国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于課程標(biāo)準(zhǔn)的計算思維教學(xué)實踐路徑

2020-08-09 08:55陳棟
中國信息技術(shù)教育 2020年16期
關(guān)鍵詞:數(shù)據(jù)處理課程標(biāo)準(zhǔn)解決問題

陳棟

《普通高中信息技術(shù)課程標(biāo)準(zhǔn)(2017年版)》(以下簡稱課程標(biāo)準(zhǔn))發(fā)布后,計算思維已成為一線教師教學(xué)中的一個關(guān)注點。但在具體的教學(xué)實踐中,有的教師把和計算機教學(xué)有關(guān)的內(nèi)容全都放進計算思維這個“籃子”里,計算思維被泛化了;還有的教師則把計算思維等同于編程,計算思維被狹隘化了。筆者認(rèn)為,作為一線教師,應(yīng)正確理解計算思維,并將計算思維落實到具體的教學(xué)中。

● 一線教學(xué)中對計算思維的誤解

計算思維是指個體運用計算機科學(xué)領(lǐng)域的思想方法,在形成問題解決方案的過程中產(chǎn)生的一系列思維活動。分析以上定義可知:首先,計算思維是一種是思維活動;其次,它是在形成問題解決方案的過程中產(chǎn)生的;最后,解決問題所使用的思想方法是在計算科學(xué)領(lǐng)域內(nèi)的。該定義非常清晰地將計算思維同知識、技能區(qū)分開來,明確它是建立在學(xué)習(xí)知識和技能基礎(chǔ)之上的一種思維方式;該定義又明確地將計算思維同其他的思維,如實證思維、邏輯思維、數(shù)學(xué)思維和工程思維等區(qū)分開來,指明它是在計算機科學(xué)領(lǐng)域內(nèi)獨特的思維方式。

因此,教師可以按照以上定義對計算思維進行簡單判別。在解決問題的過程中,如果沒有使用計算機科學(xué)領(lǐng)域的思想方法,一般就與計算思維關(guān)系不大;而直接或間接地運用計算機科學(xué)領(lǐng)域的思想方法,經(jīng)歷問題解決的過程,則可以判斷計算思維在發(fā)生。

但是,這種發(fā)生能否轉(zhuǎn)變?yōu)榻處熢诮虒W(xué)中對學(xué)生計算思維的有意識培養(yǎng),則和一線教師對計算思維的認(rèn)識和解讀相關(guān)。在現(xiàn)實教學(xué)中,教師對計算思維常有兩類誤解。

1.計算思維被泛化

不少教師誤認(rèn)為,讓學(xué)生使用計算機、數(shù)字化工具及信息系統(tǒng)等解決實際問題,就是培養(yǎng)學(xué)生的計算思維。

案例1:在某節(jié)課上,教師讓學(xué)生使用植物識別APP識別某山區(qū)的植被,然后使用電子表格軟件記錄和統(tǒng)計數(shù)據(jù),同時繪制山區(qū)植被的分布圖并標(biāo)明類型,從而學(xué)習(xí)電子表格的使用方法。

在案例1中,學(xué)生的學(xué)習(xí)活動的確是應(yīng)用計算機解決問題,可在課堂上由于教師的教學(xué)重點放在如何使用APP、如何利用電子表格軟件等操作技能的學(xué)習(xí)和應(yīng)用上,所以學(xué)生在解決這一問題的完整過程中,雖然涵蓋了觀察、數(shù)據(jù)收集、分析、歸納的過程,但其解決問題的思想方法主要是觀察法,并未使用計算機科學(xué)領(lǐng)域的思想方法,計算思維并未發(fā)生。但如果在教學(xué)過程中,引導(dǎo)學(xué)生在使用電子表格的同時,思考、分析要解決的問題,抽象出解決這個統(tǒng)計問題的模型,設(shè)計方案細化操作步驟和公式,完成步驟及運算,就可以培養(yǎng)學(xué)生的計算思維。又如,如果在教學(xué)過程中,引導(dǎo)學(xué)生探究植物識別APP能識別樹木背后的工作原理,思考如何進行特征提取、卷積運算、特征分類、分類器訓(xùn)練等實現(xiàn)識別的過程,也可以培養(yǎng)學(xué)生的計算思維。

2.計算思維被狹隘化

不少教師誤認(rèn)為,即使是解決實際問題,但如果沒有使用計算機、數(shù)字化工具及信息系統(tǒng)等,也無法培養(yǎng)學(xué)生的計算思維。

