支 楠,徐 群上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院神經(jīng)內(nèi)科,上海 200127
?
綜述Review
缺血性卒中后的神經(jīng)炎性反應(yīng)
支 楠,徐 群
上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院神經(jīng)內(nèi)科,上海 200127
摘要
關(guān)鍵詞:卒中;神經(jīng)炎性反應(yīng);炎性細(xì)胞;炎性介質(zhì)
支 楠,徐 群. 缺血性卒中后的神經(jīng)炎性反應(yīng)[J]. 神經(jīng)病學(xué)與神經(jīng)康復(fù)學(xué)雜志, 2016, 12(1):41–46.
FUNDlNG/SUPPORT: Shanghai Jiao Tong University Crossover Fund of Medicine,Engineering and Sciences (No. YG2012MS08)
CONFLlCT OF lNTEREST: The authors have indicated they have no conflicts of interest to disclose.
Received Jan. 29, 2016; accepted for publication Mar. 1, 2016
Copyright ? 2016 by Journal of Neurology and Neurorehabilitation
XU Qun
E-MAIL ADDRESS xuqun628@163.com
ABSTRACT
Neuroinflammation plays an important role in pathological injury after ischemic stroke. Increasing evidence suggests that neuroinflammation is a double-edged sword, as it not only exacerbates secondary brain injury in the acute stage of stroke, but also beneficially contributes to brain recovery after stroke. This paper reviews the key factors involved in neuroinflammation after ischemic stroke, including inflammatory cells, inflammatory mediators and adhesion molecules, describing their possible detrimental and protective effects in stroke. This review also briefly introduces recently studies about the advances and future perspectives in neuroinflammation after ischemic stroke.
To cite: ZHl N, XU Q. Neuroinflammation in ischemic stroke. J Neurol and Neurorehabil, 2016, 12(1):41–46.
卒中是世界范圍內(nèi)人類(lèi)的第2大致死疾病,也是永久性致殘的最常見(jiàn)病因,對(duì)醫(yī)療、社會(huì)及衛(wèi)生經(jīng)濟(jì)均帶來(lái)重要影響。盡管卒中后的病理?yè)p傷涉及不同的機(jī)制,但越來(lái)越多的研究顯示神經(jīng)炎性反應(yīng)與卒中后的病變進(jìn)展密切相關(guān)[1-2],并認(rèn)為伴有氧化應(yīng)激、興奮性中毒、鈣平衡紊亂以及能量衰竭的神經(jīng)炎性反應(yīng)是缺血性腦損傷的關(guān)鍵病理改變[3]。
