【摘 要】慢性內(nèi)臟痛(chronic visceral pain,CVP)是由人體內(nèi)臟器官基礎(chǔ)疾病引發(fā)的多種疾病的常見癥狀之一。其原因包括血管機(jī)制、機(jī)械因素、持續(xù)炎癥和不明原因的功能機(jī)制。雖然其發(fā)病機(jī)制尚不明確,但近年來越來越多的研究已開始從神經(jīng)元轉(zhuǎn)向膠質(zhì)細(xì)胞。脊髓膠質(zhì)細(xì)胞,尤其是星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞在CVP中起重要作用。基于此,本研究對二者在CVP中的作用機(jī)制進(jìn)行闡述,包括細(xì)胞因子、趨化因子和神經(jīng)活性物質(zhì)的釋放以及細(xì)胞內(nèi)信號(hào)通路的改變。最后,由于CVP可發(fā)生在多種疾病中,針對星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞為藥用靶點(diǎn)治療疾病有廣闊的應(yīng)用前景。
【關(guān)鍵詞】慢性內(nèi)臟痛;星形膠質(zhì)細(xì)胞;小膠質(zhì)細(xì)胞;脊髓背角;發(fā)病機(jī)制
【中圖分類號(hào)】R3 【文獻(xiàn)標(biāo)志碼】A 【收稿日期】2023-10-17
慢性內(nèi)臟痛(chronic visceral pain,CVP)多起自于胸、腹、盆腔等內(nèi)臟器官病變,是胃腸道紊亂和許多其他疾病患者的常見癥狀之一。CVP也是人體保護(hù)性反應(yīng),但在病因明確后,對CVP的有效治療能夠明顯減輕患者的痛苦。迄今,臨床上針對CVP的藥物治療,其療效仍不夠理想。CVP難以分類,其病因包括持續(xù)炎癥、血管(缺血)機(jī)制、癌癥、梗阻、機(jī)械因素和不明原因的功能機(jī)制。同時(shí),感染性、非感染性以及自身免疫因素也可誘發(fā)慢性內(nèi)臟痛,如腸易激綜合征腹痛、非心源性胸痛、胰腺炎及子宮內(nèi)膜異位癥和慢性膀胱疼痛[1-2]。有研究稱,僅腸易激綜合征腹痛每年耗費(fèi)大量的醫(yī)療資源和治療費(fèi)用,嚴(yán)重影響患者的生活和工作[3]。
近年來,多項(xiàng)研究提示脊髓膠質(zhì)細(xì)胞可能通過分泌炎癥因子和改變細(xì)胞內(nèi)信號(hào)通路參與CVP 的形成和傳遞。之前,對膠質(zhì)細(xì)胞的研究主要集中于多發(fā)性硬化癥(multiplesclerosis,MS)和實(shí)驗(yàn)性自身免疫性腦脊髓炎(experimentalautoimmune encephalomyelitis,EAE)[4]。因此,本文將主要對近年來星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞參與CVP的發(fā)病機(jī)制進(jìn)行綜述,為今后的研究和治療CVP提供依據(jù)和啟示。
1 星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞的特征
在中樞神經(jīng)系統(tǒng)(central nervous system,CNS)中,膠質(zhì)細(xì)胞類型包含少突膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞。其中,星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞與內(nèi)臟痛關(guān)系密切。星形膠質(zhì)細(xì)胞體積大且數(shù)量較多,具有許多輻射突,以復(fù)雜而密切的方式交織在神經(jīng)元細(xì)胞體和纖維之間。有些在單個(gè)突觸周圍形成切口或面紗,突觸傳遞任務(wù)可以通過神經(jīng)末梢和這些膠質(zhì)元件之間的信號(hào)來完成。此外,星形膠質(zhì)細(xì)胞還能夠控制細(xì)胞外空間的鉀水平,并在中樞神經(jīng)系統(tǒng)發(fā)育中發(fā)揮重要作用[5]。小膠質(zhì)細(xì)胞是巨噬細(xì)胞樣細(xì)胞,起源于血液中單個(gè)細(xì)胞而不是神經(jīng)外胚層[5]。因此,它們能夠感知環(huán)境[6],響應(yīng)細(xì)胞外信號(hào),并通過吞噬作用吞噬不需要的神經(jīng)元碎片,從而維持中樞神經(jīng)系統(tǒng)正常的細(xì)胞穩(wěn)態(tài)[7]。在生理?xiàng)l件下,“靜息”小膠質(zhì)細(xì)胞以THIK-1依賴的方式,它是1個(gè)雙孔結(jié)構(gòu)域K+通道,維持小膠質(zhì)細(xì)胞靜息電位,幫助小膠質(zhì)細(xì)胞不斷監(jiān)測周圍環(huán)境,清除受損細(xì)胞或感染因子,以維持組織穩(wěn)態(tài)[8]。
2 CVP激活脊髓膠質(zhì)細(xì)胞