案例2:在教學(xué)進制換算的某節(jié)課上,引導(dǎo)學(xué)生做手指游戲:首先,伸出一個手掌比劃五根手指,讓學(xué)生表示10以內(nèi)數(shù)字的傳統(tǒng)指法;然后,組織學(xué)生思考、討論如何用五根手指依次表述連續(xù)更多的自然數(shù)。在教學(xué)中,根據(jù)班級整體情況,有時提示伸出幾個手指表示對應(yīng)的某幾個數(shù),有時不提醒。學(xué)生感覺很神奇,僅僅靠一只手就連續(xù)數(shù)出了0~31。學(xué)生在腦海中快速形成手指彎曲和伸直時的兩種狀態(tài),確認(rèn)數(shù)碼是0或1,基數(shù)是2,然后依次伸縮手指,確定位權(quán),合計得出某個二進制手形是十進制31以內(nèi)的某個數(shù)字。

在案例2中,雖然沒有使用數(shù)字化工具,但學(xué)生的計算思維得到了有效的培養(yǎng)。

● 計算思維教學(xué)實踐的方法路徑

對一線教師而言,正確理解了計算思維之后,還需要掌握一定的方法路徑,據(jù)此開展計算思維教學(xué)的實踐。

依據(jù)課程標(biāo)準(zhǔn),計算思維的內(nèi)涵是“在信息活動中,能夠采用計算機科學(xué)領(lǐng)域的思想方法界定問題、抽象特征、建立結(jié)構(gòu)模型、合理組織數(shù)據(jù);通過判斷、分析與綜合各種信息資源,運用合理的算法形成解決問題的方案;總結(jié)利用計算機解決問題的過程與方法,并遷移到與之相關(guān)的其他問題解決中”;計算思維的表現(xiàn)形式為“解決問題過程中的形式化、模型化、自動化、系統(tǒng)化”。課程標(biāo)準(zhǔn)從解決實際問題的角度揭示了計算思維的本質(zhì)和特征。因此,在教學(xué)中,教師可以根據(jù)計算思維的內(nèi)涵,分析其對應(yīng)的信息技術(shù)教學(xué)內(nèi)容,將計算思維發(fā)生過程中的問題界定、特征抽象、模型構(gòu)建、數(shù)據(jù)組織、算法設(shè)計、方案實施、應(yīng)用遷移等操作性的、成系列遞進的關(guān)鍵思想方法融入教學(xué)。

結(jié)合教學(xué)實踐,筆者構(gòu)建出如上圖所示的在信息活動中問題求解的計算思維過程。在教學(xué)中,教師可以引導(dǎo)學(xué)生采用從形式化、模型化、自動化到系統(tǒng)化的方法路徑來解決實際問題,讓學(xué)生在解決問題的過程中自然地發(fā)生計算思維,逐步發(fā)展計算思維。

1.形式化

李鋒等在課程標(biāo)準(zhǔn)解讀中指出,“形式化”是指在信息活動中能夠采用計算機可以處理的方式界定問題,抽象關(guān)鍵要素,分析要素間的關(guān)系。結(jié)合課程標(biāo)準(zhǔn),教師可以對“形式化”作如下理解:學(xué)生在信息活動中找出解決問題的關(guān)鍵對象;分析關(guān)鍵對象之間的聯(lián)系、結(jié)構(gòu),忽略其中不相關(guān)的細節(jié);提取關(guān)鍵對象的屬性、規(guī)則等特征,在此過程中逐步用約定、規(guī)范的符號或語言清晰地表達問題。

2.模型化

“模型化”可以理解為“建立結(jié)構(gòu)模型、合理組織數(shù)據(jù);通過判斷、分析與綜合各種信息資源,運用合理的算法形成解決問題的方案”。為什么形成方案也納入了“模型化”?“模型化”中的解決問題的方案,一是指尚處于“算法”過程中的方案,尚未實施“自動化”,還未成為“編程語言”或“數(shù)字化工具”使用過程中的方案;二是指“算法”過程中的方案,尚屬于高級的“結(jié)構(gòu)模型”。計算思維的模型構(gòu)建,不同于數(shù)學(xué)模型和物理模型,一般是建立在數(shù)學(xué)模型基礎(chǔ)上,偏重數(shù)據(jù)組織、形成算法結(jié)構(gòu)或解決方案的數(shù)據(jù)模型。

結(jié)合這些觀點,教師可以將“模型化”作如下理解:在問題“形式化”基礎(chǔ)上,選擇已有解決問題的模型或者設(shè)計新模型,并根據(jù)該模型組織數(shù)據(jù),判斷、分析、綜合信息,在此過程中從建立結(jié)構(gòu)模型發(fā)展至形成解決問題的完整方案。這里提到的模型主要指有結(jié)構(gòu)的算法或方案。