缺血性卒中后的神經(jīng)炎性反應(yīng)是一個(gè)級(jí)聯(lián)放大的過(guò)程。腦缺血后數(shù)分鐘至數(shù)小時(shí),血流的中斷破壞了離子的平衡穩(wěn)態(tài),引起細(xì)胞內(nèi)鈣離子濃度升高,繼而刺激谷氨酸釋放,導(dǎo)致興奮性神經(jīng)中毒。與此同時(shí),受損組織可快速釋放活性氧類(lèi)(reactive oxygen species,ROS)、細(xì)胞因子以及化學(xué)因子等促炎性介質(zhì),這些介質(zhì)不僅可激活顱內(nèi)的小膠質(zhì)細(xì)胞,還可誘導(dǎo)腦內(nèi)皮細(xì)胞(endothelial cells,ECs)以及外周白細(xì)胞表面黏附分子的表達(dá),促進(jìn)外周白細(xì)胞對(duì)腦缺血區(qū)的浸潤(rùn)。在缺血性卒中后的數(shù)小時(shí)至數(shù)日,浸潤(rùn)的白細(xì)胞及激活的小膠質(zhì)細(xì)胞可進(jìn)一步釋放細(xì)胞因子,生成更多的一氧化氮(nitric oxide,NO)及ROS,激活金屬基質(zhì)蛋白酶(matrix metalloproteinases,MMPs),使神經(jīng)炎性反應(yīng)級(jí)聯(lián)放大,最終導(dǎo)致血腦屏障(blood brain barrier,BBB)的破壞、腦水腫、神經(jīng)元死亡及腦出血[4-6]。
由此可見(jiàn),腦缺血后的神經(jīng)炎性反應(yīng)復(fù)雜有序,不僅有多種炎性細(xì)胞的參與,還涉及多種炎性介質(zhì)及黏附分子。本文對(duì)缺血性卒中后炎性細(xì)胞、炎性介質(zhì)、黏附分子的變化及作用進(jìn)行綜述。
外周炎性細(xì)胞與中樞免疫細(xì)胞均參與腦缺血后的神經(jīng)炎性反應(yīng)。其中,腦內(nèi)的免疫細(xì)胞(主要是小膠質(zhì)細(xì)胞)在腦缺血后首先被迅速激活;隨后,外周循環(huán)中的炎性細(xì)胞浸潤(rùn)至腦實(shí)質(zhì)[7-9]。
1.1小膠質(zhì)細(xì)胞
小膠質(zhì)細(xì)胞占顱內(nèi)膠質(zhì)細(xì)胞總數(shù)的5%~20%,是腦固有免疫細(xì)胞。腦缺血后可迅速激活小膠質(zhì)細(xì)胞,最早在缺血后2 h即可檢測(cè)到激活的小膠質(zhì)細(xì)胞。目前尚不清楚腦缺血后激活小膠質(zhì)細(xì)胞的機(jī)制。有學(xué)者猜測(cè),神經(jīng)元壞死破裂后釋放的細(xì)胞內(nèi)容物可激活小膠質(zhì)細(xì)胞[10];亦有研究指出,Toll樣受體4(Toll-like receptor 4,TLR4)可能是小膠質(zhì)細(xì)胞激活的必備條件[11],其具體機(jī)制仍有待進(jìn)一步研究。
激活的小膠質(zhì)細(xì)胞可釋放大量細(xì)胞毒性及保護(hù)性物質(zhì),但對(duì)于小膠質(zhì)細(xì)胞在腦缺血中的具體作用,尚未明確。多數(shù)研究認(rèn)為,激活的小膠質(zhì)細(xì)胞有介導(dǎo)細(xì)胞損傷及死亡的作用[12];然而,也有研究發(fā)現(xiàn)小膠質(zhì)細(xì)胞對(duì)神經(jīng)元細(xì)胞有保護(hù)作用,如小膠質(zhì)細(xì)胞分泌的轉(zhuǎn)化生長(zhǎng)因子β1 (transforming growth factor-beta 1,TGF-β1)可促進(jìn)神經(jīng)再生及神經(jīng)可塑性[13]。因此,如果能夠通過(guò)調(diào)節(jié)小膠質(zhì)細(xì)胞的活性而增強(qiáng)其神經(jīng)保護(hù)的作用,將給臨床治療帶來(lái)新的方向。
1.2白細(xì)胞
腦缺血后4~6 h,循環(huán)中的白細(xì)胞即可黏附至血管壁,并逐漸遷移及聚集至腦缺血區(qū)。通常,中性粒細(xì)胞是最早遷移并浸潤(rùn)至缺血區(qū)的白細(xì)胞,在缺血后3 d內(nèi)其浸潤(rùn)達(dá)高峰;淋巴細(xì)胞的遷移略遲,通常在缺血后24 h內(nèi)遷移至腦缺血區(qū)。中性粒細(xì)胞可直接釋放毒性物質(zhì)或其他炎性介質(zhì),從而引起腦損傷[14];但對(duì)于淋巴細(xì)胞在缺血性卒中中的作用,尚未完全闡明。盡管一些動(dòng)物實(shí)驗(yàn)及臨床試驗(yàn)發(fā)現(xiàn)淋巴細(xì)胞與中性粒細(xì)胞在缺血性卒中中具有相似的作用[15],但大多數(shù)研究認(rèn)為淋巴細(xì)胞可抑制缺血后的腦損傷。