2.1 CVP誘導(dǎo)星形膠質(zhì)細(xì)胞活化
星形膠質(zhì)細(xì)胞對維持中樞神經(jīng)系統(tǒng)穩(wěn)態(tài)至關(guān)重要,有證據(jù)表明慢性疼痛可能是星形膠質(zhì)細(xì)胞“膠質(zhì)病變”所致[9]。當(dāng)機(jī)體受到疼痛刺激時(shí),神經(jīng)末梢和受損細(xì)胞釋放的各種物質(zhì)可與星形膠質(zhì)細(xì)胞膜上相應(yīng)的受體結(jié)合并促進(jìn)其活化。本課題組通過研究發(fā)現(xiàn),在腸易激綜合征慢性內(nèi)臟痛大鼠脊髓后角的星形膠質(zhì)細(xì)胞中膠質(zhì)細(xì)胞原纖維酸性蛋白表達(dá)明顯增加[10]。
另一方面,星形膠質(zhì)細(xì)胞不僅與神經(jīng)元之間存在雙向通信[11],而且縫隙連接蛋白Cx43和泛聯(lián)蛋白1(Panx1)通道也發(fā)揮了重要作用[12],即疼痛信號(hào)在神經(jīng)元和星形膠質(zhì)細(xì)胞之間傳遞。星形膠質(zhì)細(xì)胞和神經(jīng)元之間通過縫隙連接和通道,以及由未配對連接蛋白作用的半通道,形成了神經(jīng)元和星形膠質(zhì)細(xì)胞之間的信號(hào)通路。因此,星形膠質(zhì)細(xì)胞可以受到來自神經(jīng)元的信號(hào),被激活并參與慢性內(nèi)臟痛的發(fā)生和發(fā)展過程。然而,該通道可被Cx半通道和Panx通道阻滯劑部分抑制。相反,在大鼠或小鼠模型中,結(jié)節(jié)狀神經(jīng)元暴露于無Ca2+/Mg2+的溶液后,迷走神經(jīng)的電活動(dòng)明顯增加,Cx半通道開放的概率增加[13]。
2.2 CVP誘導(dǎo)小膠質(zhì)細(xì)胞活化
小膠質(zhì)細(xì)胞作為神經(jīng)系統(tǒng)的“巨噬細(xì)胞”,起到監(jiān)測內(nèi)部環(huán)境的穩(wěn)定性作用[14]。然而,在病理?xiàng)l件下,損傷可導(dǎo)致脊髓內(nèi)小膠質(zhì)細(xì)胞明顯增生。膠質(zhì)增生是膠質(zhì)細(xì)胞對損傷的非特異性反應(yīng),常表現(xiàn)為膠質(zhì)細(xì)胞的增生或肥大,小膠質(zhì)細(xì)胞會(huì)由分枝狀變?yōu)樽冃蜗x狀,胞體增大,突起縮短[15-16]。內(nèi)臟受到損傷或持續(xù)的炎癥刺激導(dǎo)致脊髓背角初級(jí)感覺神經(jīng)元的aδ 纖維和c-纖維末端釋放各種神經(jīng)遞質(zhì),如谷氨酸(glutamic acid,Glu)、三磷酸腺苷(adenosine triphosphate,ATP)、P物質(zhì)(substance P,SP)和降鈣素基因相關(guān)肽(calcito?nin gene related peptide,CGRP)。本課題組前期研究發(fā)現(xiàn),在大鼠慢性內(nèi)臟痛時(shí)小膠質(zhì)細(xì)胞被激活,抑制小膠質(zhì)細(xì)胞可以提高其吞噬髓鞘碎片能力并改善炎癥情況,從而改善腸易激綜合征內(nèi)臟痛[17]。與此同時(shí),無菌性炎癥或受損和死亡細(xì)胞也會(huì)產(chǎn)生或釋放損傷相關(guān)分子模式(damage-associated mo?lecular pattern,DAMPs)[18]。DAMPs會(huì)與小膠質(zhì)細(xì)胞膜上相應(yīng)的受體結(jié)合,促進(jìn)小膠質(zhì)細(xì)胞活化和增殖,促進(jìn)無菌性炎癥。
另一方面,小膠質(zhì)細(xì)胞的形態(tài)和功能也會(huì)隨著神經(jīng)元活動(dòng)的變化而發(fā)生動(dòng)態(tài)改變。研究表明,在基礎(chǔ)生理?xiàng)l件下,清醒小鼠的去甲腎上腺素能強(qiáng)力控制著小膠質(zhì)細(xì)胞對神經(jīng)元監(jiān)測的過程。這些發(fā)現(xiàn)表明,神經(jīng)元功能可以調(diào)節(jié)小膠質(zhì)細(xì)胞活動(dòng)[19];干擾素調(diào)節(jié)因子8(interferon regulatory factor 8,IRF8)和IL-1β的表達(dá)水平受Gi信號(hào)通路調(diào)控,可調(diào)節(jié)小膠質(zhì)細(xì)胞活化和隨后的內(nèi)臟疼痛超敏反應(yīng)。因此,如果神經(jīng)元感受到疼痛刺激并在疼痛開始時(shí)產(chǎn)生動(dòng)作電位,小膠質(zhì)細(xì)胞就會(huì)激活。
2.3 星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞的活化時(shí)間不同
