2015-mers-korea/en)。目前MERS已波及25個(gè)國家,最近一波在韓國暴發(fā)的疫情發(fā)展十分迅速,自2015年5月21日以來至少有186例感染者(包括一例旅行至中國的患者),死亡36例,并出現(xiàn)了第4代感染者。MERS暴發(fā)對全球公共衛(wèi)生構(gòu)成了嚴(yán)重威脅,到目前為止,還沒有針對MERS-CoV的疫苗或特異性防治藥物,因此人們迫切需要開發(fā)一種有效的抗病毒藥物來對抗這一新興的全球性威脅。
單克隆抗體(monoclonal antibody,mAb)如今已成為一大類重要的臨床藥物,廣泛應(yīng)用于治療自身免疫性疾病、癌癥、心血管疾病等。全球有數(shù)十種mAb已獲批并用于臨床,數(shù)百種抗體正處于臨床試驗(yàn)階段[7]。在SARS暴發(fā)期間,針對SARS-CoV的mAb被證明在體外及動物模型中具有極好的抗病毒效果,表明其具有作為冠狀病毒防治藥物的巨大潛力[8-13]。本文對近期抗MERS-CoV人中和 mAb的研究進(jìn)展進(jìn)行總結(jié),描述這些抗體的作用機(jī)制,分析其防治MERS的潛在能力,并探討抗體類抗病毒藥物用于新發(fā)傳染病防治的應(yīng)用前景和發(fā)展方向。
1MERS-CoV的結(jié)構(gòu)、傳播方式及致病機(jī)制
2003年以前,人類冠狀病毒(human coronavirus,hCoV)一直被認(rèn)為對人類的致病性較弱,如1960年從普通感冒患者體內(nèi)分離出的hCoV-229E和hCoV-OC43,只是引起輕度呼吸道感染[2,14-16]。但2002~2003年,SARS-CoV給人類帶來了致命性的疾病,其傳染性極強(qiáng),在短時(shí)期(2002年11月~2003年7月)內(nèi)就播及全球30個(gè)國家,導(dǎo)致8 096例感染者,774例死亡(病死率為9.6%)。其中僅我國大陸就有5 327例感染者,349例死亡(病死率為6.6%) (http://www.who.int/csr/sars/country/table2004_04_21)。此后,2004年荷蘭發(fā)現(xiàn)hCoV-NL63引起兒童呼吸道感染,2005 年香港大學(xué)發(fā)現(xiàn)hCoV-HKUl等引起呼吸道感染,但臨床表現(xiàn)均不十分嚴(yán)重[17,18]。至2012年6月,在中東發(fā)現(xiàn)新型冠狀病毒MERS-CoV,其來勢兇猛,臨床表現(xiàn)與SARS相似,病死率極高。
研究發(fā)現(xiàn),在親緣關(guān)系上MERS-CoV與SARS-CoV相似度僅為54.9%,與同屬β類C譜系的扁顱蝠冠狀病毒HKU4和伏翼蝙蝠冠狀病毒HKU5的親緣關(guān)系更相近,基因相似度可達(dá)70.1%,初步認(rèn)為MERS-CoV來源于蝙蝠的可能性最大[19-21]。然而,人類與蝙蝠的接觸非常有限,因此病毒在蝙蝠與人之間的傳播往往存在中間宿主。人們發(fā)現(xiàn),很多MERS患者曾有與駱駝、山羊等農(nóng)場動物的接觸史,因此對MERS-CoV潛在來源的懷疑集中在阿拉伯半島地區(qū)常見的家畜,如山羊、綿羊、單峰駱駝和牛中。隨后,MERS-CoV的中和抗體在單峰駱駝中被檢測到,但在雞、羊和牛中未檢測到。人們進(jìn)一步證實(shí),從單峰駱駝中分離到的MERS-CoV基因組與從人類感染病例中分離到的MERS-CoV幾乎完全相同(相似度為99%),這些證據(jù)表明單峰駱駝與人類MERS-CoV之間存在密切聯(lián)系,中東地區(qū)的單峰駱駝很可能就是MERS-CoV的潛在來源[22,23]。蝙蝠也可能是MERS-CoV的天然宿主之一,但其傳播流行模式還不完全清楚。
MERS-CoV表面的刺突蛋白(spike protein,S蛋白)是由1 353個(gè)氨基酸組成的Ⅰ型跨膜糖蛋白,在病毒包膜表面呈三聚體狀態(tài),包含兩個(gè)功能性亞基,其中S1亞基負(fù)責(zé)與受體結(jié)合,近膜端的S2亞基負(fù)責(zé)介導(dǎo)膜融合[24]。研究發(fā)現(xiàn),MERS-CoV的S蛋白具有一個(gè)受體結(jié)合域(receptor binding domain, RBD)[25]。與SARS-CoV不同的是,SARS-CoV以血管緊張素轉(zhuǎn)化酶2(angiotensin converting enzyme 2,ACE2)作為細(xì)胞受體[26,27],而目前研究表明MERS-CoV S1蛋白的功能受體是二肽基肽酶4(dipeptidyl peptidase 4,DPP4;亦稱為CD26)。