1.3星形膠質(zhì)細(xì)胞
腦缺血后,星形膠質(zhì)細(xì)胞可被激活,繼而通過(guò)表達(dá)主要組織相容性復(fù)合物(major histocompatibility complex,MHC)及共刺激分子,促進(jìn)輔助性T細(xì)胞2(helper T cell 2,Th2)的免疫反應(yīng),并抑制白細(xì)胞介素12(interleukin-12,IL-12)的表達(dá)[16],參與缺血后的神經(jīng)炎性反應(yīng)。激活后的星形膠質(zhì)細(xì)胞可發(fā)生特異性的結(jié)構(gòu)和功能的改變,與小膠質(zhì)細(xì)胞一樣具有雙重作用。一方面,激活后的星形膠質(zhì)細(xì)胞可促進(jìn)神經(jīng)膠質(zhì)原纖維酸性蛋白(glial fibrillary acidic protein,GFAP)表達(dá)增加[17],抑制膠質(zhì)細(xì)胞的增生,從而促進(jìn)神經(jīng)功能的恢復(fù);另一方面,激活后的星形膠質(zhì)細(xì)胞可分泌炎性因子,對(duì)缺血的腦組織有潛在的損傷作用。因此,如果能夠增強(qiáng)激活后的星形膠質(zhì)細(xì)胞的神經(jīng)保護(hù)作用,同時(shí)抑制其神經(jīng)損傷作用,可能對(duì)改善缺血后腦損傷的預(yù)后具有重要的意義。
2.1細(xì)胞因子
缺血后,腦實(shí)質(zhì)內(nèi)細(xì)胞因子生成增多。目前研究最多的參與卒中后神經(jīng)炎性反應(yīng)的細(xì)胞因子包括IL-1β、IL-6、IL-10、腫瘤壞死因子α(tumor necrosis factor-alpha,TNF-α)和TNF-β。以往,一般將IL-1β、TNF-α和IL-6歸入促炎性因子,而將IL-10和TGF-β歸入抗炎性因子。然而,近年來(lái)的研究發(fā)現(xiàn),細(xì)胞因子不能被精確地分為促炎細(xì)胞因子或抗炎細(xì)胞因子,這是因?yàn)椴糠旨?xì)胞因子既有神經(jīng)毒作用,亦有神經(jīng)保護(hù)作用[18]。
TNF-α是公認(rèn)的促炎因子,可通過(guò)刺激促炎介質(zhì)的產(chǎn)生、促進(jìn)小膠質(zhì)細(xì)胞及星形膠質(zhì)細(xì)胞的活化及增殖以及介導(dǎo)白細(xì)胞對(duì)內(nèi)皮細(xì)胞的黏附作用[19-21]而發(fā)揮神經(jīng)毒作用。也有研究發(fā)現(xiàn),TNF-α通過(guò)促進(jìn)神經(jīng)營(yíng)養(yǎng)因子的生成、控制細(xì)胞外鈣離子的濃度、激活腦微血管修復(fù)、誘導(dǎo)抗凋亡因子的形成以及誘導(dǎo)缺血后耐受而發(fā)揮神經(jīng)保護(hù)作用[22]。TNF-α對(duì)腦組織的具體作用取決于多種因素的影響,如小膠質(zhì)細(xì)胞在特定腦組織部位的激活程度、TNF-α受體類(lèi)型以及刺激TNF-α信號(hào)轉(zhuǎn)導(dǎo)的條件等[22]。
多項(xiàng)研究已證實(shí)了IL-6的促炎作用。IL-6參與介導(dǎo)T淋巴細(xì)胞浸潤(rùn)至腦缺血區(qū),繼而加劇腦缺血后的神經(jīng)炎性反應(yīng),加重卒中后腦損傷。此外,亦有研究發(fā)現(xiàn),IL-6可上調(diào)IL-1受體拮抗劑的表達(dá),發(fā)揮一定的神經(jīng)保護(hù)作用[23-24]。目前尚不清楚如何調(diào)節(jié)腦缺血后IL-6的雙重作用,對(duì)此有待進(jìn)一步研究。
鑒于上述細(xì)胞因子具有的雙重作用,因此無(wú)法通過(guò)單純地抑制促炎因子以改善缺血性卒中患者的預(yù)后。如何更好地調(diào)節(jié)細(xì)胞因子的活性,促進(jìn)其神經(jīng)保護(hù)作用,同時(shí)抑制其神經(jīng)毒性作用,對(duì)臨床治療具有重要意義。
2.2化學(xué)因子
