趙雪芬
摘 要 在獨(dú)立學(xué)院轉(zhuǎn)型發(fā)展和以培養(yǎng)應(yīng)用技能型人才為導(dǎo)向的背景下,針對(duì)目前概率論與數(shù)理統(tǒng)計(jì)課程教學(xué)中存在的問題,將解析教學(xué)法應(yīng)用到概率論與數(shù)理統(tǒng)計(jì)課程的教學(xué)中,使學(xué)生可以有效融入到教學(xué)過程中,從而提高學(xué)生解決實(shí)際問題的能力,有利于應(yīng)用技能型人才的培養(yǎng)。
關(guān)鍵詞 解析教學(xué)法 獨(dú)立學(xué)院 概率論與數(shù)理統(tǒng)計(jì) 應(yīng)用能力
中圖分類號(hào):G424 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.16400/j.cnki.kjdkz.2018.05.049
Abstract Under the guidance of the transformation and development in the independent college, it puts forward practical strengthening according to the aim of fostering application-oriented and skill-oriented talents in the probability and statistics courses. In view of the present existing problems of probability and statistics teaching, the analytic teaching method is used in probability and statistics teaching process. Thus, students can be effectively integrated into teachers' teaching as well as students' ability to solve practical problems can be improved. It would help the training of applied skilled talents.
Keywords analytic teaching method; independent college; probability and statistics; application ability
0 引言
概率論與數(shù)理統(tǒng)計(jì)課程是獨(dú)立學(xué)院理工、經(jīng)管各專業(yè)必修的數(shù)學(xué)基礎(chǔ)課之一。該門課程一般開設(shè)在學(xué)習(xí)高等數(shù)學(xué)(微積分)和線性代數(shù)課程之后,其具有較強(qiáng)的理論性和較廣泛的應(yīng)用領(lǐng)域,在國(guó)民經(jīng)濟(jì)、工程技術(shù)、醫(yī)藥、航空航天、軍事等領(lǐng)域有著廣泛的應(yīng)用。
目前,獨(dú)立學(xué)院的學(xué)生存在基礎(chǔ)知識(shí)比較薄弱和學(xué)習(xí)積極性不高的問題,這導(dǎo)致獨(dú)立學(xué)院的學(xué)生難以適應(yīng)現(xiàn)有的概率論與數(shù)理統(tǒng)計(jì)教學(xué)方法,使得課堂教學(xué)效果不好。在獨(dú)立學(xué)院轉(zhuǎn)型和以應(yīng)用型人才培養(yǎng)目標(biāo)的背景下,如何激發(fā)學(xué)生對(duì)概率論與數(shù)理統(tǒng)計(jì)這門課程的學(xué)習(xí)興趣,以及如何培養(yǎng)學(xué)生運(yùn)用理論知識(shí)去分析、解決問題的數(shù)學(xué)應(yīng)用能力就顯得非常重要。
根據(jù)獨(dú)立學(xué)院學(xué)生的學(xué)習(xí)特點(diǎn)以及概率論與數(shù)理統(tǒng)計(jì)課程的教學(xué)現(xiàn)狀,給出一個(gè)符合“以專業(yè)需求為導(dǎo)向,以實(shí)際應(yīng)用為目的”的教學(xué)方法,使得概率論與數(shù)理統(tǒng)計(jì)的教學(xué)適合獨(dú)立學(xué)院的教學(xué)目標(biāo),是目前最值得關(guān)注的問題。解析教學(xué)法是一種將問題式教學(xué)、啟發(fā)式教學(xué)、理論式教學(xué)、討論式教學(xué)、案例式教學(xué)等教學(xué)方法融為一體的教學(xué)方法,本文將該方法應(yīng)用到概率論與數(shù)理統(tǒng)計(jì)的課堂教學(xué)中,用于解決當(dāng)前概率論與數(shù)理統(tǒng)計(jì)教學(xué)中存在的問題。