雖然星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞的激活方式幾乎相似,但兩者之間仍存在一些差異。有研究表明,CVP時(shí)小膠質(zhì)細(xì)胞先于星形膠質(zhì)細(xì)胞激活,活化的小膠質(zhì)細(xì)胞具有自限性,后期持續(xù)呈降低水平,而星形膠質(zhì)細(xì)胞激活后在整個(gè)損傷期間持續(xù)存在[20-21]。在內(nèi)臟痛過程中存在小膠質(zhì)細(xì)胞-星形膠質(zhì)細(xì)胞信號(hào)通路,即活化的小膠質(zhì)細(xì)胞釋放白細(xì)胞介素-1β(interleukin-1β,IL-1β)、IL-6 和腫瘤壞死因子-α(tumornecrosis factor-α,TNF-α)等促炎因子作用于鄰近的星形膠質(zhì)細(xì)胞受體,激活星形膠質(zhì)細(xì)胞,改變其細(xì)胞膜上鈉離子和鈣離子通道的通透性,使其興奮和增殖。反過來,星形膠質(zhì)細(xì)胞通過其分泌的分子調(diào)節(jié)小膠質(zhì)細(xì)胞的表型和功能,從而增強(qiáng)小膠質(zhì)細(xì)胞的吞噬作用。雖然星形膠質(zhì)細(xì)胞在疼痛過程的早期被激活,但它們通常發(fā)生在小膠質(zhì)細(xì)胞被激活之后,在疼痛持續(xù)狀態(tài)下,它們也始終保持在應(yīng)答狀態(tài)。因此,脊髓小膠質(zhì)細(xì)胞最初被激活,隨后形成持續(xù)的星形膠質(zhì)細(xì)胞活化,這與慢性內(nèi)臟痛的誘導(dǎo)和維持密切相關(guān)。
3 脊髓活化膠質(zhì)細(xì)胞參與CVP維持
3.1 星形膠質(zhì)細(xì)胞釋放內(nèi)源性傷害性因子
在CVP中,活化的脊髓星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞可在疼痛過程中釋放各種內(nèi)源性傷害性因子[22-23],而星形膠質(zhì)細(xì)胞幾乎參與了所有持續(xù)性疼痛。星形膠質(zhì)細(xì)胞主要利用縫隙連接蛋白形成細(xì)胞間網(wǎng)絡(luò)的能力來影響疼痛過程。這些縫隙連接由亞型Cx30和Cx43的連接蛋白組成。它們作為一個(gè)半通道,在不受相鄰的半通道的阻礙時(shí)允許細(xì)胞間通信,并控制一些小分子,如ATP、Glu 和趨化因子(CCL2 和CXCL1)釋放到細(xì)胞外空間。此外,它們還可以直接激活受損的感覺神經(jīng)元。星形膠質(zhì)細(xì)胞與小膠質(zhì)細(xì)胞之間也存在相互作用:星形膠質(zhì)細(xì)胞Cx43釋放的ATP可通過P2X受體作用于小膠質(zhì)細(xì)胞,星形膠質(zhì)細(xì)胞釋放的趨化因子可激活小膠質(zhì)細(xì)胞,最終導(dǎo)致腦源性神經(jīng)營養(yǎng)因子(brain-derivedneurotrophic factor,BDNF)的釋放和慢性疼痛[24]。
研究表明,鞘內(nèi)注射外源性BDNF可進(jìn)一步降低機(jī)械痛閾,促進(jìn)星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞活化,并增加TNF-α和IL-1β的釋放,這一過程在疼痛的維持中起著重要作用。脊髓背角注射環(huán)磷酰胺后,BDNF-TrkB信號(hào)通路、Iba1、GFAP、p-p38、p-JNK、IL-1β、TNF-α 等表達(dá)進(jìn)一步增加。在CYP誘導(dǎo)的膀胱炎疼痛模型中,BDNF 通過BDNF-trkbp38/JNK信號(hào)通路促進(jìn)星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞活化,釋放TNF-α和IL-1β,加重神經(jīng)炎癥,導(dǎo)致CVP[25]。另一方面,疼痛信號(hào)和內(nèi)環(huán)境變化激活的脊髓星形膠質(zhì)細(xì)胞也能夠直接釋放促炎因子(如IL-1β、IL-6、TNF-α)和趨化因子(如巨噬細(xì)胞趨化蛋白-1),并激活c-Jun氨基末端激酶(c-jun N-terminalkinase,JNK)和單核細(xì)胞趨化蛋白-1(MCP-1),從而增加和延長疼痛的持續(xù)時(shí)間。
3.2 小膠質(zhì)細(xì)胞釋放內(nèi)源性傷害性因子
脊髓小膠質(zhì)細(xì)胞是神經(jīng)系統(tǒng)的“常駐組織的巨噬細(xì)胞”,當(dāng)發(fā)生病變時(shí)它立即被激活并對各種疼痛狀態(tài)作出反應(yīng)。脊髓小膠質(zhì)細(xì)胞-神經(jīng)元的相互作用也參與了慢性疼痛的維持[26]。雖然小膠質(zhì)細(xì)胞在疼痛維持中發(fā)揮的作用不如星形膠質(zhì)細(xì)胞,但它們也是疼痛的重要參與者。激活后可釋放多種促炎細(xì)胞因子,包括IL-1β和TNF-α[27]。此外,小膠質(zhì)細(xì)胞釋放的大量TNF-α是所謂的神經(jīng)炎癥反應(yīng)的關(guān)鍵組成部分,在疼痛的啟動(dòng)和維持中起關(guān)鍵作用[28]。有研究發(fā)現(xiàn)[29],天麻素通過抑制小膠質(zhì)細(xì)胞中誘導(dǎo)型一氧化氮合酶(iNOS)、TNF-α、細(xì)胞周期蛋白d1(cyclinD1)和Ki67的表達(dá),抑制活化小膠質(zhì)細(xì)胞的增殖和炎癥反應(yīng)。