化學(xué)因子主要在細(xì)胞之間的信息傳遞以及炎性細(xì)胞的募集過(guò)程中發(fā)揮作用。白細(xì)胞在炎性反應(yīng)中的遷移需要化學(xué)因子的調(diào)節(jié)。腦缺血后化學(xué)因子表達(dá)增加可增強(qiáng)白細(xì)胞的浸潤(rùn)能力,從而加重缺血后腦損傷[25]。
2.3花生四烯酸(arachidonic acid,AA)
卒中后,血流供應(yīng)的中斷可致能量耗竭,進(jìn)而引起腦細(xì)胞內(nèi)鈣超載。細(xì)胞內(nèi)高濃度的鈣可激活磷脂酶A2(phospholipase A2,PLA2),進(jìn)而水解甘油磷酸脂類(lèi),釋放AA。AA的代謝可加劇神經(jīng)炎性反應(yīng),同時(shí)引起循環(huán)異常,加重缺血后腦損傷[26]。
2.4 NO/一氧化氮合酶(nitric oxide synthase,NOS)
NO作為重要的信號(hào)分子,參與神經(jīng)應(yīng)答、宿主防御、血管緊張度調(diào)節(jié)等生理過(guò)程的信息傳遞。NOS是合成NO所必需的酶,其中誘導(dǎo)型NOS(inducible NOS,iNOS)與炎性細(xì)胞密切相關(guān)。腦缺血可誘導(dǎo)炎性細(xì)胞內(nèi)iNOS mRNA和蛋白的表達(dá)上調(diào),增強(qiáng)iNOS的活性,促進(jìn)NO的生成,而NO可進(jìn)一步生成過(guò)氧亞硝酸鹽,從而引起腦損傷[27-28]。
2.5ROS
炎性細(xì)胞可產(chǎn)生ROS,繼而損傷腦組織。其中,超氧陰離子是ROS的主要成分,不僅會(huì)直接損傷腦組織,還可與NO反應(yīng)生成過(guò)氧亞硝酸鹽[29],從而進(jìn)一步加重腦損傷。
在外周白細(xì)胞浸潤(rùn)至腦實(shí)質(zhì)的過(guò)程中,黏附分子起著十分重要的作用。黏附分子主要包括3種:選擇素、免疫球蛋白超家族及整合素。
3.1選擇素
選擇素主要包括選擇素E、選擇素P和選擇素L,可介導(dǎo)細(xì)胞之間的黏附以及白細(xì)胞在毛細(xì)血管后微靜脈上的滾動(dòng)。選擇素E和選擇素P主要作用于早期活化的白細(xì)胞,選擇素L則主要作用于尚未受到刺激的白細(xì)胞。在多種卒中動(dòng)物模型中均發(fā)現(xiàn)有選擇素E和選擇素P的表達(dá),并且其表達(dá)的上調(diào)可促進(jìn)缺血后的炎性反應(yīng),并加重缺血后腦損傷[30]。目前尚不完全清楚選擇素L的作用。盡管選擇素L可介導(dǎo)白細(xì)胞的遷移,但對(duì)卒中結(jié)局無(wú)明顯影響。
3.2免疫球蛋白超家族
免疫球蛋白超家族主要包含5種分子,其中以細(xì)胞間黏附分子1(intercellular adhesion molecule-1,ICAM-1)以及血管黏附分子1 (vascular adhesion molecule-1,VCAM-1)的相關(guān)研究最多。腦缺血后數(shù)小時(shí),ICAM-1的表達(dá)開(kāi)始增加,12~24 h達(dá)高峰。通過(guò)抗體封閉ICAM-1[31]或敲除動(dòng)物模型的ICAM-1基因[32],均可減輕缺血后腦損傷。然而,目前尚不清楚VCAM-1的具體作用。
3.3整合素
整合素由β亞基以及可變的α亞基所組成。β2整合素是由β2亞基以及3個(gè)不同的α鏈,即CD11a、CD11b和CD11c所組成,其中針對(duì)CD11b與卒中相關(guān)性的研究最多。體外實(shí)驗(yàn)發(fā)現(xiàn),低氧能夠誘導(dǎo)中性粒細(xì)胞表達(dá)更多的CD11b。動(dòng)物實(shí)驗(yàn)中,封閉CD11b[33]可以減少白細(xì)胞的浸潤(rùn),進(jìn)而減輕卒中后腦損傷。
