曾小玲
摘要:對(duì)某些問(wèn)題的解答,許多學(xué)生感到困難,并不是因?yàn)檫@些問(wèn)題的解答太難以致學(xué)生無(wú)法解決,而是其思維形式或結(jié)果與具體問(wèn)題的解決存在著差異。也就是說(shuō),這時(shí)候,學(xué)生的數(shù)學(xué)思維存在著障礙,這種思維障礙,有的是來(lái)自于我們教學(xué)中的疏漏,而更多的則來(lái)自于學(xué)生自身,來(lái)自于學(xué)生中存在的非科學(xué)的知識(shí)結(jié)構(gòu)和思維模式。
關(guān)鍵詞:數(shù)學(xué)思維 思維障礙 高中學(xué)生
思維是人腦對(duì)客觀現(xiàn)實(shí)的概括和間接的反映,反映的是事物的本質(zhì)及內(nèi)部的規(guī)律性。所謂高中學(xué)生數(shù)學(xué)思維,是指學(xué)生在對(duì)高中數(shù)學(xué)感性認(rèn)識(shí)的基礎(chǔ)上,運(yùn)用比較、分析、綜合、歸納、演繹等思維的基本方法,理解并掌握高中數(shù)學(xué)內(nèi)容而且能對(duì)具體的數(shù)學(xué)問(wèn)題進(jìn)行推論與判斷,從而獲得對(duì)高中數(shù)學(xué)知識(shí)本質(zhì)和規(guī)律的認(rèn)識(shí)能力。高中數(shù)學(xué)課堂上,有不少問(wèn)題的解答,其原因就是思維形式或結(jié)果與具體問(wèn)題的解決存在著差異,即學(xué)生的數(shù)學(xué)思維存在著障礙。因此,研究高中學(xué)生的數(shù)學(xué)思維障礙,對(duì)于增強(qiáng)高中學(xué)生數(shù)學(xué)教學(xué)的針對(duì)性和實(shí)效性有十分重要的意義。
一、高中學(xué)生數(shù)學(xué)思維障礙的表現(xiàn)形式
根據(jù)教學(xué)經(jīng)歷,認(rèn)真分析學(xué)生的解題信息,結(jié)合心理學(xué)原理,從思維的角度對(duì)高中學(xué)生解數(shù)學(xué)題的思維障礙因素進(jìn)行剖析。由于高中數(shù)學(xué)思維障礙產(chǎn)生的原因不盡相同,作為主體的學(xué)生的思維習(xí)慣、方法也都有所區(qū)別,所以,高中數(shù)學(xué)思維障礙的表現(xiàn)各異,具體的可以概括為:
1.思維的模糊性,造成分析的片面性
審題為分析限定了思維的范圍和方向;聯(lián)想為分析提供了感性材料;分析以審題和聯(lián)想為基礎(chǔ),審題與聯(lián)想中的思維缺陷必然會(huì)影響分析的科學(xué)進(jìn)行,成為分析的心理障礙,在審題中若題目涉及的知識(shí)概念不明確就會(huì)造成思維的模糊、思維的方向不明,這勢(shì)必影響聯(lián)想的展開,從而造成分析的不全面,易犯以偏概全的錯(cuò)誤。
2.思維的封閉性,造成分析的單一型
遇到較為復(fù)雜或綜合性較強(qiáng)的題目,由于其內(nèi)部成分多、關(guān)系復(fù)雜,分析時(shí)就要運(yùn)用多角度的思維,即對(duì)題中成分和關(guān)系作多指向、多種方式的分析,以揭示出題目中復(fù)雜的關(guān)系。思維能力較差的學(xué)生習(xí)慣于用單一思維來(lái)分析題目,用一條思維路線、從一個(gè)思維角度處理問(wèn)題,往往缺乏合理解題的能力。
3.非變通思維造成分析斷路
變通性是思維活動(dòng)不僵化,能夠隨機(jī)應(yīng)變、觸類旁通、靈活解題。就一般而言,學(xué)生思維的依賴性較明顯,分析思維還處于初級(jí)和經(jīng)驗(yàn)階段,變通問(wèn)題的能力還不強(qiáng)。若沒(méi)有相應(yīng)的解題模式的借鑒、摹仿就會(huì)造成分析斷路。
由此可見,學(xué)生數(shù)學(xué)思維障礙的形成,不僅不利于學(xué)生數(shù)學(xué)思維的進(jìn)一步發(fā)展,而且也不利于學(xué)生解決數(shù)學(xué)問(wèn)題能力的提高。所以,在平時(shí)的數(shù)學(xué)教學(xué)中注重突破學(xué)生的數(shù)學(xué)思維障礙就顯得尤為重要。
二、高中學(xué)生數(shù)學(xué)思維障礙的突破
1.教師要了解和掌握學(xué)生的基礎(chǔ)知識(shí)情況
在高中數(shù)學(xué)起始教學(xué)中,教師必須著重了解和掌握學(xué)生的基礎(chǔ)知識(shí)狀況,尤其在講解新知識(shí)時(shí),要嚴(yán)格遵循學(xué)生認(rèn)知發(fā)展的階段性特點(diǎn),照顧到學(xué)生認(rèn)知水平的個(gè)性差異,強(qiáng)調(diào)學(xué)生的主體意識(shí),發(fā)展學(xué)生的主動(dòng)精神,培養(yǎng)學(xué)生良好的意志品質(zhì);同時(shí)要培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。興趣是最好的老師,學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)有了興趣,才能產(chǎn)生數(shù)學(xué)思維的興奮灶,也就是更大程度地預(yù)防學(xué)生思維障礙的產(chǎn)生。教師可以幫助學(xué)生進(jìn)一步明確學(xué)習(xí)的目的性,針對(duì)不同學(xué)生的實(shí)際情況,因材施教,分別給他們提出新的更高的奮斗目標(biāo),使學(xué)生有一種“跳一跳,就能摸到桃”的感覺,提高學(xué)生學(xué)好高中數(shù)學(xué)的信心。