另一方面,內(nèi)臟的傷害性刺激增強(qiáng)了脊髓和高級(jí)腦中樞的敏感性,這個(gè)過程被稱為中樞敏化,它維持內(nèi)臟疼痛并引起初始損傷部位以外的廣泛疼痛[30]。中樞敏化可部分維持慢性內(nèi)臟痛,其機(jī)制可能與痛覺閾值下調(diào)有關(guān),即使是很輕微的刺激也能引起疼痛感,并增加人體感到疼痛的時(shí)間。小膠質(zhì)細(xì)胞在中樞敏化和突觸可塑性重塑中起重要作用,與腸易激綜合征、胰腺炎、子宮內(nèi)膜異位癥和慢性膀胱炎等疼痛性疾病的慢性化有關(guān)[31]。痛覺刺激激活的小膠質(zhì)細(xì)胞在中樞敏化中起重要作用。它們可以釋放多種細(xì)胞因子和神經(jīng)調(diào)節(jié)劑,包括ATP、BDNF、一氧化氮(NO)、前列腺素等,在周圍的興奮性突觸(易化)和抑制性突觸(去抑制)誘導(dǎo)局部中樞敏化。P2X4R主要在小膠質(zhì)細(xì)胞中表達(dá),在神經(jīng)系統(tǒng)的信息傳遞和疼痛的形成中起著至關(guān)重要的作用。它依賴ATP配體門控離子通道受體,ATP可以激活該受體。激活的P2X4R 可以打開細(xì)胞膜上的離子通道(鈉、鈣內(nèi)流和鉀外流),激活細(xì)胞內(nèi)的信號(hào)通路,增強(qiáng)腸道疼痛感覺信號(hào)的傳遞[32]。這一過程可使CNS敏化,誘發(fā)或加重疼痛。在反復(fù)社交失敗(RSD)模型中,心理社會(huì)應(yīng)激激活小膠質(zhì)細(xì)胞,增加神經(jīng)炎癥信號(hào),并增強(qiáng)疼痛[33]。
因此,脊髓小膠質(zhì)細(xì)胞不僅分泌多種促炎細(xì)胞因子和趨化因子來產(chǎn)生和加劇內(nèi)臟疼痛,而且還釋放一些作用于疼痛轉(zhuǎn)導(dǎo)神經(jīng)元的神經(jīng)調(diào)節(jié)劑,產(chǎn)生內(nèi)臟痛超敏反應(yīng)并維持疼痛[34]。CVP下脊髓小膠質(zhì)細(xì)胞的功能見圖1。首先,脊髓背角對臟器的損傷或持續(xù)炎癥刺激,脊髓背角初級(jí)感覺神經(jīng)元的aδ纖維和C-纖維末梢會(huì)釋放多種神經(jīng)遞質(zhì),包括ATP、CGRP、SP和Glu。所有這些因子都會(huì)與小膠質(zhì)細(xì)胞膜上的受體結(jié)合,促進(jìn)小膠質(zhì)細(xì)胞的活化和增殖。然后,活化的小膠質(zhì)細(xì)胞可以釋放大量的促炎細(xì)胞因子如IL-1 和TNF-α產(chǎn)生疼痛,以及一些神經(jīng)調(diào)節(jié)因子如BDNF 和NO 誘導(dǎo)中樞敏化。
4 細(xì)胞內(nèi)信號(hào)通路變化與疼痛的關(guān)系
激活的脊髓膠質(zhì)細(xì)胞內(nèi)某些信號(hào)通路的改變也有助于CVP 的發(fā)生。目前研究較多的是絲裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)信號(hào)通路、NF-κB信號(hào)通路、Wnt信號(hào)通路、jak/STAT信號(hào)通路等。
4.1 MAPKs
首先,該家族包括細(xì)胞內(nèi)的MAPKs組成,包括c-Jun氨基末端激酶(JNK)和絲裂原活化蛋白激酶p38 家族(p38MAPK),以及細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signalregulatedkinase,ERK)轉(zhuǎn)導(dǎo)途徑組成[35]。MAPKs被激活,并進(jìn)一步誘導(dǎo)對疼痛至關(guān)重要的下游信號(hào)傳導(dǎo)。在CVP的刺激下,它將細(xì)胞外刺激傳遞到細(xì)胞核,然后依次激活小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞。在這種情況下,許多促炎細(xì)胞因子、趨化因子和生長因子可以從膠質(zhì)細(xì)胞中釋放出來,參與疼痛過敏和疼痛維持[36]。細(xì)胞外信號(hào)調(diào)節(jié)激酶與內(nèi)臟痛之間的關(guān)系已得到更充分的研究。在炎癥性慢性內(nèi)臟痛大鼠模型中,microRNA能夠抑制大鼠ERK信號(hào)通路,從而增強(qiáng)右美托咪定對內(nèi)臟炎性痛的鎮(zhèn)痛作用[37]。