DPP4能特異性地結(jié)合S1蛋白上的RBD區(qū),且阻斷DPP4的酶活性并不影響MERS-CoV對細(xì)胞的易感性[28-30]。DPP4是一種Ⅱ型跨膜糖蛋白,廣泛表達(dá)于腎、肺、小腸、肝、腮腺、脾等上皮細(xì)胞組織及活化的白細(xì)胞表面[31]。由于DPP4在哺乳動物不同種間相對保守,MERS-CoV可同時(shí)感染蝙蝠和人類。MERS-CoV S1蛋白上的RBD區(qū)與細(xì)胞表面DPP4受體結(jié)合,介導(dǎo)病毒進(jìn)入宿主細(xì)胞內(nèi)引發(fā)感染。對RBD與DPP4受體的結(jié)合與相互作用進(jìn)行深入研究,可為開發(fā)新型中和抗體藥物及疫苗提供非常重要的參考。
2針對MERS-CoV的全人源mAb研究進(jìn)展
MERS-CoV的持續(xù)傳播及高致病性,迫使人們急需開發(fā)出有效的MERS預(yù)防及治療方案??蒲腥藛T正在努力尋找抗MERS-CoV藥物,已有一些可能有效的潛在藥物被篩選出來。例如,核苷類抗病毒藥利巴韋林及免疫調(diào)節(jié)劑干擾素α2b(interferon α2b,IFN-α2b),兩者均能有效抑制MERS-CoV在細(xì)胞內(nèi)的復(fù)制,且具有協(xié)同作用[32]。然而,臨床觀察結(jié)果表明,該聯(lián)合療法對具有嚴(yán)重感染并含有多個(gè)并發(fā)癥的晚期患者沒有很好的治療效果,只對某些早期患者有效[33]。有研究團(tuán)隊(duì)發(fā)現(xiàn)一種衍生于MERS-CoV S2蛋白的多肽HR2P,能與S2蛋白相互作用,并產(chǎn)生螺旋狀的六螺旋束(6-helix bundle,6-HB)復(fù)合物,具有與S2蛋白競爭形成6-HB的能力,從而抑制病毒復(fù)制。進(jìn)一步發(fā)現(xiàn),HR2P能有效抑制S蛋白介導(dǎo)的細(xì)胞與細(xì)胞融合及MERS-CoV對Vero細(xì)胞的感染[34,35]。HR2P多肽正被進(jìn)一步優(yōu)化并改善其抑制活性,這些HR2P類似物很有可能發(fā)展為有效治療MERS的病毒融合抑制劑。
mAb藥物在臨床上已取得巨大成功,并被廣泛應(yīng)用。在抗感染性疾病領(lǐng)域,各大制藥公司也逐漸認(rèn)識到mAb藥物的重要性,開發(fā)了大量抗病毒mAb,有些已上市或進(jìn)入臨床試驗(yàn)階段[36-38]。SARS暴發(fā)期間,在SARS患者或感染SARS-CoV動物體內(nèi)均能檢測到SARS-CoV中和抗體,此抗體可有效保護(hù)未感染動物不被SARS-CoV感染[39,40]。多個(gè)研究小組也在體外篩選出能特異性結(jié)合SARS-CoV的mAb,部分抗體的有效性在動物模型中得到確認(rèn)[8-13]。與SARS情況類似,研究人員在MERS患者或康復(fù)患者的血清內(nèi)也檢測到了高水平的抗MERS-CoV抗體[41]。這些研究顯示,針對MERS-CoV的mAb可能具有很強(qiáng)的抗病毒中和能力,有被開發(fā)為MERS防治藥物的潛力而用于疫情控制。
2014年4月,多個(gè)課題組幾乎同時(shí)報(bào)道了抗MERS-CoV的全人源中和抗體。這些中和抗體均從未被從人免疫抗體庫中篩選出,均作用于MERS-CoV S1蛋白的RBD。例如,本課題組從噬菌體展示的超大型Fab抗體庫中篩選到十幾種高親和力的全人源mAb,其中3種抗體m336、m337和m338被證明具有極高的抗病毒中和活性,對MERS-CoV假病毒的半抑制濃度(50% inhibitory concentration,IC50)為0.005 ~ 0.017μg/ml[42]。有意思的是,這3個(gè)抗體的重鏈可變區(qū)(heavy chain variable region VH)均屬于VH 1-69家族,而人的很多抗病毒抗體均屬于該VH家族。其中m336抗體的中和活性最強(qiáng),在濃度低達(dá)0.039μg/ml時(shí)對MERS-CoV假病毒感染Huh-7細(xì)胞的抑制率高達(dá)90%。同樣,m336對MERS-CoV活病毒感染Vero E6細(xì)胞誘導(dǎo)產(chǎn)生的細(xì)胞病變效應(yīng)(cytopathic effect,CPE)表現(xiàn)出有效抑制,其IC50為0.07μg/ml。此外,清華大學(xué)研究團(tuán)隊(duì)分離到2株針對MERS-CoV RBD的高效中和抗體MERS-4和MERS-27[43],其中MERS-4中和MERS-CoV假病毒感染Huh-7細(xì)胞的IC50為0.056μg/ml,抑制MERS-CoV活病毒感染Vero E6誘導(dǎo)產(chǎn)生CPE的IC50為0.5μg/ml。MERS-4和MERS-27具有協(xié)同作用,聯(lián)合使用可發(fā)揮更好的抑制效果。美國哈佛大學(xué)醫(yī)學(xué)院研究人員也篩選出數(shù)種針對MERS-CoV RBD的特異性抗體,其中一種抗體3B11表現(xiàn)出了較高的抗病毒中和活性[44]。
