国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

“頓悟”,盡顯數(shù)學(xué)教學(xué)的“美麗”

2016-09-10 07:22楊昌蘭
關(guān)鍵詞:提高初中數(shù)學(xué)

楊昌蘭

[摘 要] 初中數(shù)學(xué)知識(shí)的難度開始逐漸加深,這對(duì)學(xué)生的學(xué)習(xí)能力也提出了更高的要求. 怎樣提高學(xué)生的學(xué)習(xí)效率是初中數(shù)學(xué)教育的重要任務(wù). 筆者在課堂上使用了“頓悟”的方法對(duì)學(xué)生進(jìn)行思維的啟發(fā),希望借此能夠有效提高學(xué)生的學(xué)習(xí)效率,讓學(xué)生在日常的解題過程中能夠迅速找到突破口,提高自己的做題速度.

[關(guān)鍵詞] 初中數(shù)學(xué);頓悟;提高

所謂“頓悟”教學(xué)法,就是在課堂上的知識(shí)講解中將學(xué)生的思維進(jìn)行有效的訓(xùn)練,使其對(duì)習(xí)題的解決方式更加迅速簡(jiǎn)便,降低學(xué)生的錯(cuò)誤發(fā)生率. 目前,在學(xué)生的習(xí)題練習(xí)中普遍存在著思路狹窄、易出錯(cuò)等現(xiàn)象,這除了與其課堂學(xué)習(xí)的效率有關(guān)之外,還和學(xué)生的數(shù)學(xué)思考能力的高低分不開. 因此,筆者在初中生的課堂教學(xué)中使用了“頓悟”教學(xué)法,為提高學(xué)生的思維能力打下了扎實(shí)的基礎(chǔ).

聚焦思路,讓學(xué)生在課本中頓悟

作為初中的數(shù)學(xué)教師,不能只將目光放在學(xué)生的數(shù)學(xué)成績(jī)的高低上,還要注意學(xué)生的學(xué)習(xí)方法和學(xué)習(xí)能力的應(yīng)用. “頓悟”教學(xué)法的優(yōu)點(diǎn)是可以使學(xué)生在數(shù)學(xué)學(xué)習(xí)中減少錯(cuò)誤的發(fā)生,提升做題的速度. 學(xué)生在課堂上的學(xué)習(xí)中,普遍存在著照搬例題思路的現(xiàn)象,缺乏利用課本中的知識(shí)去思考解題的能力,這對(duì)學(xué)生來說并沒有起到有效的學(xué)習(xí)效果,反而會(huì)因?yàn)闀r(shí)間的推移,使學(xué)生很快就會(huì)忘記課本中的知識(shí). 筆者在課堂上立足于課本的講解,給予學(xué)生頓悟的點(diǎn)撥,使其加深了理解.

例如,人教版初中數(shù)學(xué)七年級(jí)上冊(cè)《一元一次不等式方程》一課中,本節(jié)課是初中知識(shí)的基礎(chǔ),只有掌握好本課的內(nèi)容才能為今后的不等式方程相關(guān)知識(shí)打好基礎(chǔ). 但是由于知識(shí)的難度略有增加,使學(xué)生有些理解上的難度阻礙. 對(duì)于習(xí)題的解答只能是套取例題上的解答方法,但是如果讓其分析解答思路過程,能正確回答的卻是少數(shù). 針對(duì)這種情況,筆者將問題回歸課本,將習(xí)題的思路進(jìn)行了詳細(xì)的解讀,讓學(xué)生能在例題中頓悟,并且在今后的解題中提升解題速度.

例 某醫(yī)院每個(gè)月平均產(chǎn)生醫(yī)療垃圾1400斤,分別交由城市的東、西兩家垃圾處理廠進(jìn)行處理. 已知東區(qū)的垃圾處理廠每天可以處理垃圾110斤,處理費(fèi)用為1100元. 西區(qū)的垃圾處理廠每天可以處理垃圾90斤,處理費(fèi)用為990元. 請(qǐng)問:(1)兩家合作來處理該醫(yī)院的垃圾,需要多久時(shí)間?(2)如果要求每個(gè)月的費(fèi)用不能超過14740元,那么甲廠每月處理垃圾至少多少天?學(xué)生在解決這道題的時(shí)候?qū)Ψ匠淌降暮x理解還不夠準(zhǔn)確,只是憑著例題的解題方法去效仿. 筆者在設(shè)東區(qū)為x,西區(qū)為(1400-x)后,列出不等式×1100+×990≤14740,對(duì)學(xué)生存在疑問的等號(hào)兩邊的式子進(jìn)行了詳解,讓學(xué)生通過實(shí)際問題頓悟出不等式的解題原理,找到其與正常的一元一次方程的相似點(diǎn),提高了學(xué)生理解的速度,避免了學(xué)生只是套用例題及公式的弊病出現(xiàn).