P2Y1受體是調(diào)節(jié)人結(jié)腸平滑肌興奮性的重要藥理學(xué)靶點(diǎn),在腸易激綜合征內(nèi)臟痛大鼠模型中也可介導(dǎo)下游MAPK/ERK信號(hào)通路誘導(dǎo)脊髓星形膠質(zhì)細(xì)胞活化。激活的星形膠質(zhì)細(xì)胞可通過調(diào)節(jié)神經(jīng)元的興奮性釋放內(nèi)源性Glu,從而參與疼痛。在此基礎(chǔ)上,抑制P2Y1受體介導(dǎo)的MAPK/ERK 信號(hào)通路可有效抑制脊髓膠質(zhì)纖維酸性蛋白(GFAP)的mRNA和蛋白表達(dá),減少星形膠質(zhì)細(xì)胞釋放炎性細(xì)胞因子IL-6、IL-1和TNF-α,從而減輕大鼠內(nèi)臟高敏感,發(fā)揮鎮(zhèn)痛作用[38]。同樣,在慢性炎癥性內(nèi)臟疼痛大鼠模型中,抑制脊髓MAPK信號(hào)通路中蛋白的磷酸化可下調(diào)ERK、JNK和p38通路蛋白的表達(dá)。然而,它主要通過調(diào)節(jié)ERK通路蛋白來為提供足夠的鎮(zhèn)痛效應(yīng)[39]。
4.2 NF-κB
NF-κB在幾乎所有細(xì)胞類型中均有表達(dá),主要分為經(jīng)典途徑(RelA/p50)和非經(jīng)典途徑(RelB/p52)。經(jīng)典通路的激活調(diào)節(jié)了眾多促炎細(xì)胞因子和趨化因子基因的表達(dá),參與炎癥反應(yīng)和免疫反應(yīng)等多種機(jī)體活動(dòng)[40],并誘導(dǎo)星形膠質(zhì)細(xì)胞活化,在CVP的發(fā)生發(fā)展中發(fā)揮作用。腫瘤壞死因子受體相關(guān)因子3(tumor necrosis factor receptor-associated factor3,TRAF3)抑制TNF-α 誘導(dǎo)的p100 在NF-κB 中的聚集和IKK(NF-κB inhibitory protein kinase)復(fù)合體的激活,從而增加NIK(NF-κB inducible kinase)的表達(dá),啟動(dòng)RelA/p50通路產(chǎn)生疼痛[41]。相反,非經(jīng)典途徑中的RelB與未加工的p100結(jié)合,形成一個(gè)轉(zhuǎn)錄惰性p100:RelB復(fù)合體。如果IKKα(κB激酶抑制劑)蛋白表達(dá)上調(diào),它會(huì)誘導(dǎo)p100蛋白水解產(chǎn)生p52并與RelB形成異二聚體,這是非典型NF-κB信號(hào)通路的標(biāo)志。此時(shí),RelB的高表達(dá)不僅調(diào)節(jié)IκBα的穩(wěn)定性,反向抑制NF-κB經(jīng)典通路的激活,從而抑制炎癥,還可改善星形膠質(zhì)細(xì)胞的耐受性,緩解疼痛[42-43]。
4.3 Wnt信號(hào)通路
Wnt信號(hào)通路是指由細(xì)胞外Wnt信號(hào)刺激誘導(dǎo)的細(xì)胞內(nèi)信號(hào)級(jí)聯(lián)反應(yīng)。主要包括依賴Wnt/β-catenin(經(jīng)典)通路和非依賴β-catenin(非經(jīng)典)通路,后者又可進(jìn)一步分為平面細(xì)胞極性(PCP)通路和Wnt/Ca2+通路。PCP通路調(diào)節(jié)肌動(dòng)蛋白細(xì)胞骨架動(dòng)力學(xué)、定向細(xì)胞運(yùn)動(dòng)和JNK激活。非經(jīng)典的Wnt/Ca2+途徑通過內(nèi)質(zhì)網(wǎng)Ca2+釋放或細(xì)胞外間隙Ca2+內(nèi)流誘導(dǎo)細(xì)胞內(nèi)Ca2+升高在CVP中發(fā)揮重要作用[44]。不同的Wnt蛋白可以啟動(dòng)不同的信號(hào)通路,如Wnt2b或Wnt3激活經(jīng)典Wnt 信號(hào),而Wnt5a 和Wnt11 通常激活非經(jīng)典Wnt 信號(hào)[45]。此外,IL-8是一種主要由神經(jīng)元、小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞分泌的趨化因子,在炎癥或損傷時(shí)募集中性粒細(xì)胞、T細(xì)胞和嗜堿性粒細(xì)胞進(jìn)入大腦。研究發(fā)現(xiàn),在星形膠質(zhì)細(xì)胞中,β-catenin負(fù)調(diào)控IL-8的轉(zhuǎn)錄,而其經(jīng)典的轉(zhuǎn)錄伙伴,如TCF/LEF轉(zhuǎn)錄因子(TCF1,TCF3,TCF4和LEF1)和轉(zhuǎn)錄激活因子2(ATF2),正調(diào)控IL-8的轉(zhuǎn)錄[46]。
4.4 JAK/STAT