盡管這些人中和抗體在體外表現(xiàn)出很強(qiáng)的抗MERS-CoV中和活性,但MERS動物模型的缺乏影響了抗體的體內(nèi)有效性評估。與SARS-CoV不同,MERS-CoV不能感染小實(shí)驗(yàn)動物,如老鼠、倉鼠或雪貂,且只能導(dǎo)致恒河猴輕度至中度癥狀[45-47]。動物細(xì)胞表面受體DPP4被認(rèn)為是決定MERS-CoV易感性的關(guān)鍵。因此,研究人員通過使用腺病毒表達(dá)人DPP4感染小鼠,使小鼠更易感染MERS-CoV,從而構(gòu)建了一種小鼠模型[48]。該方法可用于初步、快速評價(jià)抗MERS-CoV疫苗和抗病毒藥物的效果。最近,科研人員發(fā)現(xiàn)絨猴DPP4的氨基酸序列與人類DPP4的氨基酸序列幾乎完全相同,因此感染MERS-CoV的絨猴表現(xiàn)出與人類感染MERS-CoV相類似的肺炎癥狀[46]。這些結(jié)果表明,絨猴模型很可能是目前用于評估MERS-CoV感染干預(yù)治療策略的最有效的動物模型。上述多個(gè)mAb已經(jīng)或正在絨猴模型中進(jìn)行預(yù)臨床評價(jià)。
體外實(shí)驗(yàn)表明,這些抗體均能通過阻斷RBD與細(xì)胞表面受體DPP4的作用,進(jìn)而特異性地抑制病毒感染。另外,抗體還可通過其Fc區(qū)誘發(fā)抗體介導(dǎo)細(xì)胞依賴的細(xì)胞毒作用(antibody-dependent cell-mediated cytotoxicity,ADCC)、抗體介導(dǎo)的細(xì) 胞吞噬作用(antibody-dependent cellular phagocytosis,ADCP)、補(bǔ)體依賴的細(xì)胞毒作用(complement-dependent cytotoxicity,CDC)等,這些作用也可能是抗體發(fā)揮其治療效果的重要機(jī)制。
最近,本課題組利用蛋白質(zhì)晶體學(xué)對目前具有最強(qiáng)抗MERS-CoV中和活性的mAb m336與其DPP4受體復(fù)合物的結(jié)構(gòu)進(jìn)行解析[49]。結(jié)果發(fā)現(xiàn),m336抗體和病毒兩者的結(jié)合面與病毒天然受體DPP4和病毒兩者的結(jié)合面重疊面積達(dá)90%以上。這解釋了m336抗體為什么具有超強(qiáng)的抗病毒中和活性;另一方面表明病毒若逃逸與這種抗體的結(jié)合,其與天然宿主表面受體的結(jié)合活性也相應(yīng)降低,因此病毒針對m336這種高活性抗體的逃逸突變在理論上很難發(fā)生。進(jìn)一步研究發(fā)現(xiàn),m336抗體的序列非常接近天然的胚系(germline)抗體序列,其VH相比胚系序列僅有1個(gè)氨基酸突變,且將該氨基酸突變回胚系序列對應(yīng)的氨基酸后,抗體與RBD的親和力及對MERS-CoV的中和活性均沒有降低。胚系抗體通常具有更低的免疫原性和更好的成藥性,因此m336具有開發(fā)為高效MERS防治藥物的巨大潛力。
3未來發(fā)展方向
新生病毒、新發(fā)傳染病正對人類健康構(gòu)成持續(xù)的嚴(yán)重威脅。在無法預(yù)測下一種新發(fā)傳染病會何時(shí)、何地、以何種形式出現(xiàn)的前提下,開發(fā)一種平臺技術(shù),迅速篩選對抗新病毒、新發(fā)傳染病的高效防治藥物,是防控疫情蔓延的最有效措施之一。
多克隆免疫球蛋白應(yīng)用于治療病毒性疾病已有一個(gè)多世紀(jì),且取得了不同程度的成功。一些多克隆免疫球蛋白仍在臨床使用,如治療乙型肝炎、狂犬病、巨細(xì)胞病毒感染、麻疹和牛痘等。但多克隆抗體常會產(chǎn)生一定的毒副作用,包括過敏反應(yīng)等;另外,多克隆抗體中只有非常小的部分發(fā)揮中和作用,其余部分不僅無效,還會產(chǎn)生免疫原性甚至不良反應(yīng)[50]。人mAb的應(yīng)用克服了這些不足。mAb具有特異性強(qiáng)、療效顯著及安全性高的特點(diǎn),被譽(yù)為“魔法導(dǎo)彈”,在治療病毒性疾病方面具有非常廣闊的應(yīng)用前景。