神經(jīng)炎性反應(yīng)與缺血性卒中后的病變進(jìn)展密切相關(guān),研究人員試圖通過(guò)控制缺血后的神經(jīng)炎性反應(yīng)以改善卒中的療效及預(yù)后。目前的基礎(chǔ)研究主要是通過(guò)動(dòng)物模型,對(duì)炎性細(xì)胞、炎性介質(zhì)和黏附分子進(jìn)行調(diào)控研究,以期探討這些因子的神經(jīng)保護(hù)作用。其中,有關(guān)炎性細(xì)胞與缺血后腦損傷的基礎(chǔ)研究主要涉及使用單克隆抗體抑制白細(xì)胞對(duì)腦缺血區(qū)的浸潤(rùn)[34-36]、米諾環(huán)素抑制小膠質(zhì)細(xì)胞的激活[37]以及藥物調(diào)節(jié)星形膠質(zhì)細(xì)胞的功能[38-39]等;有關(guān)炎性介質(zhì)與神經(jīng)保護(hù)的基礎(chǔ)研究主要涉及拮抗IL-1受體[40-41]及抑制TNF-α合成[42]等;有關(guān)黏附分子與神經(jīng)保護(hù)的基礎(chǔ)研究大多集中于針對(duì)ICAM-1的研究,發(fā)現(xiàn)通過(guò)抗體抑制ICAM-1的作用以及通過(guò)藥物減少腦缺血后ICAM-1的表達(dá)[43]均可減輕大鼠腦缺血后的神經(jīng)損傷。
目前針對(duì)神經(jīng)炎性反應(yīng)的臨床研究較少,涉及的治療藥物的作用主要是干預(yù)白細(xì)胞對(duì)缺血區(qū)的浸潤(rùn),如ICAM-1抗體恩莫單抗、CD11b/CD18抗體以及重組中性粒細(xì)胞抑制因子[44-47]等;然而,這些臨床試驗(yàn)均以失敗而告終。推測(cè)其原因,可能與人體試驗(yàn)與動(dòng)物模型的條件迥異、人類(lèi)與動(dòng)物的缺血耐受機(jī)制不同以及實(shí)驗(yàn)動(dòng)物研究未考慮腦卒中發(fā)病危險(xiǎn)因素的影響等有關(guān)。因此,進(jìn)一步探討如何調(diào)節(jié)炎性反應(yīng)的作用,對(duì)制定今后的治療策略尤為重要;如果能夠在盡量減輕神經(jīng)炎性反應(yīng)毒性作用的同時(shí),增強(qiáng)神經(jīng)炎性反應(yīng)的有益作用,對(duì)于改善缺血性卒中患者的預(yù)后會(huì)有重要的臨床意義。
雖然目前有關(guān)卒中后中樞神經(jīng)系統(tǒng)炎性反應(yīng)的研究較多,然而針對(duì)卒中后誘導(dǎo)的外周免疫系統(tǒng)變化的研究卻很少。理論上,由于細(xì)胞因子、中性粒細(xì)胞、T細(xì)胞以及外周免疫系統(tǒng)的巨噬細(xì)胞都能在腦缺血后經(jīng)受損的BBB進(jìn)入中樞神經(jīng)系統(tǒng),因此外周免疫系統(tǒng)的變化對(duì)缺血性腦損傷有一定的影響。已有研究發(fā)現(xiàn),在人缺血性腦卒中的急性期,可在外周血中檢測(cè)出炎性指標(biāo)IL-6及C反應(yīng)蛋白(C-reactive protein,CRP)水平的升高[48],并且IL-6及CRP水平升高的程度與缺血性卒中的病變程度相關(guān)[49]。亦有研究指出,腦缺血早期處于外周免疫系統(tǒng)激活狀態(tài),而腦缺血后期卻可出現(xiàn)全身免疫系統(tǒng)受抑的現(xiàn)象,包括脾、淋巴結(jié)、胸腺及循環(huán)中的免疫細(xì)胞均可受到影響,但尚不清楚其具體的發(fā)生機(jī)制[50-53]。因此,進(jìn)一步明確腦缺血誘發(fā)外周免疫系統(tǒng)變化與腦損傷的關(guān)系具有重要意義,有望成為今后的研究熱點(diǎn)。
腦缺血后的神經(jīng)炎性反應(yīng)涉及眾多因素,如炎性細(xì)胞、炎性介質(zhì)和黏附分子等,這些因素之間相互關(guān)聯(lián)并相互影響,進(jìn)而構(gòu)成復(fù)雜的網(wǎng)絡(luò)。不能將神經(jīng)炎性反應(yīng)的作用單純地理解為促進(jìn)腦損傷,其在一定條件下也可起到神經(jīng)保護(hù)的作用。今后如果能夠開(kāi)展有關(guān)神經(jīng)炎性反應(yīng)調(diào)節(jié)的臨床研究,探索在促進(jìn)其神經(jīng)保護(hù)作用的同時(shí)減輕其神經(jīng)毒性作用,將對(duì)未來(lái)的缺血性卒中的治療產(chǎn)生深遠(yuǎn)的影響。
參考文獻(xiàn)
[1] CHAMORRO A, HALLENBECK J. The harms and benefits of inflammatory and immune responses in vascular disease[J]. Stroke,2006, 37(2):291–293.