Janus激酶(JAK)是非受體蛋白復(fù)合物激酶家族成員,由JAK1、JAK2、JAK3和TYK2 4個(gè)成員組成。信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子(signal transducer and activator of transcription,STAT)包括STAT1、STAT2、STAT3、STAT4、STAT5a、STAT5b和STAT6。JAK/STAT信號(hào)通路可受到睫狀神經(jīng)營養(yǎng)因子、白血病抑制因子和心肌營養(yǎng)素-1的調(diào)控,激活的JAK/STAT信號(hào)通路可促進(jìn)星形膠質(zhì)細(xì)胞分化[47]。分子和遺傳學(xué)研究表明,主要機(jī)制可能是STAT3促進(jìn)細(xì)胞周期基因表達(dá)和調(diào)節(jié)星形膠質(zhì)細(xì)胞分泌的能力。在免疫細(xì)胞中,STAT3是一種細(xì)胞因子轉(zhuǎn)錄激活因子,而在星形膠質(zhì)細(xì)胞中,STAT3也調(diào)節(jié)細(xì)胞因子和趨化因子的產(chǎn)生,通過藥物抑制JAK/STAT3通路來降低星形膠質(zhì)細(xì)胞中IL-6,IL-1β,IL-4和血管內(nèi)皮生長因子的表達(dá)[48]。此外,活化的小膠質(zhì)細(xì)胞釋放的IL-6可以激活JAK/STAT 信號(hào)通路,其中STAT 家族的STAT3再次能夠促進(jìn)小膠質(zhì)細(xì)胞活化,并在疼痛傳遞中發(fā)揮促進(jìn)作用[49]。
5 總結(jié)與展望
過去10年對膠質(zhì)細(xì)胞的研究表明,脊髓小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞不僅對神經(jīng)元發(fā)揮支持和營養(yǎng)作用,而且對CVP的啟動(dòng)和維持也有重要影響。因?yàn)樗鼈兗せ詈罂舍尫哦喾N炎癥介質(zhì)啟動(dòng)疼痛,同時(shí)產(chǎn)生各種神經(jīng)元/膠質(zhì)細(xì)胞興奮性物質(zhì)直接作用于痛覺轉(zhuǎn)導(dǎo)神經(jīng)元,觸發(fā)中樞敏化,維持疼痛。此外,脊髓小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞內(nèi)各種信號(hào)通路的改變也影響了它們的功能,從而進(jìn)一步分泌各種加劇疼痛的因子。目前的大多數(shù)研究都在探索已確定機(jī)制的上游或下游,但缺乏完整的信號(hào)通路的闡明,關(guān)于膠質(zhì)細(xì)胞參與CVP的機(jī)制研究還比較有限,有許多問題需要解決。例如,雖然脊髓膠質(zhì)細(xì)胞激活的機(jī)制已被確定,但哪些分子或通路在膠質(zhì)細(xì)胞參與疼痛中起主導(dǎo)作用仍需實(shí)驗(yàn)來確定。通過不斷地實(shí)驗(yàn)和探索,本課題組認(rèn)為,CVP發(fā)生時(shí)介導(dǎo)參與脊髓膠質(zhì)細(xì)胞激活的相關(guān)分子以及相關(guān)信號(hào)傳遞通路均可能成為潛在的CVP臨床治療靶點(diǎn)。
參考文獻(xiàn)
[1] Aziz Q,Giamberardino MA,Barke A,et al. The IASP classification
of chronic pain for ICD-11:chronic secondary visceral pain[J]. Pain,
2019,160(1):69-76.
[2] Treede RD,Rief W,Barke A,et al. Chronic pain as a symptom or a
disease:the IASP Classification of Chronic Pain for the International
Classification of Diseases(ICD-11)[J]. Pain,2019,160(1):19-27.
[3] Chey WD,Kurlander J,Eswaran S. Irritable bowel syndrome:a
clinical review[J]. JAMA,2015,313(9):949-958.
[4] J?kel S,Agirre E,Mendanha Falc?o A,et al. Altered human
oligodendrocyte heterogeneity in multiple sclerosis[J]. Nature,2019,566
(7745):543-547.
[5] Vaglienti MV,Subirada PV,Joray MB,et al. Protective effect of
NO2-OA on oxidative stress,gliosis,and pro-angiogenic response in
Müller glial cells[J]. Cells,2023,12(3):494.