然而,對新發(fā)傳染病來說,最主要的障礙是如何在短時(shí)間內(nèi)開發(fā)出高度有效的中和mAb并迅速推向臨床。本文對近期不同實(shí)驗(yàn)室研發(fā)的抗MERS-CoV人中和mAb的研究進(jìn)展進(jìn)行了總結(jié)。這些研究表明,隨著抗體工程技術(shù)的快速發(fā)展,全人源抗體的研發(fā)時(shí)間軸大大縮短,有望能在新病毒疫情暴發(fā)之初即研發(fā)出有效的抗體藥物,用于疫情控制。另外,雖然許多抗體僅依靠其與病毒高親和力結(jié)合的阻斷作用機(jī)制已足以達(dá)到良好的治療效果,但由于生產(chǎn)成本高、價(jià)格昂貴,限制了其在臨床上的應(yīng)用。因此,研發(fā)更高效、更安全、給藥更方便的抗體是未來抗病毒抗體藥物的發(fā)展方向。
在實(shí)際臨床應(yīng)用中,研究者進(jìn)一步發(fā)現(xiàn),改造抗體Fc區(qū)所介導(dǎo)的各種功能,可能非常有助于提高抗體藥物的安全性和療效[51]。Fc的改造途徑主要是通過基因突變改變其氨基酸序列,或?qū)c進(jìn)行糖基化修飾等。在某些特定臨床應(yīng)用中,可通過降低Fc與FcγR的結(jié)合等減弱Fc介導(dǎo)的功效,從而減少這些功效引起的不良反應(yīng),同時(shí)降低其免疫原性。減弱Fc介導(dǎo)的功效也可通過一些缺乏Fc的抗體片段(antibody fragment)來實(shí)現(xiàn)。值得注意的是,缺乏Fc的抗體片段,如Fab、scFv、VH、VL等,往往可在大腸埃希菌中高表達(dá),因此生產(chǎn)成本非常低[52];但它們半衰期較短,不適合臨床應(yīng)用。本課題組最近基于IgG Fc片段,構(gòu)建了一些具有高穩(wěn)定性、長半衰期等特性的新型抗體片段(mFc、mCH3等),它們與VH等抗體片段融合后,仍可在大腸埃希菌中高度可溶性表達(dá)。這些新結(jié)構(gòu)抗體兼具相對分子質(zhì)量小、組織滲透能力強(qiáng)、半衰期長、生產(chǎn)成本低等特點(diǎn),在未來有望替代部分現(xiàn)有mAb藥物并擴(kuò)展抗體藥物的臨床應(yīng)用范圍,突破抗病毒抗體藥物的發(fā)展瓶頸[53-58]。另一方面,對Fc進(jìn)行改造可增強(qiáng)抗體與FcγR的結(jié)合力,從而增強(qiáng)ADCC、ADCP、CDC等作用。Fc的Ser239Asp、Glu330Leu、Ile332Glu等突變可使抗體的ADCC作用大大提高。Fc的Gly236Ala突變可使激活的受體選擇性提高,增強(qiáng)巨噬細(xì)胞對靶細(xì)胞的吞噬作用。增強(qiáng)抗體的CDC作用也可通過鉸鏈區(qū)突變等來實(shí)現(xiàn)。
此外,延長血漿半衰期成為目前抗病毒抗體藥物的另一重要發(fā)展方向。通過改造Fc進(jìn)而調(diào)節(jié)其與新生Fc受體(neonatal Fc receptor, FcRn)的相互作用可達(dá)到延長體內(nèi)血漿半衰期的效果[59]。FcRn依賴細(xì)胞胞飲作用,從胞外酸性環(huán)境中吸收IgG,在血管內(nèi)皮細(xì)胞內(nèi)參與循環(huán)中IgG水平的穩(wěn)態(tài)調(diào)節(jié),這也符合FcRn在酸性pH 6.0~6.5的條件下與IgG Fc 結(jié)合,而在pH 7.4時(shí)不與IgG結(jié)合的特性。因此,通過對IgG Fc區(qū)進(jìn)行氨基酸突變,調(diào)節(jié)其與FcRn的相互作用能維持血液循環(huán)中高水平的抗體濃度,有效延長抗體的血漿半衰期并增強(qiáng)抗體的體內(nèi)功效[60]。
4結(jié)語
本文對近期抗MERS-CoV全人源中和mAb的研究進(jìn)展進(jìn)行了總結(jié)。如上所述,這些以MERS-CoV S1蛋白RBD為靶點(diǎn)的抗體均具有很強(qiáng)的抗病毒中和活性,有開發(fā)為高效MERS防治藥物的潛力。目前,這些抗體的研發(fā)仍停留在體外實(shí)驗(yàn)和動物實(shí)驗(yàn)階段,尚無針對人類的臨床研究。值得一提的是,多種實(shí)驗(yàn)室生產(chǎn)的抗病毒抗體,如針對亨德拉病毒、尼帕病毒的m102.4抗體,針對埃博拉病毒的ZMapp抗體等都在未進(jìn)行臨床試驗(yàn)的情況下作為應(yīng)急藥物在人類直接用于治療。因此,在緊急情況下這些MERS-CoV的高活性全人源抗體也有可能作為實(shí)驗(yàn)性藥物用于MERS患者的治療。更重要的是,如果國家有關(guān)部門、企業(yè)和研究單位能有效結(jié)合,盡快推動抗體藥物進(jìn)入臨床,可為應(yīng)對今后可能出現(xiàn)的MERS疫情暴發(fā)提供重要保障。