1解析教學(xué)法概述
1.1 解析教學(xué)法的本質(zhì)
解析教學(xué)法是指在學(xué)習(xí)過程中,從實(shí)際問題出發(fā),剖析求解該問題涉及的各種要素,引出問題所涉及的知識(shí)點(diǎn),然后圍繞問題講解知識(shí)點(diǎn),最后解決問題。同時(shí)建立起求解同類問題的模型,做到能夠舉一反三,達(dá)到知識(shí)的遷移和融會(huì)貫通目的。由此可以看出,解析教學(xué)法是集問題式教學(xué)、啟發(fā)式教學(xué)、理論式教學(xué)、討論式教學(xué)、案例式教學(xué)為一體的綜合性教學(xué)方法。
解析教學(xué)法對(duì)于理論知識(shí)多,教學(xué)難道較大,案例非常豐富的概率論與數(shù)理統(tǒng)計(jì)課程的教學(xué)非常適用。運(yùn)用解析教學(xué)法授課,可以更好地培養(yǎng)學(xué)生學(xué)習(xí)知識(shí)、應(yīng)用知識(shí)和創(chuàng)新能力。
1.2 解析教學(xué)法的教學(xué)目標(biāo)
解析教學(xué)法的主要教學(xué)目標(biāo)是讓學(xué)生對(duì)解決問題的知識(shí)點(diǎn)理解透徹,能夠運(yùn)用學(xué)到的知識(shí)舉一反三,可以獨(dú)立解決問題。在講授知識(shí)點(diǎn)的同時(shí),更注重培養(yǎng)學(xué)生獨(dú)立發(fā)現(xiàn)問題、分析問題及解決問題的能力,進(jìn)而提高學(xué)生的實(shí)踐和創(chuàng)新能力。
概率論與數(shù)理統(tǒng)計(jì)課程是一門應(yīng)用性極強(qiáng)的課程。學(xué)習(xí)該課程的目的是為了讓學(xué)生能夠利用概率論與數(shù)理統(tǒng)計(jì)知識(shí)解決實(shí)際問題及專業(yè)問題。因此,明確課程的教學(xué)目標(biāo),調(diào)動(dòng)學(xué)生的積極參與性將理論知識(shí)與實(shí)際問題巧妙結(jié)合,才能在學(xué)生分析問題的過程中,加深對(duì)知識(shí)點(diǎn)的記憶和理解,提升課堂教學(xué)效果。
1.3 解析教學(xué)法的組織實(shí)施過程
解析教學(xué)法和傳統(tǒng)教學(xué)法的課堂教學(xué)組織方式有很大的不同。課堂教學(xué)中采用解析教學(xué)法時(shí),通常,教學(xué)是從一個(gè)實(shí)際問題出發(fā),循序漸近的引導(dǎo)學(xué)生分析問題,引出知識(shí)點(diǎn),解決問題。同時(shí)鼓勵(lì)學(xué)生舉一反三,建立解決同類問題的模型,提高學(xué)生對(duì)知識(shí)的融會(huì)貫通能力。
因此,在實(shí)施解析法教學(xué)法的過程中,通常以“提出問題→分析問題→引出知識(shí)點(diǎn),求解問題→總結(jié)歸納→知識(shí)的融會(huì)貫通與應(yīng)用”的流程,來完成課堂的教學(xué)過程。在整個(gè)過程中,學(xué)生通過解決問題去掌握理論知識(shí)點(diǎn),進(jìn)而學(xué)會(huì)知識(shí)點(diǎn)的應(yīng)用,達(dá)到應(yīng)用型人才培養(yǎng)的目的。
2解析教學(xué)法在概率論與數(shù)理統(tǒng)計(jì)課程中的應(yīng)用探索
下面本文給出概率論與數(shù)理統(tǒng)計(jì)課程中“二項(xiàng)分布”這節(jié)內(nèi)容的具體教學(xué)設(shè)計(jì),以此來說明如何運(yùn)用解析教學(xué)法實(shí)施概率論與數(shù)量統(tǒng)計(jì)課程的課堂教學(xué)。
2.1 課堂組織教學(xué)中解析教學(xué)法的具體實(shí)施方案
在概率論與數(shù)理統(tǒng)計(jì)教學(xué)中, 穿插案例進(jìn)行教學(xué),具有使理論深入淺出,能培養(yǎng)學(xué)生學(xué)習(xí)興趣、提高學(xué)生分析問題能力等積極作用。學(xué)生通過求解實(shí)際問題讓學(xué)生掌握對(duì)應(yīng)的知識(shí)點(diǎn),提高學(xué)生的數(shù)學(xué)應(yīng)用能力,充分體現(xiàn)課堂教學(xué)過程中學(xué)生的主動(dòng)地位。
例如,在講解“二項(xiàng)分布”的概念時(shí),先提出問題:“大家知道網(wǎng)球大師賽嗎?如果網(wǎng)球大師德約科維奇和納達(dá)爾相遇,根據(jù)規(guī)則采用三盤兩勝的制,已知每盤比賽德約科維奇勝納達(dá)爾的概率為0.46,且每盤比賽的結(jié)果相互獨(dú)立,問德約科維奇勝納達(dá)爾的可能性有多大?”