[6] Quagliato LA,Nardi AE. The role of convergent ion channel path?
ways in microglial phenotypes:a systematic review of the implications
for neurological and psychiatric disorders[J]. Transl Psychiatry,2018,8
(1):259.
[7] Fan Y,Xie LR,Chung CY. Signaling pathways controlling microg?
lia chemotaxis[J]. Mol Cells,2017,40(3):163-168.
[8] Kim SY,Park JH,Leite G,et al. Interleukin-10 knockout mice do
not reliably exhibit macroscopic inflammation:a natural history endo?
scopic surveillance study[J]. Dig Dis Sci,2023,68(5):1858-1862.
[9] Braz JM,Hamel K,Craik V,et al. Pain and itch processing in aged
mice[J]. J Pain,2024,25(1):53-63.
[10] 武 靜,田維毅,蔡 琨,等. 大建中湯通過調(diào)節(jié)P2X7R介導(dǎo)
膠質(zhì)細(xì)胞活化減輕大鼠腸易激綜合征內(nèi)臟痛[J]. 中國病理生理雜
志,2023,39(6):1077-1085.
Wu J,Tian WY,Cai K,et al. Dajianzhongtang attenuates visceral pain
in rats with irritable bowel syn-drome by regulating P2X7R-mediated
glial cell activation[J]. Chin J Pathophysiol,2023,39(6):1077-1085.
[11] Lee HG,Wheeler MA,Quintana FJ. Function and therapeutic
value of astrocytes in neurological diseases[J]. Nat Rev Drug Discov,
2022,21(5):339-358.
[12] Li Q,Wang YQ,Chu YX. The role of connexins and pannexins in
orofacial pain[J]. Life Sci,2020,258:118198.
[13] Shin SM,Wang F,Qiu CS,et al. Sigma-1 receptor activity in pri?
mary sensory neurons is a critical driver of neuropathic pain[J]. Gene
Ther,2022,29(1/2):1-15.
[14] Prinz M,Jung S,Priller J. Microglia biology:one century of evolv?
ing concepts[J]. Cell,2019,179(2):292-311.
[15] Vanderwall AG,Milligan ED. Cytokines in pain:harnessing en?
dogenous anti-inflammatory signaling for improved pain management
[J]. Front Immunol,2019,10:3009.
[16] Chen G,Zhang YQ,Qadri YJ,et al. Microglia in pain:detrimental
and protective roles in pathogenesis and resolution of pain[J]. Neuron,
2018,100(6):1292-1311.
[17] 武 靜,田維毅,蔡 琨,等. 大建中湯調(diào)控小膠質(zhì)細(xì)胞自噬治
療腹瀉型腸易激綜合征內(nèi)臟痛和抑郁癥共病的作用機(jī)制[J]. 北京中
醫(yī)藥大學(xué)學(xué)報(bào),2023,46(2):215-223.
Wu J,Tian WY,Cai K,et al. Mechanism of Dajianzhong Decoction in
treating visceral pain and depression associated with diarrhea irritable
bowel syndrome through regulating microglial autophagy[J]. J Beijing
Univ Tradit Chin Med,2023,46(2):215-223.
[18] Gong T,Liu L,Jiang W,et al. DAMP-sensing receptors in sterile
inflammation and inflammatory diseases[J]. Nat Rev Immunol,2020,20
(2):95-112.
[19] Liu YU,Ying YL,Li YJ,et al. Neuronal network activity controls
microglial process surveillance in awake mice via norepinephrine signal?
ing[J]. Nat Neurosci,2019,22(11):1771-1781.
[20] Iqubal A,Ahmed M,Iqubal MK,et al. Polyphenols as potential
therapeutics for pain and inflammation in spinal cord injury[J]. Curr Mol
Pharmacol,2021,14(5):714-730.
[21] Jha MK,Jo M,Kim JH,et al. Microglia-astrocyte crosstalk:an in?
timate molecular conversation[J]. Neuroscientist,2019,25(3):227-240.
[22] Lee JH,Kim W. The role of satellite glial cells,astrocytes,and
microglia in oxaliplatin-induced neuropathic pain[J]. Biomedicines,
2020,8(9):324.
[23] Liddelow SA,Marsh SE,Stevens B. Microglia and astrocytes in
disease:dynamic Duo or partners in crime?[J]. Trends Immunol,2020,
41(9):820-835.
[24] Guo AN,Zhang HQ,Li HH,et al. Inhibition of connexin hemi?
channels alleviates neuroinflammation and hyperexcitability in temporal
lobe epilepsy[J]. Proc Natl Acad Sci USA,2022,119(45):e2213162119.
[25] Ding HL,Chen JL,Su MZ,et al. BDNF promotes activation of as?
trocytes and microglia contributing to neuroinflammation and mechani?
cal allodynia in cyclophosphamide-induced cystitis[J]. J Neuroinflam?
mation,2020,17(1):19.
[26] van den Hoogen NJ,Harding EK,Davidson CED,et al. Cannabi?
noids in chronic pain:therapeutic potential through microglia modula?
tion[J]. Front Neural Circuits,2021,15:816747.