參考文獻(xiàn)
Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia [J]. New Engl J Med, 2012, 367(19): 1814-1820.
[2]van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, Osterhaus AD, Haagmans BL, Gorbalenya AE, Snijder EJ, Fouchier RA. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans [J]. MBio, 2012, 3(6).pii: e00473-12.
[3]de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RA, Galiano M, Gorbalenya AE, Memish ZA, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki AM, Zambon M, Ziebuhr J. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group [J]. J Virol, 2013, 87(14): 7790-7792.
[4]Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease [J]. Clin Microbiol Rev, 2015, 28(2): 465-522.
[5]Chan JF, Li KS, To KK, Cheng VC, Chen H, Yuen KY. Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic [J]? J Infect, 2012, 65(6): 477-489.
[6]Hui DS, Peiris M. Middle East respiratory syndrome [J]. Am J Respir Crit Care Med, 2015,192(3):278-279.
[7]Scolnik PA. mAbs: a business perspective [J]. MAbs, 2010, 1(2): 179-184.
[8]Zhang MY, Choudhry V, Xiao X,Dimitrov DS. Human monoclonal antibodies to the S glycoprotein and related proteins as potential therapeutics for SARS [J]. Curr Opin Mol Ther, 2005, 7(2): 151-156.
[9]ter Meulen J, Bakker AB, van den Brink EN, Weverling GJ, Martina BE, Haagmans BL, Kuiken T, de Kruif J, Preiser W, Spaan W, Gelderblom HR, Goudsmit J, Osterhaus AD. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets [J]. Lancet, 2004, 363(9427): 2139-2141.
[10]Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, Moore MJ, Tallarico AS, Olurinde M, Choe H, Anderson LJ, Bellini WJ, Farzan M, Marasco WA. Potent neutralization of severe acute respiratory syndrome (SARS)coronavirus by a human mAb to S1 protein that blocks receptor association [J]. Proc Natl Acad Sci USA, 2004, 101(8): 2536-2541.