初中學(xué)生雖然思維能力較小學(xué)階段得到了很大的提高,但是其還存在著很多的不足之處,對(duì)問題的分析需要教師進(jìn)行及時(shí)的點(diǎn)撥. 因此,我們?cè)谌粘5慕虒W(xué)中不能盲目追求學(xué)生做習(xí)題的數(shù)量,而是要對(duì)問題的原理講解清楚,做到寧缺毋濫.

細(xì)致入微,讓學(xué)生在詞語中頓悟

幾何知識(shí)是靠定義來支撐的,定義也是學(xué)生學(xué)習(xí)的基礎(chǔ). 幾何中的定義是根據(jù)科學(xué)家多次的驗(yàn)證而成,內(nèi)容精簡(jiǎn)明確,但是由于幾何知識(shí)的繁雜,圖形之間的變幻比較抽象,有些詞語如果學(xué)生不能夠認(rèn)真去分析,那么極容易將定義之間的關(guān)系混淆,這會(huì)嚴(yán)重影響學(xué)生對(duì)知識(shí)的鞏固與發(fā)揮效果. 筆者在日常的數(shù)學(xué)課堂教學(xué)中,對(duì)定義進(jìn)行了詳細(xì)的講解,力求精確到每個(gè)字的分析,讓看似多余的行為在學(xué)生的日常思考中發(fā)揮作用,降低學(xué)生對(duì)定義模糊不清而影響知識(shí)的理解率.

例如,人教版初中數(shù)學(xué)八年級(jí)下《平行四邊形》一課中,概念也較抽象,增加了學(xué)生理解的難度. 筆者在講課結(jié)束后,對(duì)學(xué)生進(jìn)行了提問:兩個(gè)完全一樣的三角形可以拼成一個(gè)什么形?學(xué)生很快就回答出是平行四邊形. 筆者趁熱打鐵,又提出了一個(gè)相似的問題:已知三角形ABC與三角形XYZ的底邊長(zhǎng)度相等,二者的高BD與高YV的高度也相等. 那么,請(qǐng)同學(xué)們思考一下三角形ABC與三角形XYZ能組成一個(gè)平行四邊形嗎?這個(gè)問題提出后,大部分學(xué)生很快就達(dá)成了一致的答案,認(rèn)為這兩個(gè)三角形可以組成一個(gè)平行四邊形;而只有少數(shù)的學(xué)生認(rèn)為這是不可能的. 為了讓學(xué)生頓悟此題的關(guān)鍵所在,筆者將定義寫在了黑板上,并在定義中“完全一樣”的字眼下做了標(biāo)注. 并要求學(xué)生進(jìn)行重新的思考與論證,一些理解能力較強(qiáng)的學(xué)生很快就思考出問題的答案,顯然這道題多數(shù)人的答案是錯(cuò)誤的. 相同的底長(zhǎng)和相同的高的兩個(gè)三角形,并不一定能組成平行四邊形,因?yàn)槎卟⒉灰欢ㄊ莾蓚€(gè)“完全相同的”三角形. 同樣,筆者又提出了新的問題:兩個(gè)面積相同的三角形是否符合此定義呢?在筆者的點(diǎn)撥下,學(xué)生頓悟了此定義中的具體詞語的含義,避免了在今后的學(xué)習(xí)中,因?yàn)榇爽F(xiàn)象而導(dǎo)致的思維錯(cuò)誤. 筆者的詞語頓悟教學(xué)法有效提高了學(xué)生的課堂學(xué)習(xí)效率.

知識(shí)的學(xué)習(xí)并不是一朝一夕就能完成的,需要學(xué)生打好每一步基礎(chǔ). 這對(duì)學(xué)生的認(rèn)真程度提出了很高的要求,頓悟法的目的就是讓學(xué)生對(duì)知識(shí)及問題有突破性、及時(shí)性的理解,可以很快地提高學(xué)生的做題效率,避免了因重復(fù)驗(yàn)證而耽誤時(shí)間.