[27] Kwon HS,Koh SH. Neuroinflammation in neurodegenerative dis?
orders:the roles of microglia and astrocytes[J]. Transl Neurodegener,
2020,9(1):42.
[28] Olmos G,Lladó J. Tumor necrosis factor alpha:a link between
neuroinflammation and excitotoxicity[J]. Mediators Inflamm,2014,2014:
861231.
[29] Yao YY,Bian LG,Yang P,et al. Gastrodin attenuates prolifera?
tion and inflammatory responses in activated microglia through Wnt/β
-catenin signaling pathway[J]. Brain Res,2019,1717:190-203.
[30] Ji RR,Nackley A,Huh Y,et al. Neuroinflammation and central
sensitization in chronic and widespread pain[J]. Anesthesiology,2018,
129(2):343-366.
[31] Lucarini E,Parisio C,Branca JJV,et al. Deepening the mecha?
nisms of visceral pain persistence:an evaluation of the gut-spinal cord
relationship[J]. Cells,2020,9(8):1772.
[32] D’Antongiovanni V,Pellegrini C,F(xiàn)ornai M,et al. Pharmacologi?
cal modulation of P2X4 in inflammatory bowel diseases:the way towards
novel therapeutics?[J]. J Drug Target,2023,31(7):693-699.
[33] Sawicki CM,Kim JK,Weber MD,et al. Microglia promote in?
creased pain behavior through enhanced inflammation in the spinal cord
during repeated social defeat stress[J]. J Neurosci,2019,39(7):1139-
1149.
[34] Long JY,Wang XJ,Li XY,et al. Spinal Microglia and Astro?
cytes: Two Key Players in Chronic Visceral Pain Pathogenesis. Neuro?
chem Res. 2022 Mar;47(3):545-551.
[35] Yue J,López JM. Understanding MAPK Signaling Pathways in
Apoptosis[J].Int J Mol Sci,19-28.
[36] Kuchukulla M,Boison D. Are glia targets for neuropathic orofa?
cial pain therapy?[J]. J Am Dent Assoc,2021,152(9):774-779.
[37] Sun L,Zhou JJ,Sun CH. MicroRNA-211-5p enhances analgesic
effect of dexmedetomidine on inflammatory visceral pain in rats by sup?
pressing ERK signaling[J]. J Mol Neurosci,2019,68(1):19-28.
[38] Zhao JM,Li H,Shi C,et al. Electroacupuncture inhibits the activ?
ity of astrocytes in spinal cord in rats with visceral hypersensitivity by in?
hibiting P2Y1 receptor-mediated MAPK/ERK signaling pathway[J].
Evid Based Complement Alternat Med,2020,2020:4956179.
[39] Huang Y,Zhang D,Li ZY,et al. Moxibustion eases chronic in?
flammatory visceral pain in rats via MAPK signaling pathway in the spi?
nal cord[J]. J Pain Res,2019,12:2999-3012.
[40] Capece D,Verzella D,F(xiàn)lati I,et al. NF-κB:blending metabo?
lism,immunity,and inflammation[J]. Trends Immunol,2022,43(9):
757-775.
[41] Sun LP,Hu CF,Zhang XZ. TRAF3 delays cyst formation induced
by NF-κB signaling[J]. IUBMB Life,2017,69(3):170-178.
[42] Gupta AS,Waters MR,Biswas DD,et al. RelB controls adaptive
responses of astrocytes during sterile inflammation[J]. Glia,2019,67
(8):1449-1461.
[43] Millet P,McCall C,Yoza B. RelB:an outlier in leukocyte biology
[J]. J Leukoc Biol,2013,94(5):941-951.
[44] Harb J,Lin PJ,Hao JJ. Recent development of Wnt signaling
pathway inhibitors for cancer therapeutics[J]. Curr Oncol Rep,2019,
21(2):12.
[45] Katoh M. Canonical and non-canonical WNT signaling in cancer
stem cells and their niches:Cellular heterogeneity,omics reprogram?
ming,targeted therapy and tumor plasticity (Review)[J]. Int J Oncol,
2017,51(5):1357-1369.
[46] Robinson KF,Narasipura SD,Wallace J,et al. Negative regula?
tion of IL-8 in human astrocytes depends on β-catenin while positive
regulation is mediated by TCFs/LEF/ATF2 interaction[J]. Cytokine,
2020,136:155252.
[47] Sumida Y,Kamei N,Suga N,et al. The endoplasmic reticulum
stress transducer old astrocyte specifically induced substance positively
regulates glial scar formation in spinal cord injury[J]. Neuroreport,
2018,29(17):1443-1448.
[48] Wang J,Li G,Wang Z,et al. High glucose-induced expression of
inflammatory cytokines and reactive oxygen species in cultured astro?
cytes[J]. Neuroscience,2012,202:58-68.
[49] Ceyzériat K,Abjean L,Carrillo-de Sauvage MA,et al. The com?
plex STATes of astrocyte reactivity:How are they controlled by the JAKSTAT3
pathway?[J]. Neuroscience,2016,330:205-218.
(責(zé)任編輯:李青穎)