[2] SAMSON Y, LAPERGUE B, HOSSElNl H. lnflammation and ischemic stroke: current status and future perspectives[J]. Rev Neurol (Paris), 2005, 161(12 Pt 1):1177–1182.
[3] BECKER K J. Targeting the central nervous system infammatory response in ischemic stroke[J]. Curr Opin Neurol, 2001,14(3):349–353.
[4] LAKHAN S E, KlRCHGESSNER A, HOFER M. lnflammatory mechanisms in ischemic stroke: therapeutic approaches[J]. J Transl Med, 2009, 97(7):773.
[5] YlLMAZ G, GRANGER D N. Cell adhesion molecules and ischemic stroke[J]. Neurol Res, 2008, 30(8):783–793.
[6] KRlZ J. lnflammation in ischemic brain injury: timing is important[J]. Crit Rev Neurobiol,2006, 18(1–2):145–157.
[7] SCHlLLlNG M, BESSELMANN M, LEONHAR C,et al. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice[J]. Exp Neurol, 2003,183(1): 25–33.
[8] GERHARD A, NEUMAlER B, ELlTOK E, et al. ln vivo imaging of activated microglia using [11C]PK11195 and positron emission tomography in patients after ischemic stroke[J]. Neuroreport, 2000,11(13):2957–2960.
[9] BUCK B H, LlEBESKlND D S, SAVER J L,et al. Early neutrophilia is associated with volume of ischemic tissue in acute stroke[J]. Stroke, 2008, 39(2): 355–360.
[10] KAUSHAL V, SCHLlCHTER L C. Mechanisms of microglia–mediated neurotoxicity in a new model of the stroke penumbra[J]. Neurosci,2008, 28(9):2221–2230.
[11] LEHNARDT S, MASSlLLON L, FOLLETT P, et
al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll–like receptor 4–dependent pathway[J]. Proc Natl Acad Sci U S A, 2003, 100(14):8514–8519.
[12] GüNTHER A, KüPPERS–TlEDT L, SCHNElDER P M, et al. Reduced infarct volume and differential effects on glial cell activation after hyperbaric oxygen treatment in rat permanent focal cerebral ischemia[J]. Eur J Neurosci, 2005, 21(11):3189–3194.
[13] LAl A Y, TODD K G. Microglia in cerebral ischemia: molecular actions and interactions[J]. Can J Physiol Pharmacol,2006, 84(1):49–59.
[14] ZHENG Z, YENARl M A. Post–ischemic inflammation: molecular mechanisms and therapeutic implications[J]. Neurol Res,2004, 26(8):884–892.
[15] NADARElSHVlLl Z G, Ll H, WRlGHT V, et al. Elevated proinflammatory CD4+CD28–lymphocytes and stroke recurence and death[J]. Neurology, 2004,63(8):1446–1451.
[16] DONG Y, BENVENlSTE E N. lmmune function of astrocytes[J]. Glia, 2001, 36(2):180–190.
[17] PEKNY M, NlLSSON M. Astrocyte activation and reactive gliosis[J]. Glia, 2005,50(4):427–434.
[18] AHMAD M, DAR N J, BHAT Z S, et al. lnflammation in ischemic stroke: mechanisms, consequences and possible drug targets[J]. CNS Neurol Disord Drug Targets, 2014, 13(8):1378–1396.