問題提出后,可以讓學(xué)生分組展開討論,討論“怎樣考慮三局兩勝的概率”。討論結(jié)束后,學(xué)生代表發(fā)表不同意見并闡明原因。當(dāng)學(xué)生完成討論后,教師進(jìn)行總結(jié)歸納,并做以下分析:德約科維奇與納達(dá)爾需要比三局,才可能比出結(jié)果。要取勝,就要在三局中勝出兩局。對(duì)于每局比賽來說僅有輸、贏兩個(gè)結(jié)果。如何考慮三局中贏的可能性呢?從這里就可以引出要學(xué)習(xí)的二項(xiàng)分布的內(nèi)容了。
在二項(xiàng)分布理論知識(shí)的講解過程中,首先需要說明什么是重伯努利實(shí)驗(yàn),重點(diǎn)講清兩點(diǎn)“獨(dú)立”和“重復(fù)”。講解二項(xiàng)分布的概率計(jì)算公式,強(qiáng)調(diào)分布有兩個(gè)參數(shù)以及兩個(gè)參數(shù)的含義。由二項(xiàng)展開式簡(jiǎn)單說明概率滿足分布律的兩條性質(zhì),并給出二項(xiàng)分布判定的程序化步驟,讓學(xué)生掌握二項(xiàng)分布的判定及概率計(jì)算。
講解完二項(xiàng)分布的理論知識(shí)后,教師先舉一些簡(jiǎn)單二項(xiàng)分布的經(jīng)典例子,如“產(chǎn)品抽樣”、“射擊目標(biāo)”、“生日問題”等,說明二項(xiàng)分布的普遍性,同時(shí)啟發(fā)學(xué)生也據(jù)舉一些二項(xiàng)分布的例子。
在學(xué)生初步掌握二項(xiàng)分布的知識(shí)和簡(jiǎn)單應(yīng)用后,就可以來討論課程開始提出的“賽制分析”問題。首先要讓學(xué)生去判斷這個(gè)問題是否屬于二項(xiàng)分布,然后再去求解問題?!百愔茊栴}”解決后,可以讓學(xué)生簡(jiǎn)單地歸納一下二項(xiàng)分布的知識(shí)點(diǎn)。
最后的步驟就是二項(xiàng)分布知識(shí)的應(yīng)用和融會(huì)貫通。在這里,可以提出兩個(gè)思考題作為知識(shí)的應(yīng)用:(1)實(shí)際比賽時(shí)先贏兩局后可以不打第三局,但是二項(xiàng)分布的計(jì)算中是考慮三局輸贏情況的。那么兩者會(huì)矛盾嗎?(2)為什么比賽有不同的賽制?賽制中的局?jǐn)?shù)的確定有什么規(guī)則嗎?德約科維奇在一局比賽中贏納達(dá)爾的概率為0.46,五局三勝制和三局兩勝制,哪一種賽制對(duì)德約科維奇取勝更有利?這兩個(gè)思考題可以采用計(jì)算機(jī)模擬比賽的方法解決,模擬比計(jì)算更直觀,同時(shí)還可提高學(xué)生應(yīng)用計(jì)算機(jī)的能力,為學(xué)生參加數(shù)學(xué)建模競(jìng)賽打下良好基礎(chǔ)。
二項(xiàng)分布的知識(shí)還可以用來解決工作效率和保險(xiǎn)問題,列舉這樣的實(shí)際應(yīng)用問題可以鞏固學(xué)生對(duì)理論知識(shí)的掌握,鍛煉學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際問題的思維能力。
2.2 解析教學(xué)法的教學(xué)效果評(píng)價(jià)
用“網(wǎng)球大師賽”為背景引出二項(xiàng)分布的內(nèi)容,能夠很好地吸引學(xué)生的注意力,有效地提高了學(xué)生的學(xué)習(xí)興趣,也可以讓學(xué)生充分了解二項(xiàng)分布是在解決實(shí)際問題的過程中產(chǎn)生的,這樣使學(xué)生更深刻地認(rèn)識(shí)到數(shù)學(xué)知識(shí)來源于生活。