[11]Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R, Lanzavecchia A. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus [J]. Nat Med, 2004, 10(8): 871-875.
[12]ter Meulen J, van den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F, Cheung CY, Bakker AQ, Bogaards JA, van Deventer E, Preiser W, Doerr HW, Chow VT, de Kruif J, Peiris JS, Goudsmit J. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants [J]. PLoS Med, 2006, 3(7): e237.
[13]Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, Hensley LE, Prabakaran P, Rockx B, Sidorov IA, Corti D, Vogel L, Feng Y, Kim JO, Wang LF, Baric R, Lanzavecchia A, Curtis KM, Nabel GJ, Subbarao K, Jiang S, Dimitrov DS. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies [J]. Proc Natl Acad Sci USA, 2007, 104(29): 12123-12128.
[14]Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract [J]. Proc Soc Exp Biol Med, 1966, 121(1): 190-193.
[15]McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease [J]. Proc Natl Acad Sci USA, 1967, 57(4): 933-940.
[16]Bradburne AF, Somerset BA. Coronative antibody tires in sera of healthy adults and experimentally infected volunteers [J]. J Hyg (Lond), 1972, 70(2): 235-244.
[17]van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC, Wertheim-van Dillen PM, Kaandorp J, Spaargaren J, Berkhout B. Identification of a new human coronavirus [J]. Nat Med, 2004, 10(4): 368-373.
[18]Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BH, Poon RW, Cai JJ, Luk WK, Poon LL, Wong SS, Guan Y, Peiris JS, Yuen KY. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia [J]. J Virol, 2005, 79(2): 884-895.
[19]Vijaykrishna D, Smith GJ, Zhang JX, Peiris JS, Chen H, Guan Y. Evolutionary insights into the ecology of coronaviruses [J]. J Virol, 2007, 81(8): 4012-4020.
[20]Woo PC, Lau SK, Huang Y, Yuen KY. Coronavirus diversity, phylogeny and interspecies jumping [J]. Exp Biol Med (Maywood), 2009, 234(10): 1117-1127.
[21]Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu M, Nkrumah EE, Badu EK, Anti P, Agbenyega O, Meyer B, Oppong S, Sarkodie YA, Kalko EK, Lina PH, Godlevska EV, Reusken C, Seebens A, Gloza-Rausch F, Vallo P, Tschapka M, Drosten C, Drexler JF. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe [J]. Emerg Infect Dis, 2013, 19(3): 456-459.
[22]Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS, Hashem AM, Madani TA. Evidence for camel-to-human transmission of MERS coronavirus [J]. N Engl J Med, 2014, 370(26): 2499-2505.
[23]Reusken CB, Haagmans BL, Müller MA, Gutierrez C, Godeke GJ, Meyer B, Muth D, Raj VS, Smits-De Vries L, Corman VM, Drexler JF, Smits SL, El Tahir YE, De Sousa R, van Beek J, Nowotny N, van Maanen K, Hidalgo-Hermoso E, Bosch BJ, Rottier P, Osterhaus A, Gortázar-Schmidt C, Drosten C, Koopmans MP. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study [J]. Lancet Infect Dis, 2013, 13(10): 859-866.
[24]Ruch TR, Machamer CE. The coronavirus E protein: assembly and beyond [J]. Viruses, 2012, 4(3): 363-382.
[25]Jiang S, Lu L, Du L, Debnath AK. A predicted receptor-binding and critical neutralizing domain in S protein of the novel human coronavirus HCoV-EMC [J]. J Infect, 2013, 66(5): 464-466.
[26]Du L, Ma C, Jiang S. Antibodies induced by receptor-binding domain in spike protein of SARS-CoV do not cross-neutralize the novel human coronavirus hCoV-EMC [J]. J Infect, 2013, 67(4): 348-350.
[27]Müller MA, Raj VS, Muth D, Meyer B, Kallies S, Smits SL, Wollny R, Bestebroer TM, Specht S, Suliman T, Zimmermann K, Binger T, Eckerle I, Tschapka M, Zaki AM, Osterhaus AD, Fouchier RA, Haagmans BL, Drosten C. Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines [J]. MBio, 2012, 3(6).pii: e00515-12.
[28]Raj VS, Mou HH, Smits SL, Dekkers DH, Mueller MA, Dijkman R, Muth DA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ, Osterhaus AD, Bosch BJ, Haagmans BL. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC [J]. Nature, 2013, 495(7440): 251-254.