[19] KADHlM HJ, DUCHATEAU J, SéBlRE G. Cytokines and brain injury: invited review[J]. J lntensive Care Med, 2008, 23(4):236–249.
[20] SlMl A, TSAKlRl N, WANG P, et al. lnterleukin–1 and inflammatory neurodegeneration[J]. Biochem Soc Trans,2007, 35 (Pt 5):1122–1126.
[21] WlLDE G J, PRlNGLE A K, SUNDSTROM L E, et al. Attenuation and augmentation of ischaemia–related neuronal death by tumour necrosis factor–alpha in vitro[J]. Eur J Neurosci, 2000, 12(11):3863–3870.
[22] SRlRAM K, O’CALLAGHAN J P. Divergent roles for tumor necrosis factor–alph in the brain[J]. J Neuroimmune Pharmacol, 2007,2(2):140–153.
[23] HUANG J, UPADHYAY U M, TAMARGO R J. lnflammation in stroke and focal cerebral ischemia[J]. Surg Neurol, 2006,66(3):232–245.
[24] CLARK W M, RlNKER L G, LESSOV N S,et al. Lack of interleukin–6 expression is not prot–ective agains focal central nervous system ischemia[J]. Stroke, 2000,31(7):1715–1720.
[25] EMSLEY H C, TYRRELL P J. lnflammation and infection in clinical stroke[J]. Cereb Blood Flow Metab, 2002, 22(12):1399–1419.
[26] SANCHEZ–MORENO C, DASHE J F, SCOTT T, et al. Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidative stress markers after stroke[J]. Stroke, 2004, 35(1):163–168.
[27] COUGHLAN T, GlBSON C, MURPHY S. Modulatory effects of progesteroneon inducible nitric oxide synthase expression in vivo and in vitro[J]. J Neurochem, 2005,93(4):932–942.
[28] PARK E M, CHO S, FRYS K A, et al. lnducible nitric oxide synthase contributes to gender differences in ischemic brain injury[J]. J Cereb Blood Flow Metab, 2006,26(3):392–401.
[29] CHAN P H. Reactive oxygen radicals in signaling and damage in the ischemic brain[J]. J Cereb Blood Flow Metab, 2001,21(1):2–14.
[30] HUANG J, CHOUDHRl T F, WlNFREE C J, et al. Postischemic cerebrovascular E–selectin expression mediates tissue injuryin murine stroke[J]. Stroke, 2000, 31(12):3047–3053.
[31] BOWES MP, ZlVlN JA, ROTHLElN R. Monoclonal antibody to the lCAM–1 adhesion site reduces neurological damage in a rabbit cerebral embolism stroke model[J]. Exp Neurol, 1993, 119(2):215–219.
[32] CONNOLLY E S JR, WlNFREE C J,SPRlNGER T A, et al. Cerebral protection in homozygous null lCAM–1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke[J]. Clin lnvest, 1996, 97(1):209–216.
[33] CHEN H, CHOPP M, ZHANG R L, et al. Anti–CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat[J]. Ann Neurol,1994, 35(4):458–463.
[34] AHMAD M, GRAHAM S H. lnflammation after stroke: mechanisms and therapeutic approaches[J]. Transl Stroke Res, 2010,1(2):74–84.
[35] DENES A, THORNTON P, ROTHWELL N J,et al. lnflammation and brain injury: Acute cerebral ischaemia, peripheral and central inflammation[J]. Brain Behav lmmun, 2009,24(5):708–723.
[36] EMSLEY H C, SMlTH C J, GAVlN C M,et al. An early and sustained peripheral inflammatory response in acute ischaemic stroke: relationships with infection and atherosclerosis[J]. J Neuroimmunol, 2003,139(1–2):93–101.
[37] LAMPL Y, BOAZ M, GlLAD R, et al. Minocycline treatment in acute stroke: an open–label, evaluator–blinded study[J]. Neurology, 2007, 69(14):1404–1410.
[38] ZHAO Y, REMPE D A. Targeting astrocytes for stroke therapy[J]. Neurotherapeutics,2010, 7(4):439–451.
[39] BLOCK M L, ZECCA L, HONG J S. Microglia–mediated neurotoxicity: uncovering the molecular mechanisms[J]. Nat Rev Neurosci,2007, 8(1):57–69.