3.自動化

生活中無處不在的解決問題的“自動化”裝置——數(shù)字化工具,其背后的本質(zhì)就是自動化。李鋒等在課程標(biāo)準(zhǔn)解讀中指出,“自動化”是探究利用信息技術(shù)解決問題的過程與方法,實現(xiàn)解決問題方案的自動化運行。在中小學(xué)信息技術(shù)學(xué)科中,“自動化”側(cè)重表達了計算思維的技術(shù)特征,一線教師對自動化的初始理解可以先放在數(shù)字化工具的自動化運行層面,隨著認(rèn)識的提升再進一步接觸其本質(zhì)的描述。需要注意的是,課程標(biāo)準(zhǔn)中提到的對信息加工的“工具”、選擇適當(dāng)?shù)摹肮ぞ摺?,這個出現(xiàn)頻繁的“工具”,一般就是指解決問題的“數(shù)字化工具”。

解月光在課程標(biāo)準(zhǔn)解讀中,對“自動化”有著詳細的詮釋:“自動化”是“指在把握信息系統(tǒng)運行規(guī)律的基礎(chǔ)上,通過操作數(shù)字化工具,使相應(yīng)的信息設(shè)備、信息系統(tǒng)或信息運算過程按照人的要求,經(jīng)過自動檢測、信息處理、分析判斷、操縱控制等過程,實現(xiàn)預(yù)期目標(biāo),并通過迭代的方法對其(處理流程)進行不斷完善和逐步優(yōu)化”。

4.系統(tǒng)化

李鋒等在課程標(biāo)準(zhǔn)解讀中,指出“系統(tǒng)化”是形成解決問題的系統(tǒng)過程,將其遷移到與之相關(guān)的其他問題解決中。值得注意的是,“系統(tǒng)化”中的“遷移”特別重要,通過教學(xué),期望學(xué)生能將計算思維解決問題的能力遷移至其他領(lǐng)域,形成創(chuàng)新、創(chuàng)造,不斷發(fā)展計算思維。

結(jié)合課程標(biāo)準(zhǔn),教師可以將“系統(tǒng)化”作如下理解:歸類、整理、加工從“形式化”“模型化”到“自動化”形成的計算機解決問題的過程與方法,集中成為優(yōu)化的有機整體,并能夠進行過程和方法的遷移,形成解決同類或相關(guān)性質(zhì)問題的通用或創(chuàng)新方案。

● 數(shù)據(jù)處理與應(yīng)用中的計算思維教學(xué)實踐

從形式化、模型化、自動化到系統(tǒng)化,這一方法路徑體現(xiàn)了計算思維的本質(zhì),反映了計算機學(xué)科解決問題特有的思路,為計算思維教學(xué)實踐提供了抓手。鑒于使用編程語言解決實際問題的計算思維教學(xué)實例很多,一線教師的研究比較普遍,本文不以編程為例,而以用數(shù)據(jù)處理工具解決停車收費管理問題的項目來舉例。

項目:調(diào)查某個居民小區(qū)停車收費管理情況,幫助物業(yè)實現(xiàn)停車費的自動計算和繳費統(tǒng)計工作(本項目活動選自滬科教版《信息技術(shù) 必修1 數(shù)據(jù)與計算》)。

1.學(xué)習(xí)目標(biāo)

根據(jù)真實的任務(wù)需求,選用恰當(dāng)?shù)能浖ぞ呋蚱脚_對數(shù)據(jù)進行整理、組織、計算與呈現(xiàn),發(fā)展學(xué)生利用信息技術(shù)解決實際問題的能力。

2.教學(xué)過程建議

環(huán)節(jié)一:分析問題。

活動內(nèi)容:(1)交流課前了解的本小區(qū)停車收費情況,或了解教師提供的真實生活中一些居民小區(qū)停車收費典型案例(如某小區(qū)所有車輛統(tǒng)一按停留時長收費,或某小區(qū)固定車位業(yè)主按月繳費,臨停車輛按停留時長收費)。(2)選擇某一個小區(qū),準(zhǔn)確地描述要解決的具體問題,并進行需求分析,將問題分解為若干個求解步驟,如①明確要解決的子問題——計算停車費和統(tǒng)計分析繳費數(shù)據(jù),②確定數(shù)據(jù)需求(需要采集的數(shù)據(jù)及數(shù)據(jù)來源),③選擇數(shù)據(jù)處理工具、平臺或編程工具,④處理數(shù)據(jù)(數(shù)據(jù)的加工、分析和可視化),⑤檢查數(shù)據(jù)處理結(jié)果并完成數(shù)據(jù)分析報告。