[29]Cui J, Eden JS, Holmes EC, Wang LF. Adaptive evolution of bat dipeptidyl peptidase 4 (dpp4): implications for the origin and emergence of Middle East respiratory syndrome coronavirus [J]. Virol J, 2013, 10: 304.
[30]Boonacker E, Van Noorden CJ. The multifunctional or moonlighting protein CD26/DPPIV [J]. Eur J Cell Biol, 2003, 82(2): 53-73.
[31]Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, Baric RS, Jiang S, Li F. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus [J]. Proc Natl Acad Sci USA, 2014, 111(34): 12516-12521.
[32]Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin [J]. Sci Rep, 2013, 3: 1686.
[33]Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study [J]. Int J Infect Dis, 2014, 20: 42-46.
[34]Lu L, Liu Q, Zhu Y, Chan KH, Qin L, Li Y, Wang Q, Chan JF, Du L, Yu F, Ma C, Ye S, Yuen KY, Zhang R, Jiang S. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor [J]. Nat Commun, 2014, 5: 3067.
[35]Gao J, Lu G, Qi J, Li Y, Wu Y, Deng Y, Geng H, Li H, Wang Q, Xiao H, Tan W, Yan J, Gao GF. Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus [J]. J Virol, 2013, 87(24): 13134-13140.
[36]Zhu Z, Dimitrov AS, Bossart KN, Crameri G, Bishop KA, Choudhry V, Mungall BA, Feng YR, Choudhary A, Zhang MY, Feng Y, Wang LF, Xiao X, Eaton BT, Broder CC, Dimitrov DS. Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies [J]. J Virol, 2006, 80(2): 891-899.
[37]Bossart KN, Geisbert TW, Feldmann H, Zhu Z, Feldmann F, Geisbert JB, Yan L, Feng YR, Brining D, Scott D, Wang Y, Dimitrov AS, Callison J, Chan YP, Hickey AC, Dimitrov DS, Broder CC, Rockx B. A neutralizing human monoclonal antibody protects African green monkeys from hendra virus challenge [J]. Sci Transl Med, 2011, 3 (105): 105ra103.
[38]Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, Fausther-Bovendo H, Wei H, Aviles J, Hiatt E, Johnson A, Morton J, Swope K, Bohorov O, Bohorova N, Goodman C, Kim D, Pauly MH, Velasco J, Pettitt J, Olinger GG, Whaley K, Xu B, Strong JE, Zeitlin L, Kobinger GP. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp [J]. Nature, 2014, 514(7520): 47-53.
[39]Hsueh PR, Huang LM, Chen PJ, Kao CL, Yang PC. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus [J]. Clin Microbiol Infect, 2004, 10(12): 1062-1066.
[40]Nie Y, Wang G, Shi X, Zhang H, Qiu Y, He Z, Wang W, Lian G, Yin X, Du L, Ren L, Wang J, He X, Li T, Deng H, Ding M. Neutralizing antibodies in patients with severe acute respiratory syndrome-associated coronavirus infection [J]. J Infect Dis, 2004, 190(6): 1119-1126.
[41]Buchholz U, Müller MA, Nitsche A, Sanewski A, Wevering N, Bauer-Balci T, Bonin F, Drosten C, Schweiger B, Wolff T, Muth D, Meyer B, Buda S, Krause G, Schaade L, Haas W. Contact investigation of a case of human novel coronavirus infection treated in a German hospital, October-November 2012 [J/OL]. Euro Surveill, 2013. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20406.
[42]Ying T, Du L, Ju TW, Prabakaran P, Lau CC, Lu L, Liu Q, Wang L, Feng Y, Wang Y, Zheng BJ, Yuen KY, Jiang S, Dimitrov DS. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies [J]. J Virol, 2014, 88(14): 7796-7805.
[43]Jiang L, Wang N, Zuo T, Shi X, Poon KM, Wu Y, Gao F, Li D, Wang R, Guo J, Fu L, Yuen KY, Zheng BJ, Wang X, Zhang L. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein [J]. Sci Transl Med, 2014, 6(234): 234ra259.
[44]Tang XC, Agnihothram SS, Jiao Y, Stanhope J, Graham RL, Peterson EC, Avnir Y, Tallarico AS, Sheehan J, Zhu Q, Baric RS, Marasco WA. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution [J]. Proc Natl Acad Sci USA, 2014, 111(19): E2018-E2026.
[45]de Wit E, Prescott J, Baseler L, Bushmaker T, Thomas T, Lackemeyer MG, Martellaro C, Milne-Price S, Haddock E, Haagmans BL, Feldmann H, Munster VJ. The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters [J]. PLoS One, 2013, 8(7): e69127.