如高一年級(jí)學(xué)生剛進(jìn)校時(shí),一般我們都要復(fù)習(xí)一下二次函數(shù)的內(nèi)容,而二次函數(shù)中最大、最小值尤其是含參數(shù)的二次函數(shù)的最大、小值的求法學(xué)生普遍感到比較困難,為此我作了如下題型設(shè)計(jì),對(duì)突破學(xué)生的這個(gè)難點(diǎn)問(wèn)題有很大的幫助,而且在整個(gè)操作過(guò)程中,學(xué)生普遍(包括基礎(chǔ)差的學(xué)生)情緒亢奮,思維始終保持活躍。設(shè)計(jì)如下:
(1)求出下列函數(shù)在x∈[0,3]時(shí)的最大、最小值:①y=(x-1)2+1,②y=(x+1)2+1,③y=(x-4)2+1
(2)求函數(shù)y=x2-2ax+a2+2,x∈[0,3]時(shí)的最小值。
(3)求函數(shù)y=x2-2x+2,x∈[t,t+1]的最小值。
上述設(shè)計(jì)層層遞進(jìn),每做完一題,適時(shí)指出解決這類問(wèn)題的要點(diǎn),大大地調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,提高了課堂效率。
2.重視數(shù)學(xué)思想方法的教學(xué),指導(dǎo)學(xué)生提高數(shù)學(xué)意識(shí)
數(shù)學(xué)意識(shí)是學(xué)生在解決數(shù)學(xué)問(wèn)題時(shí)對(duì)自身行為的選擇,它既不是對(duì)基礎(chǔ)知識(shí)的具體應(yīng)用,也不是對(duì)應(yīng)用能力的評(píng)價(jià),數(shù)學(xué)意識(shí)是指學(xué)生在面對(duì)數(shù)學(xué)問(wèn)題時(shí)該做什么及怎么做,至于做得好壞,當(dāng)屬技能問(wèn)題,有時(shí)一些技能問(wèn)題不是學(xué)生不懂,而是不知怎么做才合理,有的學(xué)生面對(duì)數(shù)學(xué)問(wèn)題,首先想到的是套哪個(gè)公式,模仿哪道做過(guò)的題目求解,對(duì)沒(méi)見過(guò)或背景稍微陌生一點(diǎn)的題型便無(wú)從下手,無(wú)法解決,這是數(shù)學(xué)意識(shí)落后的表現(xiàn)。數(shù)學(xué)教學(xué)中,在強(qiáng)調(diào)基礎(chǔ)知識(shí)的準(zhǔn)確性、規(guī)范性、熟練程度的同時(shí),我們應(yīng)該加強(qiáng)數(shù)學(xué)意識(shí)教學(xué),指導(dǎo)學(xué)生以意識(shí)帶動(dòng)雙基,將數(shù)學(xué)意識(shí)滲透到具體問(wèn)題之中。
3.誘導(dǎo)學(xué)生暴露其原有的思維框架,消除思維定勢(shì)的消極作用
在高中數(shù)學(xué)教學(xué)中,我們不僅僅是傳授數(shù)學(xué)知識(shí),培養(yǎng)學(xué)生的思維能力也應(yīng)是我們的教學(xué)活動(dòng)中相當(dāng)重要的一部分。而誘導(dǎo)學(xué)生暴露其原有的思維框架,包括結(jié)論、例證、推論等對(duì)于突破學(xué)生的數(shù)學(xué)思維障礙會(huì)起到極其重要的作用。
使學(xué)生暴露觀點(diǎn)的方法很多。例如,教師可以與學(xué)生談心的方法,可以用精心設(shè)計(jì)的診斷性題目,事先了解學(xué)生可能產(chǎn)生的錯(cuò)誤想法,要運(yùn)用延遲評(píng)價(jià)的原則,即待所有學(xué)生的觀點(diǎn)充分暴露后,再提出矛盾,以免暴露不完全,解決不徹底。有時(shí)也可以設(shè)置疑難,展開討論,疑難問(wèn)題引人深思,選擇學(xué)生不易理解的概念,不能正確運(yùn)用的知識(shí)或容易混淆的問(wèn)題讓學(xué)生討論,從錯(cuò)誤中引出正確的結(jié)論,這樣學(xué)生的印象特別深刻。而且通過(guò)暴露學(xué)生的思維過(guò)程,能消除消極的思維定勢(shì)在解題中的影響。當(dāng)然,為了消除學(xué)生在思維活動(dòng)中只會(huì)“按部就班”的傾向,在教學(xué)中還應(yīng)鼓勵(lì)學(xué)生進(jìn)行求異思維活動(dòng),培養(yǎng)學(xué)生善于思考、獨(dú)立思考的方法,不滿足于用常規(guī)方法取得正確答案,而是多嘗試、探索最簡(jiǎn)單、最好的方法解決問(wèn)題的習(xí)慣,發(fā)展思維的創(chuàng)造性也是突破學(xué)生思維障礙的一條有效途徑。
總之,教師要善于研究和分析學(xué)生解題障礙的表面信息,從而洞察到學(xué)生解題的真正的障礙因素,在此基礎(chǔ)上,有針對(duì)性地干預(yù)、指導(dǎo),定能突破障礙。