課程中設(shè)計(jì)的二項(xiàng)分布應(yīng)用模型,講解了如何在實(shí)際問題中判斷隨機(jī)變量是否服從二項(xiàng)分布,以及在服從二項(xiàng)分布的條件下如何求解實(shí)際問題的全過程。這些對(duì)學(xué)生掌握二項(xiàng)分布的知識(shí)很有幫助。特別是“賽制分析”應(yīng)用問題引起了學(xué)生極大興趣。學(xué)生在學(xué)習(xí)完課程后認(rèn)為,體育比賽大家經(jīng)常看,但不知道為什么不同的比賽有不同的賽制,也沒有考慮過賽制與選手實(shí)力的問題?,F(xiàn)在用概率知識(shí)給出了解答和分析確實(shí)開闊了眼界。通過提問和交流,可以看出教學(xué)過程獲得了理想的教學(xué)效果,達(dá)到了這部分知識(shí)的教學(xué)目標(biāo)。
3結(jié)束語
本文將解析教學(xué)法應(yīng)用到概率論與數(shù)量統(tǒng)計(jì)課程的教學(xué)中,這種教學(xué)方法使教師不再以“滿堂灌”的形式完成整個(gè)課堂教學(xué)環(huán)節(jié),學(xué)生在課堂中的主體地位也得到了突顯。在解決實(shí)際應(yīng)用問題時(shí),學(xué)生的理論水平和實(shí)際應(yīng)用能力都得到了提升。此外,教學(xué)中的討論環(huán)節(jié)可以鍛煉學(xué)生的溝通和團(tuán)隊(duì)協(xié)作能力,這為今后的學(xué)習(xí)和工作奠定了扎實(shí)的基礎(chǔ)。
在獨(dú)立學(xué)院轉(zhuǎn)型發(fā)展的背景下,本文對(duì)解析教學(xué)法在概率論與數(shù)理統(tǒng)計(jì)課程教學(xué)中應(yīng)用進(jìn)行了初步探討,隨著應(yīng)用型課程改革方案的不斷完善,今后的工作將圍繞解析教學(xué)法展開深入研究。
參考文獻(xiàn)
[1] 張恩路.案例教學(xué)在高職院校《概率論》教學(xué)中的研究與探索[J].課程教育研究,2016.5:116-117.
[2] 叢玉華,于梅菊,殷爍.地方高校轉(zhuǎn)型趨勢(shì)下概率論與數(shù)理統(tǒng)計(jì)課程教學(xué)改革探索與實(shí)踐[J].通化師范學(xué)院學(xué)報(bào)(自然科學(xué)),2016.37(2):83-87.
[3] 甘玲,劉達(dá)明,張璞,馮瀟.一種新的教學(xué)模式——解析教學(xué)法[J].計(jì)算機(jī)教育,2007(4):39-42.
[4] 殷爍,叢玉華,于梅菊.概率論與數(shù)理統(tǒng)計(jì)問題式教學(xué)的探索與實(shí)踐[J].科教文匯,2016.37(12):105-107.
[5] 梁瑛,吳宏鍔.轉(zhuǎn)型背景下《概率論與數(shù)理統(tǒng)計(jì)》教學(xué)的改革與實(shí)踐[J].高教學(xué)刊,2016(21):160-161.
[6] 沈雁.轉(zhuǎn)型背景下《概率論與數(shù)理統(tǒng)計(jì)》課程的教學(xué)改革研究[J].數(shù)學(xué)教育學(xué)報(bào),2010.19(6):86-88.
[7] 羅中德.轉(zhuǎn)型發(fā)展背景下新升本科院?!陡怕收撆c數(shù)理統(tǒng)計(jì)》分層教學(xué)探索[J]. 高教論壇,2016(11):47-49.
[8] 李秀珍,馬驍,左佳斌.地方本科院校轉(zhuǎn)型期概率統(tǒng)計(jì)課程內(nèi)容設(shè)計(jì)與教學(xué)模式改革[J].西安文理學(xué)院學(xué)報(bào)(社會(huì)科學(xué)版),2015(2):110-113.