[40] BASU A, LAZOVlC J, KRADY J K, et al. lnterleukin–1 and the interleukin–1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury[J]. J Cereb Blood Flow Metab, 2005, 25(1):17–29.
[41] LAZOVlC J, BASU A, LlN H W, et al. Neuroinflammation and both cytotoxic and vasogenic edema are reduced in interleukin–1 type 1 receptor–deficient mice conferring neuroprotection[J]. Stroke, 2005,36(10):2226–2231.
[42] NAWASHlRO H, TASAKl K, RUETZLER C A, et al. TNF–alpha pretreatment induces protective effects against focal cerebral ischemia in mice[J]. J Cereb Blood Flow Metab, 1997,17(5):483–490.
[43] ZHANG R L, CHOPP M, Ll Y, et al. Anti–lCAM–1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat[J]. Neurology,1994, 44(9):1747–1751.
[44] EMSLEY H C, SMlTH C J, GEORGlOU R F, et al. A randomised phase ll study of interleukin–1 receptor antagonist in acute stroke patients[J]. J Neurol Neurosurg Psychiatry,2005, 76(10):1366–1372.
[45] KRAMS M, LEES K R, HACKE W, et al. Acute Stroke Therapy by lnhibition of Neutrophils (ASTlN): an adaptive dose–response study of UK–279,276 in acute ischemic stroke[J]. Stroke, 2003, 34(11):2543–2548.
[46] BECKER K J. Anti–leukocyte antibodies: LeukArrest (Hu23F2G) and Enlimomab (R6.5) in acute stroke[J]. Curr Med Res Opin,2008(18 Suppl 2):s18–22.
[47] SMlTH C J, DENES A, TYRRELL P J, et al. Phase ll anti–inflammatory and immune–modulating drugs for acute ischaemic stroke[J]. Expert Opin lnvestig Drugs, 2015,24(5):623–643.
[48] DZlEDZlC T. Clinical significance of acute phase reaction in stroke patients[J]. Front Biosci, 2008, 13(10):2922–2927.
[49] lDlCULA T T, BROGGER J, NAESS H, et al. Admission C–reactive protein after acute ischemic stroke is associated with stroke severity and mortality: the ‘Bergen stroke study’[J]. BMC Neurol, 2009(9):18.
[50] PENNYPACKER K R. Targeting the peripheral inflammatory response to stroke: role of the spleen[J]. Transl Stroke Res, 2014,5(6):635–637.
[51] OFFNER H, VANDENBARK A A, HURN P D. Effect of experimental stroke on peripheral immunity: CNS ischemia induces profound immunosuppression[J]. Neuroscience, 2009,158(3):1098–1111.
[52] KLEHMET J, HARMS H, RlCHTER M, et al. Stroke–induced immunodepression and post–stroke infections: lessons from the preventive antibacterial therapy in stroke trial[J]. Neuroscience, 2009,158(3):1184–1193.
[53] DZlEDZlC T. Systemic inflammation as a therapeutic target in acute ischemic stroke[J]. Expert Rev Neurother, 2015,15(5):523–531.
神經(jīng)炎性反應(yīng)在缺血性卒中后的病理?yè)p傷中起重要作用。越來(lái)越多的證據(jù)表明,神經(jīng)炎性反應(yīng)是一把“雙刃劍”,在加重急性期卒中腦損傷的同時(shí),亦可促進(jìn)卒中后的神經(jīng)修復(fù)。本文闡述了缺血性卒中后神經(jīng)炎性反應(yīng)的關(guān)鍵因素,如炎性細(xì)胞、炎性介質(zhì)和黏附分子的變化,探討了其可能的神經(jīng)損傷及神經(jīng)保護(hù)作用;同時(shí),對(duì)缺血性卒中后神經(jīng)炎性反應(yīng)相關(guān)研究的進(jìn)展及前景進(jìn)行了綜述。
DOI:10.12022/jnnr.2016-0010
通信作者
徐 群
xuqun628@163.com
基金項(xiàng)目:上海交通大學(xué)醫(yī)工(理)交叉基金(編號(hào):YG2012MS08)
CORRESPONDING AUTHOR
Neuroinflammation in ischemic stroke
ZHI Nan, XU Qun
Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
KEy WORDS:Stroke; Neuroinflammation; Inflammatory cells; Inflammatory mediators