[46]Falzarano D, de Wit E, Feldmann F, Rasmussen AL, Okumura A, Peng X, Thomas MJ, van Doremalen N, Haddock E, Nagy L, LaCasse R, Liu T, Zhu J, McLellan JS, Scott DP, Katze MG, Feldmann H, Munster VJ. Infection with MERS-CoV causes lethal pneumonia in the common marmoset [J]. PLoS Pathog, 2014, 10(8): e1004250.
[47]de Wit ED, Rasmussen AL, Falzarano D, Bushmaker T, Feldmann F, Brining DL, Fischer ER, Martellaro C, Okumura A, Chang J, Scott D, Benecke AG, Katze MG, Feldmann H, Munster VJ. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques [J]. Proc Natl Acad Sci USA, 2013, 110(41):16598-16603.
[48]Zhao J, Li K, Wohlford-Lenane C, Agnihothram SS, Fett C, Zhao J, Gale MJ, Baric RS, Enjuanes L, Gallagher T, McCray PB, Perlman S. Rapid generation of a mouse model for Middle East respiratory syndrome [J]. Proc Natl Acad Sci USA, 2014, 111(13): 4970-4975.
[49]Ying T, Prabakaran P, Du L, Shi W, Feng Y, Wang Y, Wang L, Li W, Jiang S, Dimitrov DS, Zhou T. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody [J]. Nat Commun, 2015, 6: 8223.
[50]Bregenholt S, Jensen A, Lantto J, Hyldig S, Haurum JS. Recombinant human polyclonal antibodies: A new class of therapeutic antibodies against viral infections [J]. Curr Pharm Des, 2006, 12(16): 2007-2015.
[51]Presta LG. Molecular engineering and design of therapeutic antibodies [J]. Curr Opin Immunol, 2008, 20(4): 460-470.
[52]Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments [J]. Nat Biotechnol, 2009, 27(4): 331-337.
[53]Ying T, Gong R, Ju TW, Prabakaran P, Dimitrov DS. Engineered Fc based antibody domains and fragments as novel scaffolds [J]. Biochim Biophys Acta, 2014, 1844(11): 1977-1982.
[54]Ying T, Wang Y, Feng Y, Prabakaran P, Gong R, Wang L, Crowder K, Dimitrov DS. Engineered antibody domains with significantly increased transcytosis and half-life in macaques mediated by FcRn [J]. MAbs, 2015, 7(5): 922-930.
[55]Ying T, Feng Y, Wang Y, Chen W, Dimitrov DS. Monomeric IgG1 Fc molecules displaying unique Fc receptor interactions that are exploitable to treat inflammation-mediated diseases [J]. MAbs, 2014, 6(5): 1201-1210.
[56]Ying T, Ju TW, Wang Y, Prabakaran P, Dimitrov DS. Interactions of IgG1 CH2 and CH3 domains with FcRn [J]. Front Immunol, 2014, 5: 146.
[57]Ying T, Chen W, Feng Y, Wang Y, Gong R, Dimitrov DS. Engineered soluble monomeric IgG1 CH3 domain: generation, mechanisms of function, and implications for design of biological therapeutics [J]. J Biol Chem, 2013, 288(35): 25154-25164.
[58]Ying T, Chen W, Gong R, Feng Y, Dimitrov DS. Soluble monomeric IgG1 Fc [J]. J Biol Chem, 2012, 287(23): 19399-19408.
[59]Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age [J]. Nat Rev Immunol, 2007, 7 (9):715-725.
[60]Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IW, Sproule TJ, Lazar GA, Roopenian DC, Desjarlais JR. Enhanced antibody half-life improves in vivo activity [J]. Nat Biotechnol, 2010, 28 (2):157-159.
Research progress on human neutralizing monoclonal antibodies against Middle East respiratory syndrome coronavirus
WANG Li-Li, YING Tian-Lei
Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
Abstract:Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus, which can cause severe acute respiratory disease with a high mortality rate. Currently, MERS-CoV has spread from the main epidemic area, the Middle East Region, to many other countries including the United States of America, Republic of Korea and China. MERS-CoV has raised global public health concerns regarding the current situation and future evolution. This review will mainly summarize the recent progress on developing human neutralizing monoclonal antibodies (mAbs) against MERS-CoV, describe the action mechanisms, and discuss their potential for prophylaxis and treatment of MERS. The future strategies for the rapid development of antibody-based antiviral options to combat emerging viruses and diseases in an outbreak setting are also discussed.
Key words:Middle East respiratory syndrome coronavirus; Novel coronavirus; Human neutralizing monoclonal antibody
收稿日期:(2015-07-29)