計算思維——形式化:針對生活中的具體問題進行需求分析,分解和界定問題,這就是形式化思考。學(xué)生需要從真實的項目情境中找出問題,并分解問題,即將數(shù)據(jù)、過程或問題轉(zhuǎn)化為若干個更小的、易于解決的部分,并抽象出解決這類問題的具體步驟。例如,學(xué)生會分析解決小區(qū)停車收費管理問題,開展如下的思維活動:思考該問題可以分解為哪幾個由計算機解決的子問題,解決各個子問題分別需要哪些必要的數(shù)據(jù)、哪些具體的步驟,等等。

環(huán)節(jié)二:準(zhǔn)備和組織數(shù)據(jù),設(shè)計數(shù)據(jù)處理方案。

活動內(nèi)容:(1)根據(jù)數(shù)據(jù)需求采集或準(zhǔn)備數(shù)據(jù),并以關(guān)系表的形式組織數(shù)據(jù),設(shè)計二維數(shù)據(jù)表,如停車費計算表和繳費統(tǒng)計表。(2)從計算機解決問題的角度將解決問題的步驟進行抽象,形成數(shù)據(jù)處理方案,如建立計算停車費的模型和統(tǒng)計繳費情況的模型,列出相關(guān)的計算公式和步驟。

計算思維——模塊化:組織數(shù)據(jù),梳理數(shù)據(jù)之間的邏輯關(guān)系,將其構(gòu)建為一個簡單的數(shù)據(jù)模型(二維表),這就是模塊化建構(gòu);對常規(guī)的問題求解步驟進行模型抽象,列出計算機自動解決問題的操作步驟,列出具體的數(shù)據(jù)計算公式,這也是計算思維的模型化表現(xiàn)。在本環(huán)節(jié)中,學(xué)生把實際問題的解決抽象并轉(zhuǎn)化為一些常量和變量、對象、運算符、函數(shù)和公式等,構(gòu)建起一個數(shù)據(jù)模型。

環(huán)節(jié)三:實施數(shù)據(jù)處理。

活動內(nèi)容:(1)選擇適當(dāng)?shù)臄?shù)據(jù)處理工具(如Excel),創(chuàng)建并輸入數(shù)據(jù)表。(2)利用數(shù)據(jù)處理工具提供的相關(guān)功能(如公式、函數(shù))設(shè)置操作命令,對數(shù)據(jù)進行加工和分析。(3)對自動得出的數(shù)據(jù)處理結(jié)果進行檢查和驗證。

計算思維——自動化:在本環(huán)節(jié)中學(xué)生將解決問題的思路通過數(shù)據(jù)處理工具固化下來,形成有效且完整的操作步驟,實現(xiàn)了問題解決方案的自動運行。特別是在檢查和驗證數(shù)據(jù)處理結(jié)果的時候,學(xué)生通過不斷改變輸入數(shù)據(jù),按照同樣的操作步驟得到數(shù)據(jù)處理結(jié)果,根據(jù)結(jié)果驗證、優(yōu)化自己的實施方案,切實體驗自動化,發(fā)展計算思維。

環(huán)節(jié)四:總結(jié)與拓展,并進行問題遷移。

活動內(nèi)容:(1)歸納解決該問題的一般過程。(2)嘗試解決一個教師給定的類似問題,如采集數(shù)據(jù),計算全班學(xué)生的身高體重指數(shù),分析班級學(xué)生的健康情況。(3)思考與交流還可以遷移解決哪些問題。

計算思維——系統(tǒng)化:將利用計算機學(xué)科的知識和方法來解決問題的過程進行整理、歸納,以解決更多的類似問題,或遷移至相關(guān)的其他問題解決中,這就是系統(tǒng)化實現(xiàn)。

在以上案例中,教師借助真實的問題情境,引導(dǎo)學(xué)生對問題進行分解和抽象,然后構(gòu)造合理的模型,并設(shè)計適當(dāng)?shù)膯栴}解決方案并加以實現(xiàn),最后引導(dǎo)學(xué)生遷移問題,促進了學(xué)生計算思維的形成和發(fā)展。

猜你喜歡
數(shù)據(jù)處理課程標(biāo)準(zhǔn)解決問題
廣州市教育局邀請專家深入解讀《義務(wù)教育勞動課程標(biāo)準(zhǔn)》
淺談列方程解決問題
“解決問題的策略:一一列舉”教學(xué)實錄與反思
電容式傳感系統(tǒng)數(shù)據(jù)處理電路的設(shè)計
基于ARCGIS 的三種數(shù)據(jù)處理方法的效率對比研究
關(guān)于開辟版塊答疑解惑的通知
高層建筑沉降監(jiān)測數(shù)據(jù)處理中多元回歸分析方法的應(yīng)用研究
高層建筑沉降監(jiān)測數(shù)據(jù)處理中多元回歸分析方法的應(yīng)用研究
兩只想打架的熊
新課程標(biāo)準(zhǔn)下的計算教學(xué)怎樣教更有效