以一推百,讓學(xué)生在體系中頓悟

數(shù)學(xué)的知識(shí)是千變?nèi)f化的,但是無論怎樣變化都是遵循著一定的原理進(jìn)行的. 在頓悟的教學(xué)引導(dǎo)中,變式教學(xué)的方法是其中重要的內(nèi)容. 所謂變式即通過概念或題型的演變而獲得相同的解決方法,“殊途同歸”便是與之相同的意思. 學(xué)生在日常的習(xí)題鍛煉中,思維比較保守,喜歡只是套用課本上的固定模式來進(jìn)行解題的分析,這在一定程度上不利于學(xué)生習(xí)題的解決速度的提高. 筆者在數(shù)學(xué)課堂上,喜歡用變式教學(xué)法對(duì)學(xué)生進(jìn)行頓悟的引導(dǎo),對(duì)一個(gè)定義或問題進(jìn)行舉一反三的方法,提高了學(xué)生的思考效率,讓學(xué)生在數(shù)學(xué)知識(shí)的體系中快速尋找突破點(diǎn).

例如,人教版初中數(shù)學(xué)《三角形》知識(shí)體系中,此類知識(shí)基本上以三角形的內(nèi)角和來進(jìn)行出題,學(xué)生在習(xí)題的練習(xí)中存在以下問題,即對(duì)于課堂上的知識(shí)能夠很好地解出答案,但是一旦題型發(fā)生了變化,他們便有吃力的感覺,對(duì)問題的突破表現(xiàn)為無從下手. 筆者在課堂上使用了變式教學(xué)法進(jìn)行學(xué)生的頓悟引導(dǎo). 例如,同學(xué)們,已知三角形的內(nèi)角和是180°,但是誰能舉出幾種方法進(jìn)行求證呢?經(jīng)過學(xué)生的思考,筆者總結(jié)了學(xué)生的答案:(1)借助幾何的工具進(jìn)行測(cè)量,量角器便是最好的方法. 通過對(duì)三角形內(nèi)角的測(cè)量,學(xué)生很快得出了三角形的內(nèi)角和. (2)引導(dǎo)學(xué)生親自動(dòng)手,將三角形的內(nèi)角進(jìn)行剪切,然后拼接在一起,大家會(huì)發(fā)現(xiàn)此時(shí)三角形的內(nèi)角組合在一起正好是一個(gè)180°的平角. 并且讓學(xué)生根據(jù)不同的三角形進(jìn)行多次的實(shí)驗(yàn),得到的結(jié)果相同. (3)通過圖形的變形推算,讓學(xué)生將四邊都是直角的四邊形進(jìn)行對(duì)折,然后根據(jù)圖形進(jìn)行推理,可以得到三角形的內(nèi)角和為180°. 通過變式的引導(dǎo),可以擴(kuò)寬學(xué)生的思維,讓其在今后的學(xué)習(xí)中輕松利用各種方法進(jìn)行求證,縮短了學(xué)生的做題速度,也降低了學(xué)生的錯(cuò)誤率.

變式教學(xué)法是數(shù)學(xué)教學(xué)中有效的方法,這就需要教師在日常的備課中進(jìn)行知識(shí)的擴(kuò)散及轉(zhuǎn)化準(zhǔn)備,為學(xué)生提供變式的頓悟思維,充分提高了學(xué)生的做題效率和強(qiáng)化了對(duì)知識(shí)的掌握程度.

初中學(xué)生的數(shù)學(xué)教育非常重要,它是承接小學(xué)和高中數(shù)學(xué)知識(shí)的橋梁. 在日常的教學(xué)中,我們不能只將目光放在課本的知識(shí)上,還要進(jìn)行靈活的思維培養(yǎng),給予學(xué)生學(xué)習(xí)、思考的能力. 課本的知識(shí)只能提高學(xué)生試卷上的成績(jī),而數(shù)學(xué)能力的培養(yǎng)卻是讓學(xué)生在知識(shí)的海洋里遠(yuǎn)航時(shí)揚(yáng)起的帆.

猜你喜歡
提高初中數(shù)學(xué)
試論小學(xué)生作文能力的培養(yǎng)
多渠道提高幼兒的語言交往能力
提高幼兒教育質(zhì)量的策略研究
讓作文互評(píng)提高能力
漫談初中作文教學(xué)
試分析初中數(shù)學(xué)二元一次方程和一次函數(shù)的教學(xué)
初中數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力
例談數(shù)學(xué)教學(xué)中的“頓悟”
初中數(shù)學(xué)高效課堂的創(chuàng)建策略
學(xué)案式教學(xué)模式在初中數(shù)學(xué)教學(xué)中的應(yīng)用